

Praise for Learn Enough Tutorials

“Just started the #100DaysOfCode journey. Today marks day 1. I have completed
@mhartl’s great Ruby tutorial at @LearnEnough and am looking forward to starting
on Ruby on Rails from tomorrow. Onwards and upwards.”

—Optimize Prime (@_optimize), Twitter post

“Ruby and Sinatra and Heroku, oh my! Almost done with this live web application. It
may be a simple palindrome app, but it’s also simply exciting! #100DaysOfCode #ruby
@LearnEnough #ABC #AlwaysBeCoding #sinatra #heroku”

—Tonia Del Priore (@toninjaa), Twitter post; Software Engineer for a FinTech
Startup for 3+ years

“I have nothing but fantastic things to say about @LearnEnough courses. I am just
about finished with the #javascript course. I must say, the videos are mandatory because
@mhartl will play the novice and share in the joy of having something you wrote
actually work!”

—Claudia Vizena

“I must say, this Learn Enough series is a masterpiece of education. Thank you for this
incredible work!”

—Michael King

“I want to thank you for the amazing job you have done with the tutorials. They are
likely the best tutorials I have ever read.”

—Pedro Iatzky

This page intentionally left blank

LEARN ENOUGH

PYTHON

TO BEDANGEROUS

http://informit.com/learn-enough
http://twitter.com/informit

LEARN ENOUGH

PYTHON

TO BEDANGEROUS

Software Development, Flask Web Apps,
and Beginning Data Science with Python

Michael Hartl

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover image: Alexey Boldin/Shutterstock
Figure 1.4: The Pallets Projects
Figures 1.6-1.8, 9.3: Amazon Web Services, Inc.
Figures 1.9, 1.10, 8.2: GitHub, Inc.
Figures 1.11, 1.12, 10.2, 10.3: Fly.io
Figure 2.9: Python Software Foundation
Figures 4.4, 4.5, 4.10, 8.8: Regex101
Figures 5.6, 9.5: Google LLC
Figures 9.4, 9.7: The Wikimedia Foundation
Figures 11.1-11.5, 11.23: Jupyter

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023935869

Copyright © 2023 Softcover Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-805095-5
ISBN-10: 0-13-805095-3

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Contents

Preface xiii

Acknowledgments xvii

About the Author xix

Chapter 1 Hello, World! 1

1.1 Introduction to Python 6
1.1.1 System Setup and Installation 9

1.2 Python in a REPL 11
1.2.1 Exercises 12

1.3 Python in a File 13
1.3.1 Exercise 15

1.4 Python in a Shell Script 16
1.4.1 Exercise 17

1.5 Python in a Web Browser 18
1.5.1 Deployment 22
1.5.2 Exercises 33

Chapter 2 Strings 35

2.1 String Basics 35
2.1.1 Exercises 38

vii

viii Contents

2.2 Concatenation and Interpolation 38
2.2.1 Formatted Strings 41
2.2.2 Raw Strings 42
2.2.3 Exercises 44

2.3 Printing 44
2.3.1 Exercises 46

2.4 Length, Booleans, and Control Flow 46
2.4.1 Combining and Inverting Booleans 51
2.4.2 Boolean Context 54
2.4.3 Exercises 56

2.5 Methods 56
2.5.1 Exercises 61

2.6 String Iteration 62
2.6.1 Exercises 66

Chapter 3 Lists 69

3.1 Splitting 69
3.1.1 Exercises 71

3.2 List Access 71
3.2.1 Exercises 73

3.3 List Slicing 74
3.3.1 Exercises 76

3.4 More List Techniques 77
3.4.1 Element Inclusion 77
3.4.2 Sorting and Reversing 77
3.4.3 Appending and Popping 80
3.4.4 Undoing a Split 81
3.4.5 Exercises 82

3.5 List Iteration 83
3.5.1 Exercises 85

3.6 Tuples and Sets 86
3.6.1 Exercises 89

Chapter 4 Other Native Objects 91

4.1 Math 91
4.1.1 More Advanced Operations 92

Contents ix

4.1.2 Math to String 93
4.1.3 Exercises 97

4.2 Times and Datetimes 97
4.2.1 Exercises 102

4.3 Regular Expressions 103
4.3.1 Splitting on Regexes 107
4.3.2 Exercises 108

4.4 Dictionaries 109
4.4.1 Dictionary Iteration 112
4.4.2 Merging Dictionaries 113
4.4.3 Exercises 114

4.5 Application: Unique Words 115
4.5.1 Exercises 119

Chapter 5 Functions and Iterators 121

5.1 Function Definitions 121
5.1.1 First-Class Functions 126
5.1.2 Variable and Keyword Arguments 127
5.1.3 Exercises 129

5.2 Functions in a File 130
5.2.1 Exercise 138

5.3 Iterators 138
5.3.1 Generators 143
5.3.2 Exercises 146

Chapter 6 Functional Programming 149

6.1 List Comprehensions 150
6.1.1 Exercise 156

6.2 List Comprehensions with Conditions 156
6.2.1 Exercise 159

6.3 Dictionary Comprehensions 159
6.3.1 Exercise 163

6.4 Generator and Set Comprehensions 163
6.4.1 Generator Comprehensions 163
6.4.2 Set Comprehensions 164
6.4.3 Exercise 164

x Contents

6.5 Other Functional Techniques 165
6.5.1 Functional Programming and TDD 166
6.5.2 Exercise 168

Chapter 7 Objects and Classes 169

7.1 Defining Classes 169
7.1.1 Exercises 175

7.2 Custom Iterators 176
7.2.1 Exercise 179

7.3 Inheritance 179
7.3.1 Exercise 183

7.4 Derived Classes 183
7.4.1 Exercises 188

Chapter 8 Testing and Test-Driven Development 191

8.1 Package Setup 192
8.1.1 Exercise 197

8.2 Initial Test Coverage 197
8.2.1 A Useful Passing Test 202
8.2.2 Pending Tests 206
8.2.3 Exercises 207

8.3 Red 209
8.3.1 Exercise 214

8.4 Green 214
8.4.1 Exercise 220

8.5 Refactor 220
8.5.1 Publishing the Python Package 224
8.5.2 Exercises 227

Chapter 9 Shell Scripts 231

9.1 Reading from Files 231
9.1.1 Exercises 238

9.2 Reading from URLs 240
9.2.1 Exercises 245

9.3 DOM Manipulation at the Command Line 245
9.3.1 Exercises 254

Contents xi

Chapter 10 A Live Web Application 255

10.1 Setup 256
10.1.1 Exercise 262

10.2 Site Pages 263
10.2.1 Exercises 270

10.3 Layouts 271
10.3.1 Exercises 280

10.4 Template Engine 280
10.4.1 Variable Titles 281
10.4.2 Site Navigation 287
10.4.3 Exercises 292

10.5 Palindrome Detector 293
10.5.1 Form Tests 302
10.5.2 Exercises 313

10.6 Conclusion 316

Chapter 11 Data Science 319

11.1 Data Science Setup 320
11.2 Numerical Computations with NumPy 327

11.2.1 Arrays 327
11.2.2 Multidimensional Arrays 330
11.2.3 Constants, Functions, and Linear Spacing 333
11.2.4 Exercises 337

11.3 Data Visualization with Matplotlib 338
11.3.1 Plotting 339
11.3.2 Scatter Plots 347
11.3.3 Histograms 350
11.3.4 Exercises 352

11.4 Introduction to Data Analysis with pandas 353
11.4.1 Handcrafted Examples 355
11.4.2 Exercise 361

11.5 pandas Example: Nobel Laureates 361
11.5.1 Exercises 377

11.6 pandas Example: Titanic 377
11.6.1 Exercises 385

xii Contents

11.7 Machine Learning with scikit-learn 386
11.7.1 Linear Regression 387
11.7.2 Machine-Learning Models 392
11.7.3 k-Means Clustering 400
11.7.4 Exercises 402

11.8 Further Resources and Conclusion 403

Index 405

Preface

Learn Enough Python to Be Dangerous teaches you to write practical and modern pro-
grams using the elegant and powerful Python programming language. You’ll learn
how to use Python for both general-purpose programming and for beginning web-
application development. Although mastering Python can be a long journey, you
don’t have to learn everything to get started . . . you just have to learn enough to be
dangerous.

You’ll begin by exploring the core concepts of Python programming using a
combination of the interactive Python interpreter and text files run at the command
line. The result is a solid understanding of both object-oriented programming and func-
tional programming in Python. You’ll then build on this foundation to develop and
publish a simple self-contained Python package. You’ll then use this package in a sim-
ple dynamic web application built using the Flask web framework, which you’ll also
deploy to the live Web. As a result, Learn Enough Python to Be Dangerous is especially
appropriate as a prerequisite to learning web development with Python.

In addition to teaching you specific skills, Learn Enough Python to Be Dangerous
also helps you develop technical sophistication—the seemingly magical ability to solve
practically any technical problem. Technical sophistication includes concrete skills like
version control and coding, as well as fuzzier skills like Googling the error message
and knowing when to just reboot the darn thing. Throughout Learn Enough Python
to Be Dangerous, we’ll have abundant opportunities to develop technical sophistication
in the context of real-world examples.

xiii

xiv Preface

Chapter by Chapter
In order to learn enough Python to be dangerous, we’ll begin at the beginning with a
series of simple “hello, world” programs using several different techniques (Chapter 1),
including an introduction to the Python interpreter, an interactive command-line
program for evaluating Python code. In line with the Learn Enough philosophy of
always doing things “for real”, even as early as Chapter 1 we’ll deploy a (very simple)
dynamic Python application to the live Web. This chapter also includes pointers to
the latest setup and installation instructions via Learn Enough Dev Environment to Be
Dangerous (https://www.learnenough.com/dev-environment), which is available for
free online and as a free downloadable ebook.

After mastering “hello, world”, we’ll take a tour of some Python objects, including
strings (Chapter 2), lists (Chapter 3), and other native objects like dates, dictionaries,
and regular expressions (Chapter 4). Taken together, these chapters constitute a gentle
introduction to object-oriented programming with Python.

In Chapter 5, we’ll learn the basics of functions, an essential subject for virtu-
ally every programming language. We’ll then apply this knowledge to an elegant and
powerful style of coding known as functional programming, including an introduction
to comprehensions (Chapter 6).

Having covered the basics of built-in Python objects, in Chapter 7 we’ll learn
how to make objects of our own. In particular, we’ll define an object for a phrase, and
then develop a method for determining whether or not the phrase is a palindrome (the
same read forward and backward).

Our initial palindrome implementation will be rather rudimentary, but we’ll
extend it in Chapter 8 using a powerful technique called test-driven development (TDD).
In the process, we’ll learn more about testing generally, as well as how to create and
publish a Python package.

In Chapter 9, we’ll learn how to write nontrivial shell scripts, one of Python’s
biggest strengths. Examples include reading from both files and URLs, with a final
example showing how to manipulate a downloaded file as if it were an HTML web
page.

In Chapter 10, we’ll develop our first full Python web application: a site for detect-
ing palindromes. This will give us a chance to learn about routes, layouts, embedded
Python, and form handling, together with a second application of TDD. As a capstone
to our work, we’ll deploy our palindrome detector to the live Web.

Finally, in Chapter 11, we’ll get an introduction to Python tools used in the
booming field of data science. Topics include numerical calculations with NumPy, data

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment

Preface xv

visualization with Matplotlib, data analysis with pandas, and machine learning with
scikit-learn.

Additional Features
In addition to the main tutorial material, Learn Enough Python to Be Dangerous includes
a large number of exercises to help you test your understanding and to extend the
material in the main text. The exercises include frequent hints and often include
the expected answers, with community solutions available by separate subscription
at www.learnenough.com.

Final Thoughts
Learn Enough Python to Be Dangerous gives you a practical introduction to the funda-
mentals of Python, both as a general-purpose programming language and as a specialist
language for web development and data science. After learning the techniques cov-
ered in this tutorial, and especially after developing your technical sophistication,
you’ll know everything you need to write shell scripts, publish Python packages,
deploy dynamic web applications, and use key Python data-science tools. You’ll also
be ready for a huge variety of other resources, including books, blog posts, and online
documentation.

Learn Enough Scholarships
Learn Enough is committed to making a technical education available to as wide a
variety of people as possible. As part of this commitment, in 2016 we created the Learn
Enough Scholarship program.1 Scholarship recipients get free or deeply discounted
access to the Learn Enough All Access subscription, which includes all of the Learn
Enough online book content, embedded videos, exercises, and community exercise
answers.

As noted in a 2019 RailsConf Lightning Talk,2 the Learn Enough Scholarship
application process is incredibly simple: Just fill out a confidential text area telling us
a little about your situation. The scholarship criteria are generous and flexible—we
understand that there are an enormous number of reasons for wanting a scholarship,
from being a student, to being between jobs, to living in a country with an unfavorable

1. https://www.learnenough.com/scholarship

2. https://www.learnenough.com/scholarship-talk

https://www.learnenough.com/scholarship
https://www.learnenough.com/scholarship
https://youtu.be/AI5wmnzzBqc?t=1076
https://www.learnenough.com/scholarship
https://www.learnenough.com/scholarship-talk

xvi Preface

exchange rate against the U.S. dollar. Chances are that, if you feel like you’ve got a
good reason, we’ll think so, too.

So far, Learn Enough has awarded more than 2,500 scholarships to aspiring devel-
opers around the country and around the world. To apply, visit the Learn Enough
Scholarship page at www.learnenough.com/scholarship. Maybe the next scholarship
recipient could be you!

https://www.learnenough.com/scholarship

Acknowledgments

Thanks to Paul Logston, Tom Repetti, and Ron Lee for their helpful comments on
drafts of Learn Enough Python to Be Dangerous. Thanks also to Prof. Jetson Leder-Luis
of Boston University and data scientist Amadeo Bellotti for their helpful feedback and
assistance in preparing Chapter 11. Any errors that remain in the text are entirely the
fault of these fine gentlemen.

As always, thanks to Debra Williams Cauley for shepherding the production
process at Pearson.

xvii

This page intentionally left blank

About the Author

Michael Hartl (www.michaelhartl.com) is the creator of the Ruby on RailsTM Tutorial
(www.railstutorial.org), one of the leading introductions to web development, and
is cofounder and principal author at Learn Enough (www.learnenough.com). Previ-
ously, he was a physics instructor at the California Institute of Technology (Caltech),
where he received a Lifetime Achievement Award for Excellence in Teaching. He is a
graduate of Harvard College, has a Ph.D. in Physics from Caltech, and is an alumnus
of the Y Combinator entrepreneur program.

xix

https://www.michaelhartl.com
https://www.railstutorial.org
https://www.learnenough.com

This page intentionally left blank

CHAPTER 1
Hello, World!

Welcome to Learn Enough Python to Be Dangerous!
This tutorial is designed to get you started writing practical and modern Python

programs as fast as possible, with a focus on the real tools used every day by software
developers. You’ll see how everything fits together by learning skills like testing and
test-driven development, publishing packages, beginning web development, and data
science. As a result, Learn Enough Python to Be Dangerous can serve either as a standalone
introduction or as an excellent prerequisite for longer and more syntax-heavy Python
tutorials, of which there are many excellent ones.

Python is one of the world’s most popular programming languages, and for good
reason. Python has a clean syntax, flexible data types, a wealth of useful libraries,
and a powerful and elegant design that supports multiple styles of programming.
Python has seen particularly robust adoption for command-line programs (also known
as scripting, as discussed in Chapter 9), web development (via frameworks like Flask
(Chapter 10) and Django), and data science (especially data analysis using pandas and
machine learning with libraries like scikit-learn (Chapter 11)).

Just about the only things Python isn’t good for are running inside a web browser
(for which JavaScript (https://www.learnenough.com/javascript-tutorial) is neces-
sary) and writing programs where speed is of the essence. And even in the latter case,
specialized libraries like NumPy (Section 11.2) can give us the speed of a lower-level
language like C with the power and flexibility of a higher-level language like Python.1

1. “Higher-level” languages like Python, JavaScript, and Ruby generally have greater support for abstraction
and perform automatic memory management.

1

https://www.learnenough.com/javascript-tutorial
https://en.wikipedia.org/wiki/C_(programming_language)

2 Chapter 1: Hello, World!

Learn Enough Python to Be Dangerous broadly follows the same structure as
Learn Enough JavaScript to Be Dangerous (https://www.learnenough.com/javascript)
and Learn Enough Ruby to Be Dangerous (https://www.learnenough.com/ruby), either
of which can be studied either before or after this tutorial. Because many of the exam-
ples are the same, the tutorials reinforce each other nicely—there are few things more
instructive in computer programming than seeing the same basic problems solved in
two or more different languages.2 As noted in Box 1.1, though, we’ll definitely be
writing Python, not JavaScript or Ruby translated into Python.

Box 1.1: Pythonic programming

More so even than users of other languages, Python programmers—sometimes
known as Pythonistas—tend to have strongly held opinions on what constitutes
proper programming style. For example, as noted by Python contributor Tim Peters
in “The Zen of Python” (Section 1.2.1): “There should be one—and preferably only
one—obvious way to do it.” (This stands in contrast to a famous principle associated
with the Perl programming language known as “TMTOWTDI”: There’s More Than
One Way To Do It.)

Code that adheres to good programming practices (as judged by Pythonistas) is
known as Pythonic code. This includes proper code formatting (especially the prac-
tices in PEP 8 – Style Guide for Python Code (https://peps.python.org/pep-0008/)),
using built-in Python facilities like enumerate() (Section 3.5) and items() (Sec-
tion 4.4.1), and using characteristic idioms like list and dictionary comprehensions
(Chapter 6). (As noted in the official documentation (https://peps.python.org/pep-
0001/), “PEP stands for Python Enhancement Proposal. A PEP is a design document
providing information to the Python community, or describing a new feature for
Python or its processes or environment.” PEP 8 is the PEP specifically concerned
with Python code style and formatting.)

The code in this tutorial generally strives to be as Pythonic as possible given
the material introduced at the given point in the exposition. In addition, we will
often begin by introducing a series of intentionally unPythonic examples, culminating
in a fully Pythonic version. In such cases, the distinction between unPythonic and
Pythonic code will be carefully noted.

Pythonistas have been known to be a bit harsh in their judgment of unPythonic
code, which can lead beginners to become overly concerned about programming

2. See Rosetta Code (https://rosettacode.org/wiki/Rosetta_Code) for a huge compilation of such examples.

https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0001/
https://rosettacode.org/wiki/Rosetta_Code
https://rosettacode.org/wiki/Rosetta_Code

Hello, World! 3

Pythonically. But “Pythonic” is a sliding scale, depending on how much experience
you have in the language. Moreover, programming is fundamentally about solving
problems, so don’t let worries about programming Pythonically stop you from
solving the problems you face in your role as a Python programmer and software
developer.

There are no programming prerequisites for Learn Enough Python to Be
Dangerous, although it certainly won’t hurt if you’ve programmed before.
What is important is that you’ve started developing your technical sophistication
(Box 1.2), either on your own or using the preceding Learn Enough tutori-
als (https://www.learnenough.com/courses). These tutorials include the following,
which together make a good list of prerequisites for this book:

1. Learn Enough Command Line to Be Dangerous (https://www.learnenough.com/
command-line)

2. Learn Enough Text Editor to Be Dangerous (https://www.learnenough.com/text-
editor)

3. Learn Enough Git to Be Dangerous (https://www.learnenough.com/git)

All of these tutorials are available as print or digital books or online for individual
purchase, and we offer a subscription service—the Learn Enough All Access subscrip-
tion (https://www.learnenough.com/all-access)—with access to all the corresponding
online courses.

Box 1.2: Technical sophistication

An essential aspect of using computers is the ability to figure things out and trou-
bleshoot on your own, a skill we at Learn Enough (https://www.learnenough.com/)
call technical sophistication.

Developing technical sophistication means not only following systematic tutori-
als like Learn Enough Python to Be Dangerous, but also knowing when it’s time to break
free of a structured presentation and just start Googling around for a solution.

Learn Enough Python to Be Dangerous will give us ample opportunity to practice
this essential technical skill.

In particular, as alluded to above, there is a wealth of Python reference mate-
rial on the Web, but it can be hard to use unless you already basically know

https://www.learnenough.com/courses
https://www.learnenough.com/courses
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://www.learnenough.com/text-editor
https://www.learnenough.com/text-editor
https://www.learnenough.com/text-editor
https://www.learnenough.com/git
https://www.learnenough.com/git
https://www.learnenough.com/all-access
https://www.learnenough.com/all-access
https://www.learnenough.com/

4 Chapter 1: Hello, World!

what you’re doing. One goal of this tutorial is to be the key that unlocks the
documentation. This will include lots of pointers to the official Python site.

Especially as the exposition gets more advanced, I’ll also sometimes include the
web searches you could use to figure out how to accomplish the particular task at
hand. For example, how do you use Python to manipulate a Document Object
Model (DOM)? Like this: python dom manipulation.

You won’t learn everything there is to know about Python in this tutorial—that
would take thousands of pages and centuries of effort—but you will learn enough
Python to be dangerous (Figure 1.13). Let’s take a look at what that means.

In Chapter 1, we’ll begin at the beginning with a series of simple “hello, world”
programs using several different techniques, including an introduction to an inter-
active command-line program for evaluating Python code. In line with the Learn
Enough philosophy of always doing things “for real”, even as early as the first chapter
we’ll deploy a (very simple) dynamic Python application to the live Web. You’ll

Figure 1.1: Python knowledge, like Rome, wasn’t built in a day.

3. Image courtesy of Kirk Fisher/Shutterstock.

https://docs.python.org
https://www.google.com/search?q=python+dom+manipulation
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wiktionary.org/wiki/Rome_wasn%27t_built_in_a_day

Hello, World! 5

also get pointers to the latest setup and installation instructions via Learn Enough
Dev Environment to Be Dangerous (https://www.learnenough.com/dev-environment),
which is available for free online and as a free downloadable ebook.

After mastering “hello, world”, we’ll take a tour of some Python objects, including
strings (Chapter 2), arrays (Chapter 3), and other native objects (Chapter 4). Taken
together, these chapters constitute a gentle introduction to object-oriented programming
with Python.

In Chapter 5, we’ll learn the basics of functions, an essential subject for virtu-
ally every programming language. We’ll then apply this knowledge to an elegant and
powerful style of coding called functional programming (Chapter 6).

Having covered the basics of built-in Python objects, in Chapter 7 we’ll learn
how to make objects of our own. In particular, we’ll define an object for a phrase, and
then develop a method for determining whether or not the phrase is a palindrome (the
same read forward and backward).

Our initial palindrome implementation will be rather rudimentary, but we’ll
extend it in Chapter 8 using a powerful technique called test-driven development (TDD).
In the process, we’ll learn more about testing generally, as well as how to create and
publish a self-contained Python package.

In Chapter 9, we’ll learn how to write nontrivial shell scripts, one of Python’s
biggest strengths. Examples include reading from both files and URLs, with a final
example showing how to manipulate a downloaded file as if it were an HTML web
page.

In Chapter 10, we’ll develop our first full Python web application: a site for detect-
ing palindromes. This will give us a chance to learn about routes, layouts, embedded
Python, and form handling. As a capstone to our work, we’ll deploy our palindrome
detector to the live Web.

Finally, Chapter 11 introduces several core libraries for doing data science in
Python, including NumPy, Matplotlib, pandas, and scikit-learn.

By the way, experienced developers can largely skip the first four chapters of Learn
Enough Python to Be Dangerous, as described in Box 1.3.

Box 1.3: For experienced developers

By keeping a few diffs in mind, experienced developers can skip Chapters 1–4 of
this tutorial and start with functions in Chapter 5. They can then move quickly on

https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
https://en.wikipedia.org/wiki/Diff

6 Chapter 1: Hello, World!

to functional programming in Chapter 6, consulting earlier chapters as necessary
to fill in any gaps.

Here are some of the notable differences between Python and most other
languages:

• Use print for printing (Section 1.2).

• Use #!/usr/bin/env python3 for the shebang line in shell scripts
(Section 1.4).

• Single- and double-quoted strings are effectively identical (Section 2.1).

• Use formatted strings (f-strings) and curly braces for string interpolation,
e.g., f"foo {bar} baz" for strings "foo" and "baz" and variable bar
(Section 2.2).

• Use r"..." for raw strings (Section 2.2.2).

• Python doesn’t have an obj.length attribute or an obj.length() method;
instead, use len(obj) to calculate object lengths (Section 2.4).

• Whitespace is significant (Section 2.4). Lines are typically ended by newlines
or colons, and block structure is indicated using indentation (generally four
spaces per block level).

• Use elif for else if (Section 2.4).

• In a boolean context, all Python objects are True except 0, None, “empty”
objects ("", [], {}, etc.), and False itself (Section 2.4.2 and later sections).

• Use [...] for lists (Chapter 3) and {key: value, ...} for hashes (called
dictionaries in Python) (Section 4.4).

• Python makes extensive use of namespaces, so importing a library like
math leads to accessing methods through a library object by default (e.g.,
math.sqrt(2)) (Section 4.1.1).

1.1 Introduction to Python
Created by Dutch developer Guido van Rossum (Figure 1.24), Python was originally
designed as a high-level, general-purpose programming language. The name Python
is a reference, not directly to the snake of that name, but rather to the British comedy
troupe Monty Python. This speaks to a certain lightheartedness at the core of Python,
but Python is also an elegant, powerful language useful for serious work. Indeed,

4. Image courtesy of Eugene Lazutkin/Getty Images.

https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Pythonidae
https://en.wikipedia.org/wiki/Monty_Python
https://commons.wikimedia.org/wiki/File:Guido-portrait-2014-drc.jpg

1.1 Introduction to Python 7

Figure 1.2: Guido van Rossum, the creator of Python.

although I am probably better known for my contributions to the Ruby community
(especially theRuby on Rails Tutorial (https://www.railstutorial.org/)), Python has long
had a special place in my heart (Box 1.4).

Box 1.4: My Python journey

Back in the early days of the World Wide Web, I initially learned Perl and PHP for
scripting and web development. When I finally got around to learning Python, I was
blown away by how much cleaner and more elegant it was than those languages
(in my humble opinion and no offense intended). Although I had programmed in a
wide variety of languages by that point—including Basic, Pascal, C, C++, IDL, Perl,
and PHP—Python was the first language I really loved.

When I was in graduate school, Python played a key role in my doctoral
research in theoretical physics, mainly for data processing and as a “glue” language
for high-speed simulations written in C and C++. After I graduated, I decided to
become an entrepreneur, and I preferred Python so much that I couldn’t bring
myself to go back to PHP even though at the time the latter had more mature
features for web development. Instead, for my first startup I wrote a custom web

https://www.railstutorial.org/
https://www.railstutorial.org/
https://en.wikipedia.org/wiki/IDL_(programming_language)

8 Chapter 1: Hello, World!

framework in Python. (Why not just use Django? This was a while ago, and Django
hadn’t been released yet.)

After Ruby on Rails came out, I ended up getting more involved in the Ruby
language (eventually leading to the Ruby on Rails Tutorial), but I never lost my interest
in Python. I’ve been impressed by how Python’s syntax has continued to mature and
become even more elegant, particularly with the advent of Python 3. I was especially
pleased to see Python incorporate tau, the mathematical constant I proposed in The
Tau Manifesto (https://tauday.com/tau-manifesto). Finally, I’ve watched in amazement
as Python’s capabilities expanded into areas like numerical computing, plotting, and
data analysis (all of which are discussed in Chapter 11), as well as into scientific and
mathematical computing (e.g., SciPy and Sage). The power of Python-based systems
now genuinely rivals proprietary systems like MATLAB, Maple, and Mathematica;
especially given Python’s open-source nature, it seems likely that this trend will
continue.

The future looks bright for Python, and I for one expect to use Python fre-
quently in the years to come. As a result, making this tutorial has been a great
opportunity for me to reconnect with my Python roots, and I’m glad you’re joining
me on the journey.

In order to give you the best broad-range introduction to programming with
Python, Learn Enough Python to Be Dangerous uses four main methods:

1. An interactive prompt with a Read-Eval-Print Loop (REPL)

2. Standalone Python files

3. Shell scripts (as introduced (https://www.learnenough.com/text-editor-tutorial/
advanced_text_editing#sec-writing_an_executable_script) in Learn Enough Text
Editor to Be Dangerous)

4. Python web applications running in a web server

We’ll begin our study of Python with four variations on the time-honored theme
of a “hello, world” program, a tradition that dates back to the early days of the C pro-
gramming language. The main purpose of “hello, world” is to confirm that our system
is correctly configured to execute a simple program that prints the string "hello,
world!" (or some close variant) to the screen. By design, the program is simple,
allowing us to focus on the challenge of getting the program to run in the first place.

Because one of the most common applications of Python is writing shell scripts
for execution at the command line, we’ll start by writing a series of programs
to display a greeting in a command-line terminal: first in a REPL; then in a

https://www.railstutorial.org/
https://tauday.com/state-of-the-tau#tau-in-python
https://tauday.com/tau-manifesto
https://tauday.com/tau-manifesto
https://www.sagemath.org/
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#sec-writing_an_executable_script
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#sec-writing_an_executable_script
https://www.learnenough.com/text-editor
https://www.learnenough.com/text-editor
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program#History
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

1.1 Introduction to Python 9

standalone file called hello.py; and finally in an executable shell script called hello.
We’ll then write (and deploy!) a simple proof-of-concept web application using the
Flask (https://flask.palletsprojects.com) web framework (a lightweight framework that
serves as good preparation for a heavier framework like Django).

1.1.1 System Setup and Installation

Throughout what follows, I’ll assume that you have access to a Unix-compatible sys-
tem like macOS or Linux (including the Linux-based Cloud9 IDE (https://www.
learnenough.com/dev-environment-tutorial#sec-cloud_ide), as described in the free
tutorial Learn Enough Dev Environment to Be Dangerous). The cloud IDE is especially
well-suited to beginners and is recommended for those looking to streamline their
setup process or who run into difficulties configuring their native system.

If you use the cloud IDE, I recommend creating a development environ-
ment (https://www.learnenough.com/dev-environment-tutorial#fig-cloud9_page_
aws) called python-tutorial. The cloud IDE uses the Bash shell program by default;
Linux and Mac users can use whichever shell program they prefer—this tutorial should
work with either Bash or macOS’s default Z shell (Zsh). You can use the following
command to figure out which one is running on your system:

$ echo $SHELL

When updating your system settings (as in Section 1.5.1), be sure to use the profile file
corresponding to your shell program (.bash_profile or .zshrc). See “Using Z Shell
on Macs with the Learn Enough Tutorials (https://news.learnenough.com/macos-
bash-zshell)” for more information.

This tutorial standardizes on Python 3.10, although the vast majority of code will
work with any version after 3.7. You can check to see if Python is already installed
by running python3 --version at the command line to get the version number
(Listing 1.1).5

Listing 1.1: Checking the Python version.

$ python3 --version
Python 3.10.6

5. All of the listings in Learn Enough Python to Be Dangerous can be found online at github.com/learnenough/
learn_enough_python_code_listings.

https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://www.learnenough.com/dev-environment-tutorial#sec-cloud_ide
https://www.learnenough.com/dev-environment-tutorial#sec-cloud_ide
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment-tutorial#fig-cloud9_page_aws
https://www.learnenough.com/dev-environment-tutorial#fig-cloud9_page_aws
https://www.learnenough.com/dev-environment-tutorial#fig-cloud9_page_aws
https://news.learnenough.com/macos-bash-zshell
https://news.learnenough.com/macos-bash-zshell
https://news.learnenough.com/macos-bash-zshell
https://github.com/learnenough/learn_enough_python_code_listings
https://github.com/learnenough/learn_enough_python_code_listings

10 Chapter 1: Hello, World!

If instead you get a result like

$ python3 --version
-bash: python3: command not found

or you get a version number earlier than 3.10 then you should install a more recent
version of Python.

The details of installing Python vary by system and can require applying a lit-
tle technical sophistication (Box 1.2). The different possibilities are covered in Learn
Enough Dev Environment to Be Dangerous, which you should take a look at now if
you don’t already have Python on your system. In particular, if you end up using
the cloud IDE recommended by Learn Enough Dev Environment to Be Dangerous,
you can update the Python version as shown in Listing 1.2. Note that the steps in
Listing 1.2 should work on any Linux system that supports the APT package man-
ager. On macOS systems, Python can be installed using Homebrew as shown in
Listing 1.3.

Listing 1.2: Installing Python on a Linux system like the cloud IDE.

$ sudo add-apt-repository -y ppa:deadsnakes/ppa
$ sudo apt-get install -y python3.10
$ sudo apt-get install -y python3.10-venv
$ sudo ln -sf /usr/bin/python3.10 /usr/bin/python3

Listing 1.3: Installing Python on macOS using Homebrew.

$ brew install python@3.10

Whichever way you go, the result should be an executable version of Python (or
more specifically, Python 3):

$ python3 --version
Python 3.10.6

(Exact version numbers may differ.)
For historical reasons, many systems include copies of both Python 3 and an ear-

lier version of Python known as Python 2. You can often get away with using the

https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
https://en.wikipedia.org/wiki/APT_(software)
https://brew.sh/

1.2 Python in a REPL 11

python command (without the 3), especially when working in a virtual environment
(Section 1.3). As you level up as a Python programmer, you may find yourself using
the plain python command more often, secure in the knowledge that the correct
version is being used. This route is more error-prone, though, so we’ll stick with
python3 in this tutorial since it makes the version number explicit, with negligible
risk of accidentally using Python 2.

1.2 Python in a REPL
Our first example of a “hello, world” program involves a Read-Eval-Print Loop,
or REPL (pronounced “repple”). A REPL is a program that reads input, eval-
uates it, prints out the result (if any), and then loops back to the read step. Most
modern programming languages provide a REPL, and Python is no exception; in
Python’s case, the REPL is often known as the Python interpreter because it directly
executes (or “interprets”) user commands. (A third common term is the Python
shell, in analogy with the Bash and Zsh programs used to run command-line shell
programs.)

Learning to use the REPL well is a valuable skill for every aspiring Python
programmer. As noted Python author David Beazley put it:

Although there are many non-shell environments where you can code Python, you will be a
stronger Python programmer if you are able to run, debug, and interact with Python at the
terminal [i.e., the REPL]. This is Python’s native environment. If you are able to use Python
here, you will be able to use it everywhere else.

The Python REPL can be started with the Python command python3, so we can
run it at the command line as shown in Listing 1.4.

Listing 1.4: Bringing up the interactive Python prompt at the command line.

$ python3
>>>

Here >>> represents a generic Python prompt waiting for input from the user.
We’re now ready to write our first Python program using the print() command,

as seen in Listing 1.5. (Here "hello, world!" is a string; we’ll start learning more
about strings in Chapter 2.)

https://en.wikipedia.org/wiki/Interpreter_(computing)
https://dabeaz-course.github.io/practical-python/Notes/01_Introduction/01_Python.html

12 Chapter 1: Hello, World!

Listing 1.5: A “hello, world” program in the REPL.

>>> print("hello, world!")
hello, world!

That’s it! That’s how easy it is to print “hello, world!” interactively with Python.
If you’re familiar with other programming languages (such as PHP or JavaScript),

you may have noticed that Listing 1.5 lacks a terminating semicolon to mark the
end of the line. Indeed, Python is unusual among programming languages in that its
syntax depends on things like newlines (Section 1.2.1) and spaces. We’ll see many
more examples of Python’s unique syntax as this tutorial progresses.

1.2.1 Exercises

1. Box 1.1 references “The Zen of Python” by Tim Peters. Confirm that we can
print out the full text of “The Zen of Python” using the command import this
in the Python REPL (Listing 1.6).

Listing 1.6: “The Zen of Python” by Tim Peters.

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

1.3 Python in a File 13

2. What happens if you use print("hello, world!", end="") in place
of print() by itself? (The end="" is known as a keyword argument (Sec-
tion 5.1.2).) How would you change the end argument to get the result to
match Listing 1.5? Hint: Recall (https://www.learnenough.com/command-line-
tutorial/basics#sec-exercises_man) that \n is the typical way to represent a
newline character.

1.3 Python in a File
As convenient as it is to be able to explore Python interactively, most Real Program-
ming™ takes place in text files created with a text editor. In this section, we’ll show
how to create and execute a Python file with the same “hello, world” program we’ve
discussed in Section 1.2. The result will be a simplified prototype of the reusable
Python files we’ll start learning about in Section 5.2.

We’ll start by creating a directory for this tutorial and a Python file (with a .py
file extension) for our hello program (be sure to exit the interpreter first if you’re
still in the REPL, which you can do using exit or Ctrl-D):

$ cd # Make sure we're in the home directory.
$ mkdir -p repos/python_tutorial
$ cd repos/python_tutorial

Here the -p option to mkdir arranges to create intermediate directories if necessary.
Note: Throughout this tutorial, if you’re using the cloud IDE recommended in Learn
Enough Dev Environment to Be Dangerous, you should replace the home directory ~
with the directory ~/environment.

Because Python is so widely used, many systems come preinstalled with Python,
and default programs often use it extensively. This introduces the possibility of inter-
actions between the version of Python we’re using and the versions used by other
programs, and the results can be nasty and confusing. To avoid this headache, one
common practice is to use self-contained virtual environments, which allow us to use
the exact version of Python we want, and to install whatever Python packages we
want, without affecting the rest of the system.

We’ll be using the venv package combined with pip to install additional packages.
This solution is especially suitable for a tutorial like this one because all of the specifics
of the setup are contained in a single directory, which can be deleted and recreated if
anything goes wrong. There is another powerful solution called Conda, though, which

https://www.learnenough.com/command-line-tutorial/basics#sec-exercises_man
https://www.learnenough.com/command-line-tutorial/basics#sec-exercises_man
https://en.wikipedia.org/wiki/Newline
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
https://docs.conda.io/en/latest/

14 Chapter 1: Hello, World!

has a large and enthusiastic following among Python programmers. In my experience,
Conda is just a little more difficult to use than venv/pip (e.g., the first time I tried
using the conda utility it took over my system and replaced the default Python, which
was tricky to reverse), but as you level up you might find yourself switching over to
Conda.6

To create a virtual environment, we’ll use the python3 command with -m (for
“module”) and venv (the name of the virtual environment module):

$ python3 -m venv venv

Note that the second occurrence of venv is our choice; we could write python3
-m venv foobar to create a virtual environment called foobar, but venv is the
conventional choice. N.B. If you ever completely screw up your Python configuration,
you can simply remove the venv directory using rm -rf venv/ and start again (but
don’t run that command right now or the rest of the chapter might not work!).

Once the virtual environment is installed, we need to activate it to use it:

$ source venv/bin/activate
(venv) $

Note that many shell programs will insert (venv) before the prompt $ to
remind us that we’re working in a virtual environment. The activate step
is frequently required when using virtual environments, so I suggest cre-
ating a shell alias (https://www.learnenough.com/text-editor-tutorial/vim#sec-
saving_and_quitting_files) for it, such as va.7

To deactivate a virtual environment, use the deactivate command:

(venv) $ deactivate
$

Note that the (venv) in front of the prompt disappears upon deactivation.

6. Yet another possibility is pipenv, which provides a more structured interface to venv and bears a strong
resemblance to the Bundler/Gemfile solution used by Ruby.

7. In both Bash and Zsh, this could be accomplished by adding alias va="source venv/bin/activate"
to your .bash_profile or .zshrc file and then running source on that file. See Saving and quitting files
in Learn Enough Text Editor to Be Dangerous for more details.

https://www.learnenough.com/text-editor-tutorial/vim#sec-saving_and_quitting_files
https://www.learnenough.com/text-editor-tutorial/vim#sec-saving_and_quitting_files
https://stackoverflow.com/questions/990754/how-to-leave-exit-deactivate-a-python-virtualenv
https://pipenv.pypa.io/en/latest/
https://www.learnenough.com/r/learn_enough_text_editor/vim#sec-saving_and_quitting_files
https://www.learnenough.com/text-editor

1.3 Python in a File 15

Now let’s reactivate the virtual environment and create a file called hello.py
using the touch command (as discussed (https://www.learnenough.com/command-
line-tutorial/manipulating_files#sec-listing) in Learn Enough Command Line to Be
Dangerous):

$ source venv/bin/activate
(venv) $ touch hello.py

Next, using our favorite text editor, we’ll fill the file with the contents shown in
Listing 1.7. Note that the code is exactly the same as in Listing 1.5, with the difference
that in a Python file there’s no command prompt >>>.

Listing 1.7: A “hello, world” program in a Python file.
hello.py

print("hello, world!")

At this point, we’re ready to execute our program using the python3 command
we used in Listing 1.1 to check the Python version number. The only difference is
that this time we omit the --version option and instead include an argument with
the name of our file:

(venv) $ python3 hello.py
hello, world!

As in Listing 1.5, the result is to print “hello, world!” out to the terminal screen, only
now it’s the raw shell instead of a Python REPL.

Although this example is simple, it’s a huge step forward, as we’re now in the
position to write Python programs much longer than could comfortably fit in an
interactive session.

1.3.1 Exercise

1. What happens if you give print() two arguments, as in Listing 1.8?

Listing 1.8: Using two arguments.
hello.py

print("hello, world!", "how's it going?")

https://www.learnenough.com/command-line-tutorial/manipulating_files#sec-listing
https://www.learnenough.com/command-line-tutorial/manipulating_files#sec-listing
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://learnenough.com/text-editor

16 Chapter 1: Hello, World!

1.4 Python in a Shell Script
Although the code in Section 1.3 is perfectly functional, when writing a program to
be executed in the command-line shell (https://www.learnenough.com/command-
line-tutorial/basics#sec-man_pages) it’s often better to use an executable script of the
sort discussed in Learn Enough Text Editor to Be Dangerous.

Let’s see how to make an executable script using Python. We’ll start by creating a
file called hello:

(venv) $ touch hello

Note that we didn’t include the .py extension—this is because the filename itself is
the user interface, and there’s no reason to expose the implementation language to the
user. Indeed, there’s a reason not to: By using the name hello, we give ourselves the
option to rewrite our script in a different language down the line, without changing
the command our program’s users have to type. (Not that it matters in this simple case,
but the principle should be clear. We’ll see a more realistic example in Section 9.3.)

There are two steps to writing a working script. The first is to use the same
command we’ve seen before (Listing 1.7), preceded by a “shebang” line telling our
system to use Python to execute the script.

Ordinarily, the exact shebang line is system-dependent (as seen with Bash in Learn
Enough Text Editor to Be Dangerous and with JavaScript (https://www.learnenough.
com/javascript-tutorial/hello_world#sec-js_shell) in Learn Enough JavaScript to Be
Dangerous), but with Python we can ask the shell itself to supply the proper com-
mand. The trick is to use the following line to use the python executable available as
part of the shell’s environment (env):

#!/usr/bin/env python3

Using this for the shebang line gives the shell script shown in Listing 1.9.

Listing 1.9: A “hello, world” shell script.
hello

#!/usr/bin/env python3

print("hello, world!")

https://www.learnenough.com/command-line-tutorial/basics#sec-man_pages
https://www.learnenough.com/command-line-tutorial/basics#sec-man_pages
https://www.learnenough.com/r/learn_enough_text_editor/advanced_text_editing/writing_an_executable_script#sec-writing_an_executable_script
https://www.learnenough.com/text-editor
https://www.learnenough.com/r/learn_enough_text_editor/advanced_text_editing/writing_an_executable_script#sec-writing_an_executable_script
https://www.learnenough.com/r/learn_enough_text_editor/advanced_text_editing/writing_an_executable_script#sec-writing_an_executable_script
https://www.learnenough.com/text-editor
https://www.learnenough.com/text-editor
https://www.learnenough.com/javascript-tutorial/hello_world#sec-js_shell
https://www.learnenough.com/javascript-tutorial/hello_world#sec-js_shell
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript

1.4 Python in a Shell Script 17

We could execute this file directly using the python command as in Section 1.3,
but a true shell script should be executable without the use of an auxiliary program.
(That’s what the shebang line is for.) Instead, we’ll follow the second of the two steps
mentioned above and make the file itself executable using the chmod (“change mode”)
command combined with +x (“plus executable”):

(venv) $ chmod +x hello

At this point, the file should be executable, and we can execute it by pre-
ceding the command with ./, which tells our system to look in the current
directory (dot = .) for the executable file. (Putting the hello script on the PATH
(https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#code-
export_path), so that it can be called from any directory, is left as an exercise.) The
result looks like this:

(venv) $./hello
hello, world!

Success! We’ve now written a working Python shell script suitable for extension and
elaboration. As mentioned briefly above, we’ll see an example of a real-life utility
script in Section 9.3.

Throughout the rest of this tutorial, we’ll mainly use the Python interpreter
for initial investigations, but the eventual goal will almost always be to create a file
containing Python.

1.4.1 Exercise

1. By moving the file or changing your system’s configuration, add the hello script
to your environment’s PATH. (You may find the steps in Learn Enough Text Editor
to Be Dangerous helpful.) Confirm that you can run hello without prepending
./ to the command name. Note: If you have a conflicting hello program from
following Learn Enough JavaScript to Be Dangerous or Learn Enough Ruby to Be
Dangerous, I suggest replacing it—thus demonstrating the principle that the file’s
name is the user interface, and the implementation can change language without
affecting users.

https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#code-export_path
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#code-export_path
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#code-export_path
https://www.learnenough.com/r/learn_enough_text_editor/advanced_text_editing/writing_an_executable_script#sec-writing_an_executable_script
https://www.learnenough.com/text-editor
https://www.learnenough.com/text-editor
https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby

18 Chapter 1: Hello, World!

1.5 Python in a Web Browser
Although it wasn’t initially designed for web development, Python’s elegant and pow-
erful design has led to its widespread use in making web applications. In recognition
of this, our final example of a “hello, world” program will be a live web application,
written in the simple but powerful Flask micro-framework (Figure 1.38). Because of
its simplicity, Flask is a perfect introduction to web development with Python while
also serving as excellent preparation for a “batteries included” framework like Django.

We’ll begin by installing the Flask package using pip (a recursive acronym that
stands for “pip installs packages”). The pip command comes automatically as part of
the virtual environment, so we can access it by typing pip at the command line (or
pip3 on some systems—try the latter if the former doesn’t work). As a first step, it’s a
good idea to upgrade pip to ensure we’re running the latest version:

(venv) $ pip install --upgrade pip

Figure 1.3: A traditional drinking-horn flask.

8. Image courtesy of Peter Gudella/Shutterstock.

https://flask.palletsprojects.com
https://www.djangoproject.com/
https://en.wikipedia.org/wiki/Recursive_acronym

1.5 Python in a Web Browser 19

Next, install Flask (Listing 1.10).

Listing 1.10: Installing Flask (with an exact version number).

(venv) $ pip install Flask==2.2.2

We’ve included an exact version number in Listing 1.10 in case future versions of Flask
don’t happen to work with this tutorial; this is similar to our decision to use python3
instead of plain python. As you get more advanced, though, you’ll probably just run
things like pip install Flask, secure in the knowledge that you can figure out
what went wrong if the version number doesn’t happen to work.

Believe it or not, the one command in Listing 1.10 installs all of the software
needed to run a simple but full-strength web application on our local system (where
“local” might refer to the cloud if you’re using the cloud IDE recommended in Learn
Enough Dev Environment to Be Dangerous).

Although the code for the “hello, world” web app uses some commands that
we haven’t covered yet, it’s a straightforward adaptation of the example program on
the Flask home page (Figure 1.4). Being able to adapt code you don’t necessarily
understand is a classic hallmark of technical sophistication (Box 1.2).

We’ll put our “hello, world” app in a file called hello_app.py:

(venv) $ touch hello_app.py

The code itself closely parallels the program in Figure 1.4, as seen in Listing 1.11.

Listing 1.11: A “hello, world” web app.
python_tutorial/hello_app.py

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello_world():

return "<p>hello, world!</p>"

https://aws.amazon.com/cloud9/
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
https://flask.palletsprojects.com

20 Chapter 1: Hello, World!

Figure 1.4: A sample program from the Flask home page.

The code in Listing 1.11 defines the behavior for the root URL / when responding to
an ordinary browser request (known as GET). The response itself is the required “hello,
world!” string, which will be returned to the browser as a (very simple) web page.

To run the web application in Listing 1.11, all we need to do is run the
hello_app.py file using the flask command (Listing 1.12). (Do make sure you’re
running in the virtual environment; weird things can happen if you try running the
flask command on the default system.) In Listing 1.12, the --app option specifies
the app and the --debug option arranges to update the app when we change the code
(which saves us from having to restart the Flask server every time we make a change).

Listing 1.12: Running the Flask app on a local system.

(venv) $ flask --app hello_app.py --debug run
* Running on http://127.0.0.1:5000/

1.5 Python in a Web Browser 21

At this point, visiting the given URL (which consists of the local address 127.0.0.1
and the port number) shows the application running on the local machine.9

If you’re using the cloud IDE, the commands are nearly identical to the ones
shown in Listing 1.12; the only difference is that you have to include a different port
number using the --port option (Listing 1.13).

Listing 1.13: Running the Flask app on the cloud IDE.

(venv) $ flask --app hello_app.py --debug run --port $PORT
* Running on http://127.0.0.1:8080/

To preview the app and replicate the result shown in Figure 1.5, we have to fol-
low a few more steps. First, we need to preview the app as shown in Figure 1.6.

Figure 1.5: The hello app running locally.

9. Many systems configure localhost to be a synonym for 127.0.0.1; with Flask, this can still be arranged,
but it requires a little extra configuration, so we’ll stick with the raw address in this tutorial.

http://127.0.0.1:5000/
https://en.wikipedia.org/wiki/Port_(computer_networking)
https://en.wikipedia.org/wiki/Port_(computer_networking)
https://en.wikipedia.org/wiki/Port_(computer_networking)
https://stackoverflow.com/questions/46127005/why-does-localhost5000-not-work-in-flask

22 Chapter 1: Hello, World!

Figure 1.6: The “local” server running on the cloud IDE.

The result typically shows up in a small window inside the IDE (details may vary);
by clicking the icon shown in Figure 1.7, we can pop out into a new window.
The result should appear as in Figure 1.8 (the only difference with Figure 1.5 is the
URL).

Just getting a web app to work, even locally, is a huge accomplishment. But the real
pièce de résistance is deploying the app to the live Web. This is the goal of Section 1.5.1.

1.5.1 Deployment

Now that we’ve got our app running locally, we’re ready to deploy it to a production
environment. This used to be practically impossible to do in a beginning tutorial, but
the technology landscape has matured significantly in recent years, to the point where
we actually have an abundance of choices. The result will be a production version of
the application from Section 1.5.

https://en.wiktionary.org/wiki/pi%C3%A8ce_de_r%C3%A9sistance

1.5 Python in a Web Browser 23

Figure 1.7: Previewing the hello app.

There’s a bit of overhead involved in deploying something the first time, but
deploying early and often is a core part of the Learn Enough philosophy of shipping
(Box 1.5). Moreover, a simple app like “hello, world” is the best kind of app for
first-time deployment, because there’s so much less that can go wrong.

As with the GitHub Pages deployment option used in previous tutorials
(Learn Enough CSS & Layout to Be Dangerous (https://www.learnenough.com/css-
and-layout) and Learn Enough JavaScript to Be Dangerous among them), our first step
is to put our project under version control with Git (as covered (https://www.
learnenough.com/git-tutorial/getting_started#sec-initializing_the_repo) in Learn
Enough Git to Be Dangerous). While this is not strictly necessary for the deployment
solution used in this section, it’s always a good idea to have a fully versioned project
so that we can more easily recover from any errors.

https://en.wikipedia.org/wiki/Vote_early_and_vote_often
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/javascript
https://www.learnenough.com/git-tutorial/getting_started#sec-initializing_the_repo
https://www.learnenough.com/git-tutorial/getting_started#sec-initializing_the_repo
https://www.learnenough.com/git
https://www.learnenough.com/git

24 Chapter 1: Hello, World!

Figure 1.8: The hello app running on the cloud IDE.

Box 1.5: Real artists ship

As legendary Apple cofounder Steve Jobs once said: Real artists ship.What he meant
was that, as tempting as it is to privately polish in perpetuity, makers must ship their
work—that is, actually finish it and get it out into the world. This can be scary,
because shipping means exposing your work not only to fans but also to critics.
“What if people don’t like what I’ve made?” Real artists ship.

It’s important to understand that shipping is a separate skill from making. Many
makers get good at making things but never learn to ship. To keep this from hap-
pening to us, we’ll follow the practice started in Learn Enough Git to Be Dangerous
and ship several things in this tutorial. Shipping the “hello, world” app in this section
is only the beginning!

https://www.learnenough.com/git

1.5 Python in a Web Browser 25

Our first step is to create a .gitignore file to tell Git to ignore files and directories
we don’t want to version. Use touch .gitignore (or any other method you prefer)
to create the file and then fill it with the contents shown in Listing 1.14.10

Listing 1.14: Ignoring certain files and directories.
.gitignore

venv/

*.pyc
__pycache__/

instance/

.pytest_cache/

.coverage
htmlcov/

dist/
build/
*.egg-info/

.DS_Store

Next, initialize the repository:

(venv) $ git init
(venv) $ git add -A
(venv) $ git commit -m "Initialize repository"

It’s also a good idea to push any newly initialized repository up to a remote backup.
As in previous Learn Enough tutorials, we’ll use GitHub for this purpose (Figure 1.9).

Because web apps sometimes include sensitive information like passwords or API
keys, I like to err on the side of caution and use a private repository. Accordingly,
be sure to select the Private option when creating the new repository at GitHub, as
shown in Figure 1.10. (By the way, it’s still a bad idea to include passwords or API
keys, even in a private repo; the best practice is to use environment variables or the
like instead.)

10. This file is based in part on the example from the Flask documentation itself.

https://en.wikipedia.org/wiki/Environment_variable
https://flask.palletsprojects.com

26 Chapter 1: Hello, World!

Figure 1.9: Creating a new repository at GitHub.

Next, tell your local system about the remote repository (taking care to fill in
<username> with your GitHub username) and then push it up:

(venv) $ git remote add origin https://github.com/<username>/python_tutorial.git
(venv) $ git push -u origin main

The service we’ll be using for Flask deployment is Fly.io. We’ll start by installing
a necessary package and we’ll then list the requirements (including Flask) needed to
deploy the application. Note: The following steps work as of this writing, but deploy-
ing to a third-party service is exactly the kind of thing that can change without notice.
If that happens, you will likely have an opportunity to apply your technical sophisti-
cation (Box 1.2), up to and including finding an alternate service (such as Render) if
necessary.

https://fly.io/
https://render.com/

1.5 Python in a Web Browser 27

Figure 1.10: Using a private repo.

Our first step is to install a package for Gunicorn, a Python web server:

(venv) $ pip install gunicorn==20.1.0

Then we need to create a file called requirements.txt to tell the deployment
host which packages are needed to run our app, which we can do by creating a
requirements.txt file using

$ touch requirements.txt

and then filling it with the contents shown in Listing 1.15, which we can figure out
using pip freeze in a virtual environment where no unneeded packages had been
installed. (Some resources recommend redirecting (https://www.learnenough.com/

https://gunicorn.org/
https://www.learnenough.com/command-line-tutorial/manipulating_files#sec-redirecting_and_appending
https://www.learnenough.com/command-line-tutorial/manipulating_files#sec-redirecting_and_appending

28 Chapter 1: Hello, World!

command-line-tutorial/manipulating_files#sec-redirecting_and_appending) the out-
put of pip freeze using pip freeze > requirements.txt to create the file
in Listing 1.15, but this approach can lead to unnecessary or invalid packages being
required.)

Listing 1.15: Specifying the requirements for our app.
requirements.txt

click==8.1.3
Flask==2.2.2
gunicorn==20.1.0
itsdangerous==2.1.2
Jinja2==3.1.2
MarkupSafe==2.1.1
Werkzeug==2.2.2

The current recommended practice for Python package management is to use a
pyproject.toml file to specify the build system for the project. This step is not
required when deploying to Fly.io, but we will follow this practice when we make a
package of our own in Chapter 8.

With the configuration in Listing 1.15, we have set up our system for Fly.io to
detect the presence of a Flask app automatically. Here are the steps for getting started:

1. Sign up (https://fly.io/app/sign-up) for Fly.io. Take care to click the link for the
free tier, which can be a little tricky to find (Figure 1.11). Free accounts are limited
to two deployment servers, which is perfect for us since that’s the number in this
tutorial (here and in Chapter 10).

2. Install Fly Control (flyctl), a command-line program for interacting with
Fly.io.11 Options for macOS and for Linux (including the cloud IDE) are shown in
Listing 1.16 and Listing 1.17, respectively. For the latter, take care to add any lines
to your .bash_profile or .zshrc file as instructed (Listing 1.18), and then run
source ~/.bash_profile (or source ~/.zshrc) to update the configuration.
Note that the vertical dots in Listing 1.18 indicate omitted lines.

3. Sign in to Fly.io at the command line (Listing 1.19).

11. I discovered accidentally that flyctl is aliased to fly, at least on my system; I suggest seeing if you can
be similarly fly on your system as well.

https://www.learnenough.com/command-line-tutorial/manipulating_files#sec-redirecting_and_appending
https://pip.pypa.io/en/stable/reference/build-system/pyproject-toml/
https://fly.io/app/sign-up
https://fly.io/docs/hands-on/install-flyctl/

1.5 Python in a Web Browser 29

Figure 1.11: The Fly.io free tier.

Listing 1.16: Installing flyctl on macOS using Homebrew.

(venv) $ brew install flyctl

Listing 1.17: Installing flyctl on Linux.

(venv) $ curl -L https://fly.io/install.sh | sh

30 Chapter 1: Hello, World!

Listing 1.18: Adding configuration lines for flyctl.
~/.bash_profile or ~/.zshrc

.

.

.
export FLYCTL_INSTALL="/home/ubuntu/.fly"
export PATH="$FLYCTL_INSTALL/bin:$PATH"

Listing 1.19: Signing in to Fly.io.12

(venv) $ flyctl auth login --interactive

Once you’ve signed in to Fly.io, follow these steps to deploy the hello app:

1. Run flyctl launch (Listing 1.20) and accept the autogenerated name and the
default options (i.e., no database).

2. Edit the generated Procfile and fill it with the contents shown in Listing 1.21.
You’ll probably have to make only one change by updating the app name from
server to hello_app.

3. Deploy the application with flyctl deploy (Listing 1.22).13

Listing 1.20: “Launching” the app (which is just local configuration).

(venv) $ flyctl launch

Listing 1.21: Procfile

web: gunicorn hello_app:app

12. Listing 1.19 includes the --interactive option to prevent flyctl from spawning a browser window,
which works both on native systems and on the cloud IDE. If you’re using a native system, feel free to omit
that option.

13. In my testing, flyctl deploy fails when running a Virtual Private Network (VPN), so if you use a
VPN I suggest you disable it for this step.

1.5 Python in a Web Browser 31

Listing 1.22: Deploying the app to Fly.io.

(venv) $ flyctl deploy

After the deployment step has finished, you can run the command in Listing 1.23
to see the status of the app. (If anything goes wrong, you may find flyctl logs
helpful in debugging.)

Listing 1.23: Viewing the status of the deployed app.

(venv) $ flyctl status # Details will vary
App

Name = restless-sun-9514
Owner = personal
Version = 2
Status = running

Hostname = crimson-shadow-1161.fly.dev # Your URL will differ.
Platform = nomad

Deployment Status
ID = 051e253a-e322-4b2c-96ec-bc2758763328
Version = v2
Status = successful
Description = Deployment completed successfully
Instances = 1 desired, 1 placed, 1 healthy, 0 unhealthy

The highlighted line in Listing 1.23 indicates the URL of the live app, which you can
open automatically as follows:

(venv) $ flyctl open # won't work on the cloud IDE, so use displayed URL

As noted, the flyctl open command won’t work on the cloud IDE because it needs
to spawn a new browser window, but in that case you can just copy and paste the
URL from your version of Listing 1.23 into your browser’s address bar to obtain the
same result.

And that’s it! Our hello app is now running in production (Figure 1.12). “It’s
alive!” (Figure 1.1314).

14. Image courtesy of Niday Picture Library/Alamy Stock Photo.

https://www.youtube.com/watch?v=xos2MnVxe-c
https://www.youtube.com/watch?v=xos2MnVxe-c

32 Chapter 1: Hello, World!

Figure 1.12: The hello app running in production.

Figure 1.13: Bringing a site to life is easier than it used to be.

1.5 Python in a Web Browser 33

Although there were quite a few steps involved in this section, being able to deploy
a site so early is nothing short of miraculous. It may be a simple app, but it’s a real one,
and being able to deploy it to production is an enormous step.

By the way, you might have noticed that deploying to Fly.io didn’t require a Git
commit (in contrast to, say, GitHub Pages or a hosting service like Heroku). As a
result, it’s probably a good idea to make one final commit now and push the result up
to GitHub:

(venv) $ git add -A
(venv) $ git commit -m "Configure hello app for deployment"
(venv) $ git push

1.5.2 Exercises

1. Change “hello, world!” to “goodbye, world!” in hello_app.py running locally.
Does the updated text display right away? What about after refreshing the browser?

2. Deploy your updated app to Fly.io and confirm that the new text appears as
expected.

https://www.heroku.com/

This page intentionally left blank

CHAPTER 2
Strings

Strings are probably the most important data structure for everyday computing. They’re
used in practically every kind of program imaginable, and are also the raw material of
the Web. As a result, strings make an excellent place to start our Python programming
journey.

2.1 String Basics
Strings are made up of sequences of characters in a particular order.1 We’ve already
seen several examples in the context of our “hello, world” programs in Chapter 1.
Let’s see what happens if we type a string by itself (without print()) into the Python
REPL:

$ source venv/bin/activate
(venv) $ python3
>>> "hello, world!"
'hello, world!'

A sequence of characters typed literally is called a string literal, which we’ve created
here using the double-quote character ". The REPL prints the result of evaluating the
line, which in the case of a string literal is just the string itself.

A particularly important string is one with no content, consisting simply of two
quotes. This is known as an empty string (or sometimes the empty string):

1. Like many other high-level languages, such as JavaScript and Ruby, Python “characters” are just strings
of length one. This stands in contrast to lower-level languages like C and Java, which have a special type just
for characters.

35

36 Chapter 2: Strings

>>> ""
''

We’ll have more to say about the empty string in Section 2.4.2 and Section 3.1.
Note that the REPL shows the value of the double-quoted strings we entered

using single quotes ('hello, world!' instead of "hello, world!"). This is purely
a convention (and indeed may be system-dependent), because single- and double-
quoted strings are exactly the same in Python.2 Well, not exactly exactly the same,
because a string might contain a literal quote mark (Figure 2.13):

>>> 'It's not easy being green'
File "<stdin>", line 1
'It's not easy being green'

^
SyntaxError: invalid syntax

Figure 2.1: Sometimes it’s not easy when the REPL generates a syntax error.

2. This stands in contrast to Ruby, which uses single-quoted strings for raw strings; as noted in Section 2.2.2,
Python’s convention is to prepend the letter r instead.

3. Image courtesy of LorraineHudgins/Shutterstock.

https://www.youtube.com/watch?v=hpiIWMWWVco

2.1 String Basics 37

Because the REPL interprets 'It' as a string, and the final ' as the opening of a second
string, the result is a syntax error. (Another result, as seen above, is that the syntax
highlighting looks odd—a side effect that is frequently useful as a visual hint of a
syntax error.)

According to the PEP-8 style guide, the preferred method for including a quote in
this manner is simply to use the other kind of quote for defining the string (Listing 2.1).

Listing 2.1: Including a single quote inside a double quote.

>>> "It's not easy being green"
"It's not easy being green"

Note that the REPL here obeys the same convention we did, switching to double
quotes for a string containing a single quote.

Finally, Python is unusual in supporting triple-quoted strings:

>>> """Return the function value."""
'Return the function value.'

When they fit on one line, these strings behave just like single- and double-quoted
strings, but we can also add newlines inside them:

>>> """This is a string.
...
... We can add newlines inside,
... which is pretty cool.
... """
'This is a string.\nWe can add newlines inside,\nwhich is pretty cool.\n'

Triple-quoted strings are notable for their use in docstrings, which are special docu-
mentation strings used in Python functions (Chapter 5) and classes (Chapter 7). As
such, they are used heavily in Python programming.

In general, PEP 8 indicates that single- and double-quoted strings are both accept-
able as long as you’re consistent, but triple-quoted strings should always use the
double-quoted variant:4

4. The terminology here is standard but a little muddled: “single-quoted” and “double-quoted” refer to the
number of quotes in the characters themselves (' vs. "), whereas “triple-quoted” refers to the number of
such characters used on each side when defining a string ("""...""").

https://peps.python.org/pep-0008/#string-quotes
https://peps.python.org/pep-0257/

38 Chapter 2: Strings

In Python, single-quoted strings and double-quoted strings are the same. This PEP does not
make a recommendation for this. Pick a rule and stick to it. When a string contains single
or double quote characters, however, use the other one to avoid backslashes in the string. It
improves readability.
For triple-quoted strings, always use double quote characters to be consistent with the docstring
convention in PEP 257.

This tutorial standardizes on double-quoted strings for consistency with this triple-
quoted convention and to match the convention used in Learn Enough JavaScript to
Be Dangerous (https://www.learnenough.com/javascript) and Learn Enough Ruby to
Be Dangerous (https://www.learnenough.com/ruby), but of course you are free to
choose the opposite convention if you like.

2.1.1 Exercises

1. Confirm that we can escape out quotes using a backslash, as in 'It\'s not
easy being green'. This can be convenient if a string contains both single and
double quotes (in which case the trick from Listing 2.1 doesn’t work). How does
the REPL handle 'It\'s not "easy" being green'?

2. Python supports common special characters such as tabs (\t) and newlines (\n),
which are two different forms of so-called whitespace. Show that \t and \n are
interpreted as special characters inside both single- and double-quoted strings.
What happens if you put the letter r in front of one of the strings? Hint: In the
REPL, try executing commands like the ones shown in Listing 2.2. We’ll learn
more about the special r behavior in Section 2.2.2.

Listing 2.2: Some strings with special characters.

>>> print('hello\tgoodbye')
>>> print('hello\ngoodbye')
>>> print("hello\tgoodbye")
>>> print("hello\ngoodbye")
>>> print(r"hello\ngoodbye")

2.2 Concatenation and Interpolation
Two of the most important string operations are concatenation (joining strings together)
and interpolation (putting variable content into strings). We’ll start with concatenation,

https://peps.python.org/pep-0257/
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://en.wikipedia.org/wiki/Tab_key#Tab_characters
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Whitespace_character

2.2 Concatenation and Interpolation 39

which we can accomplish using the + operator:5

(venv) $ python3
>>> "foo" + "bar" # String concatenation
'foobar'
>>> "ant" + "bat" + "cat" # Multiple strings can be concatenated at once.
'antbatcat'

Here the result of evaluating "foo" plus "bar" is the string "foobar". (The meaning
of the odd names “foo” and “bar” is discussed (https://www.learnenough.com/
command-line-tutorial/manipulating_files#aside-foo_bar) in Learn Enough Command
Line to Be Dangerous (https://www.learnenough.com/command-line).) Also note the
comments, indicated using the hash symbol #, which you are free to ignore and will be
ignored by Python in any case.

Let’s take another look at string concatenation in the context of variables,
which you can think of as named boxes that contain some value (as mentioned
(https://www.learnenough.com/css-and-layout-tutorial/templates_and_frontmatter
#aside-variable) in Learn Enough CSS & Layout to Be Dangerous (https://www.
learnenough.com/css-and-layout) and discussed further in Box 2.1).

Box 2.1: Variables and identifiers

If you’ve never programmed a computer before, you may be unfamiliar with the
term variable, which is an essential idea in computer science. You can think of a
variable as a named box that can hold different (or “variable”) content.

As a concrete analogy, consider the labeled boxes that many elementary
schools provide for students to store clothing, books, backpacks, etc. (Figure 2.26).
The variable is the location of the box, the label for the box is the variable name
(also called an identifier), and the content of the box is the variable value.

In practice, these different definitions are frequently conflated, and “variable”
is often used for any of the three concepts (location, label, or value).

5. This use of + for string concatenation is common in programming languages, but in one respect it’s an
unfortunate choice, because addition is the canonical commutative operation in mathematics: a+b = b+a.
(In contrast, multiplication is in some cases non-commutative; for example, when multiplying matrices it’s
often the case that AB ̸= BA.) In the case of string concatenation, though, + is most definitely not a
commutative operation, since, e.g., "foo" + "bar" is "foobar", whereas "bar" + "foo" is "barfoo".
Partially for this reason, some languages (such as PHP) use a different symbol for concatenation, such as a
dot . (yielding "foo" . "bar").

6. Image courtesy of Africa Studio/Shutterstock.

https://www.learnenough.com/command-line-tutorial/manipulating_files#aside-foo_bar
https://www.learnenough.com/command-line-tutorial/manipulating_files#aside-foo_bar
https://www.learnenough.com/command-line-tutorial/manipulating_files#aside-foo_bar
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://www.learnenough.com/css-and-layout-tutorial/templates_and_frontmatter#aside-variable
https://www.learnenough.com/css-and-layout-tutorial/templates_and_frontmatter#aside-variable
https://www.learnenough.com/css-and-layout-tutorial/templates_and_frontmatter#aside-variable
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout
https://en.wiktionary.org/wiki/conflate#English
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Matrix_multiplication#Non-commutativity
https://en.wikipedia.org/wiki/PHP

40 Chapter 2: Strings

Figure 2.2: A concrete manifestation of computer variables.

As a concrete example, we can create variables for a first name and a last name
using the = sign, as shown in Listing 2.3.

Listing 2.3: Using = to assign variables.

>>> first_name = "Michael"
>>> last_name = "Hartl"

Here = associates the identifier first_name with the string "Michael" and the
identifier last_name with the string "Hartl".

The identifiers first_name and last_name in Listing 2.3 are written in so-called
snake case,7 whose name origins are obscure but which is probably the most common
convention for Python variable names (Figure 2.38). (In contrast, Python classes use
the CamelCase convention, which is described in more detail in Chapter 7.)

7. In particular, “snake case” is not a reference to Python itself; snake-case variable names are common in
languages whose names, unlike Python’s, have nothing to do with snakes, such C, Perl, PHP, JavaScript, and
Ruby.

8. Image courtesy of rafaelbenari/123RF.

https://en.wikipedia.org/wiki/Snake_case
https://en.wikipedia.org/wiki/Snake_case#History

2.2 Concatenation and Interpolation 41

Figure 2.3: Snake case is the default for Python variable names.

Having defined the variable names in Listing 2.3, we can use them to concatenate
the first and last names, while also inserting a space in between (Listing 2.4).

Listing 2.4: Concatenating string variables (and a string literal).

>>> first_name + " " + last_name # Not Pythonic
'Michael Hartl'

2.2.1 Formatted Strings

The most Pythonic way (Box 1.1) to build up strings is via interpolation using so-called
formatted strings, or f-strings, which combine the letter f (for “formatted”) and curly
braces to insert variable values:

>>> f"{first_name} is my first name." # Pythonic
'Michael is my first name.'

42 Chapter 2: Strings

Here Python automatically inserts, or interpolates, the value of the variable first_name
into the string at the appropriate place.9 Indeed, any code inside the curly braces will
simply be evaluated by Python and inserted in place.

We can use interpolation to replicate the result of Listing 2.4, as shown in
Listing 2.5.

Listing 2.5: Concatenation review, then interpolating.

>>> first_name + " " + last_name # Concatenation (not Pythonic)
'Michael Hartl'
>>> f"{first_name} {last_name}" # Interpolation (Pythonic)
'Michael Hartl'

The two expressions shown in Listing 2.5 are equivalent, but I generally prefer the
interpolated version because having to add the single space " " in between strings
feels a bit awkward (and, as noted, Pythonistas generally agree).

It’s worth noting that formatted strings were added in Python 3.6. If for some
reason you need to use an earlier version of Python, you can use either % formatting
or str.format() instead. Specifically, the following three lines give the same result:

>>> f"First Name: {first_name}, Last Name: {last_name}"
'First Name: Michael, Last Name: Hartl'
>>> "First Name: {}, Last Name: {}".format(first_name, last_name)
'First Name: Michael, Last Name: Hartl'
>>> "First Name: %s, Last Name: %s" % (first_name, last_name)
'First Name: Michael, Last Name: Hartl'

Using format() in particular has possible advantages that can be useful even when for-
matted strings are available. See the article “Python 3’s f-Strings: An Improved String
Formatting Syntax” (https://realpython.com/python-f-strings/) for more informa-
tion.

2.2.2 Raw Strings

In addition to ordinary strings and formatted strings, Python also supports so-called
raw strings. For many uses, the two types of strings are effectively identical:

9. Programmers familiar with Perl or PHP should compare this to the automatic interpolation of dollar sign
variables in expressions like "Michael $last_name".

https://realpython.com/python-f-strings/
https://realpython.com/python-f-strings/

2.2 Concatenation and Interpolation 43

>>> r"foo"
'foo'
>>> r"foo" + r"bar"
'foobar'

There are important differences, though. For example, Python won’t interpolate
into raw strings:

>>> r"{first_name} {last_name}" # No interpolation!
'{first_name} {last_name}'

This isn’t that surprising, though, since Python won’t interpolate into regular strings,
either:

>>> "{first_name} {last_name}" # No interpolation!
'{first_name} {last_name}'

If regular strings can do everything that raw strings can do, what’s the point of
raw strings? They are often useful because they are truly literal, containing exactly the
characters you type. For example, the “backslash” character is special on most systems,
as in the literal newline \n. If you want a variable to contain a literal backslash, raw
strings make it easier:

>>> r"\n" # A literal 'backslash n' combination
'\\n'

Note that Python REPL needs to escape the backslash with an additional backslash;
inside regular strings, a literal backslash is represented with two backslashes. For a small
example like this, there’s not much savings, but if there are lots of things to escape it
can be a real help:

>>> r"Newlines (\n) and tabs (\t) both use the backslash character: \."
'Newlines (\\n) and tabs (\\t) both use the backslash character: \\.'

Probably the most common use of raw strings is in defining regular expressions (Sec-
tion 4.3), but they will also make an appearance when labeling plots in Section 11.3.

The practice of escaping out characters is unnecessary inside raw strings, except
for quotes of the same kind used to define the string. For example, if you define a raw
string using single quotes, ordinarily it works just fine:

44 Chapter 2: Strings

>>> r'Newlines (\n) and tabs (\t) both use the backslash character: \.'
'Newlines (\\n) and tabs (\\t) both use the backslash character: \\.'

As with regular strings, if a raw string defined using single quotes itself contains a
single quote, we get a syntax error instead:

>>> r'It's not easy being green'
File "<stdin>", line 1
'It's not easy being green'

^
SyntaxError: invalid syntax

2.2.3 Exercises

1. Assign variables city and state to your current city and state of residence. (If
residing outside the U.S., substitute the analogous quantities.) Using interpolation,
print a string consisting of the city and state separated by a comma and a space, as
in “Los Angeles, CA”.

2. Repeat the previous exercise but with the city and state separated by a tab
character.

3. Do triple-quoted strings (Section 2.1) support interpolation?

2.3 Printing
As we saw in Section 1.2 and subsequent sections, the Python way to print a string to
the screen is to use the print() function:

>>> print("hello, world!") # Print output
hello, world!

Here print() takes in a string as an argument and then prints the result to the screen.
The print() function operates as a side effect, which refers to anything a function
does other than returning a value. In particular, the expression

print("hello, world!")

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

2.3 Printing 45

prints the string to the screen and then returns nothing—indeed, it returns a literal
Python object called None, as we can see here:10

>>> result = print("hello, world!")
"hello, world"
>>> print(result)
None

Here the second instance of print() converts None to a string representation and
prints the result. We can get the string representation directly using the repr()
(“representation”) function:

>>> repr(None)
'None'

The repr() command is frequently useful, especially in the REPL, and works on
essentially any Python object.

We saw briefly in Section 1.2.1 that print() also accepts a keyword argument
(Section 5.1.2) called end that represents the character used at the end of the string.
The default end is a newline \n, which is why we get a nice break before the next
interpreter prompt:

>>> print("foo")
foo
>>>

We can override this behavior by passing a different string, such as the empty string
"":

>>> print("foo", end="")
foo>>>

Note that the prompt now appears immediately after the string. This is potentially
useful in a script because it allows us to print out multiple statements without any
separation between them.

10. Python’s None is the exact analogue of Ruby’s nil.

46 Chapter 2: Strings

2.3.1 Exercises

1. What is the effect of giving print() multiple arguments, as in print("foo",
"bar", "baz")?

2. What is the effect of running the print test shown in Listing 2.6? Hint: You should
create and run the file using the same techniques covered in Section 1.3.

Listing 2.6: A test of printing without newlines.
print_test.py

print("foo", end="")
print("bar", end="")
print("baz")

2.4 Length, Booleans, and Control Flow
One of the most useful built-in Python functions is len(), which returns the length
of its argument. Among many other things, len() works on strings:

>>> len("hello, world!")
13
>>> len("")
0

This can be a bit of a gotcha for programmers coming from other high-level languages,
many of which use obj.length (an attribute) or obj.length() (a method) to calcu-
late lengths. In Python, len(obj) plays this important role instead. (We’ll learn more
about methods starting in Section 2.5.)

The len() function is especially useful in comparisons, such as checking the
length of a string to see how it compares to a particular value (note that the REPL
supports “up arrow” to retrieve previous lines, just like the command-line terminal):

>>> len("badger") > 3
True
>>> len("badger") > 6
False
>>> len("badger") >= 6

https://en.wiktionary.org/wiki/gotcha#Etymology_2

2.4 Length, Booleans, and Control Flow 47

True
>>> len("badger") < 10
True
>>> len("badger") == 6
True

The last line uses the equality comparison operator ==, which Python shares with
many other languages. (Python also has a comparison operator called is that represents
a stronger comparison; see Section 3.4.2.)

The return values in the comparisons above, which are always either True or
False, are known as boolean values, after mathematician and logician George Boole
(Figure 2.411).

Figure 2.4: True or false? This is a picture of George Boole.

11. Image courtesy of Yogi Black/Alamy Stock Photo.

https://en.wikipedia.org/wiki/George_Boole

48 Chapter 2: Strings

Boolean values are especially useful for control flow, which lets us take actions based
on the result of a comparison (Listing 2.7). In Listing 2.7, the three dots ... are
inserted by the Python interpreter and shouldn’t be copied literally.

Listing 2.7: Control flow with if.

>>> password = "foo"
>>> if (len(password) < 6): # Not fully Pythonic
... print("Password is too short.")
...
Password is too short.

Note in Listing 2.7 that the comparison after if is in parentheses, and the if state-
ment is terminated by a colon :. The latter is required, but in Python (unlike many
other languages) the parentheses are optional, and it’s common to leave them off
(Listing 2.8).

Listing 2.8: Control flow with if.

>>> password = "foo"
>>> if len(password) < 6: # Pythonic
... print("Password is too short.")
...
Password is too short.

Meanwhile, the block structure is indicated by indentation, in this case four spaces
before the string "Password is too short." (Box 2.2).

Box 2.2: Code formatting

The code samples in this tutorial, including those in the REPL, are designed to show
how to format Python in a way that maximizes readability and code comprehension.
Unusually among programming languages, Python actually requires such formatting,
as its block structure is indicated by indentation rather than by curly braces {...}
(as in C/C++, PHP, Perl, JavaScript, etc.) or by a special keyword (e.g., end in Ruby).

While exact styles differ, here are some general guidelines for good code
formatting, based in part on PEP 8 – Style Guide for Python Code:

https://peps.python.org/pep-0008/

2.4 Length, Booleans, and Control Flow 49

• Indent code to indicate block structure. As noted above, this is required by
Python. Python technically allows either spaces or tabs, but tabs are gen-
erally considered a Bad Thing, and using spaces (typically via emulated tabs
(https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#
sec-indenting_and_dedenting)) is strongly recommended.

• Use four spaces for indentation. Although some Python style guides, such as
Google’s Python course, indent two spaces at a time, the official PEP 8 guideline
is to use four spaces.

• Add newlines to indicate logical structure. One thing I particularly like to do
is add an extra newline after a series of variable assignments, in order to give
a visual indication that the setup is done and the real coding can begin. An
example appears in Listing 4.12.

• Limit code lines to 79 characters (also called “columns”), and limit comment
lines or docstrings to 72 characters. These rules, which are recommended by
PEP 8, are even more cautious than the 80-character constraint used in other
Learn Enough tutorials and which dates back to the early days of 80-character-
width terminals. Many modern developers routinely violate this constraint,
considering it outdated, but in my experience using a conservative charac-
ter limit is a good source of discipline, and will save your neck when using
command-line programs like less (or when using your code in a document
with more stringent width requirements, such as a book). A line that breaks the
character limit is a hint that you should introduce a new variable name, break
an operation into multiple steps, etc., to make the code clearer for anyone
reading it.

We’ll see several examples of more advanced code formatting conventions as
we proceed throughout the rest of this tutorial.

We can add a second behavior using else, which serves as the default result if the
first comparison is False (Listing 2.9).

Listing 2.9: Control flow with if and else.

>>> password = "foobar"
>>> if len(password) < 6:
... print("Password is too short.")
... else:
... print("Password is long enough.")
...
Password is long enough.

http://www.catb.org/jargon/html/B/Bad-Thing.html
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#sec-indenting_and_dedenting
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#sec-indenting_and_dedenting
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#sec-indenting_and_dedenting
https://developers.google.com/edu/python/introduction#indentation
https://www.python.org/dev/peps/pep-0008/#indentation
https://peps.python.org/pep-0008/#maximum-line-length
https://idioms.thefreedictionary.com/save+your+neck

50 Chapter 2: Strings

The first line in Listing 2.9 redefines password by assigning it a new value. After
reassignment, the password variable has length 6, so len(password) < 6 is False.
As a result, the if part of the statement (known as the if branch) doesn’t get evaluated;
instead, Python evaluates the else branch, resulting in a message indicating that the
password is long enough.

Rather than the more conventional else if control flow, Python has a special
elif keyword that means the same thing, as shown in Listing 2.10 (Figure 2.512).

Figure 2.5: Goldilocks chooses control flow that is just right.

12. Image courtesy of Jessie Willcox Smith/Alamy Stock Photo.

2.4 Length, Booleans, and Control Flow 51

Listing 2.10: Control flow with elif.

>>> password = "goldilocks"
>>> if len(password) < 6:
... print("Password is too short.")

... elif len(password) < 50:

... print("Password is just right!")

... else:

... print("Password is too long.")

...
Password is just right!

2.4.1 Combining and Inverting Booleans

Booleans can be combined or inverted using the and, or, and not operators.
Let’s start with and. When comparing two booleans with and, both have to be

True for the combination to be True. For example, if I said I wanted both french
fries and a baked potato, the only way the combination could be true is if I could
answer “yes” (true) to both the questions “Do you want french fries?” and “Do you
want a baked potato?” If my answer to either of those is false, then the combination
must be false as well. The resulting combinations of possibilities are collectively known
as a truth table; the truth table for and appears in Listing 2.11.

Listing 2.11: The truth table for and.

>>> True and False
False
>>> False and True
False
>>> False and False
False
>>> True and True
True

We can apply this to a conditional as shown in Listing 2.12.

Listing 2.12: Using the and operator in a conditional.

>>> x = "foo"
>>> y = ""
>>> if len(x) == 0 and len(y) == 0:

https://en.wikipedia.org/wiki/Truth_table

52 Chapter 2: Strings

... print("Both strings are empty!")

... else:

... print("At least one of the strings is nonempty.")

...
At least one of the strings is nonempty.

In Listing 2.12, len(y) is in fact 0, but len(x) isn’t, so the combination is False (in
agreement with Listing 2.11), and Python evaluates the else branch.

In contrast to and, or lets us take action if either comparison (or both) is true
(Listing 2.13).

Listing 2.13: The truth table for or.

>>> True or False
True
>>> False or True
True
>>> True or True
True
>>> False or False
False

We can use or in a conditional as shown in Listing 2.14.

Listing 2.14: Using the or operator in a conditional.

>>> if len(x) == 0 or len(y) == 0:
... print("At least one of the strings is empty!")
... else:
... print("Neither of the strings is empty.")
...
At least one of the strings is empty!

Note from Listing 2.13 that or isn’t exclusive, meaning that the result is true even
when both statements are true. This stands in contrast to colloquial usage, where a
statement like “I want fries or a baked potato” implies that you want either fries or a
baked potato, but you don’t want both (Figure 2.613).

13. Image courtesy of Rikaphoto/Shutterstock.

2.4 Length, Booleans, and Control Flow 53

Figure 2.6: Turns out I only wanted fries.

In addition to and and or, Python supports negation via the “not” operator not,
which just converts True to False and False to True (Listing 2.15).

Listing 2.15: The truth table for not.

>>> not True
False
>>> not False
True

We can use not in a conditional as shown in Listing 2.16. Note that parentheses
are required in this case, because otherwise we’re asking if not len(x) is equal to 0.

Listing 2.16: Using the not operator in a conditional.

>>> if not (len(x) == 0): # Not Pythonic
... print("x is not empty.")
... else:
... print("x is empty.")
...
x is not empty.

https://www.youtube.com/watch?v=fhIdbRp6xeg

54 Chapter 2: Strings

The code in Listing 2.16 is valid Python, as it simply negates the test len(x) ==
0, yielding True:

>>> not (len(x) == 0)
True

In this case, though, it’s more common to use != (“not equals”, also read as “bang
equals” since ! is often pronounced “bang”), as seen in Listing 2.17.

Listing 2.17: Using != (“not equals” or “bang equals”).

>>> if len(x) != 0: # Not quite Pythonic
... print("x is not empty.")
... else:
... print("x is empty.")
...
x is not empty

Because we’re no longer negating the entire expression, we can omit the parentheses
as before. As noted, though, this code would not be considered fully Pythonic; this is
because the empty string "" has a special value in a boolean context (Section 2.4.2).

2.4.2 Boolean Context

Not all booleans are the result of comparisons, and in fact every Python object has a
value of either True or False in a boolean context. We can force Python to use such
a boolean context with the bool() function. Naturally, both True and False are just
equal to themselves in a boolean context:

>>> bool(True)
True
>>> bool(False)
False

Using bool() allows us to see that a string like "foo" is True in a boolean
context:

>>> bool("foo")
True

2.4 Length, Booleans, and Control Flow 55

Almost all Python strings are True in a boolean context; the only exception is the
empty string, which is False:14

>>> bool("")
False

Most other things that are “empty” in any sense are False in Python. This
includes the number 0:

>>> bool(0)
False

and None:

>>> bool(None)
False

As we’ll see later, empty lists (Chapter 3), empty tuples (Section 3.6), and empty
dictionaries (Section 4.4) are also False.

It’s important to understand that using bool() is just for purposes of illustration;
in real programs, we’ll almost always rely on the presence of a keyword such as if
or elif, which automatically converts all objects to their boolean equivalents. For
example, because "" is False in a boolean context, we can replace len(x) != 0 in
Listing 2.17 with x itself, as seen in Listing 2.18.

Listing 2.18: Using a string in a boolean context.

>>> if x: # Pythonic
... print("x is not empty.")
... else:
... print("x is empty.")
...
x is not empty.

In Listing 2.18, if x: converts x to False if it’s the empty string and True otherwise.
We can use the same property to rewrite code like Listing 2.12 as shown in

Listing 2.19.

14. This is the sort of detail that varies from language to language. For example, the empty string is true in
Ruby.

56 Chapter 2: Strings

Listing 2.19: Using boolean methods.

>>> if x or y:
... print("At least one of the strings is nonempty.")
... else:
... print("Both strings are empty!")
...
At least one of the strings is nonempty.

2.4.3 Exercises

1. If x is "foo" and y is "" (the empty string), what is the value of x and y? Verify
using bool() that x and y is true in a boolean context.

2. Show that we can define a string of length 50 using the convenient code in
Listing 2.20, which uses the asterisk * to “multiply” the string "a" by 50. Go
through the steps in Listing 2.10 again with the new password to verify that Python
prints out “Password is too long.”

Listing 2.20: Defining a password that is too long.

>>> password = "a" * 50
>>> password
'aa'

2.5 Methods
We saw in Section 2.4 that we can call the len() function to get the length of a string.
This follows the same basic pattern as the print() function discussed in Section 2.3:
We type the name of the function with an argument in parentheses.

There is a second important class of functions that are effectively attached to the
object under consideration—in the case of this chapter, a string object. Such functions
are known as methods. In Python (and in many other languages that support object-
oriented programming), methods are indicated by typing the object followed by a dot
and then the name of the method. For example, Python strings have a method called
capitalize() that capitalizes the given string:

https://docs.python.org/3/library/stdtypes.html#str.capitalize

2.5 Methods 57

>>> "michael".capitalize()
'Michael'

Note that we include parentheses to indicate that capitalize() is a method (in this
case, with zero arguments). Leaving off the parentheses causes Python to return the
raw method:

>>> "michael".capitalize
<built-in method capitalize of str object at 0x1014487b0>

This is why we generally include parentheses in method names like capitalize().
One important class of methods is boolean methods, which return True or False.

In Python, such methods are frequently indicated using the word “is” as the first part
of the method:

>>> "badger".islower()
True
>>> "BADGER".islower()
False
>>> "bAdGEr".islower()
False

Here we see that islower() returns True if the string is all lowercase and False
otherwise.

Strings also respond to a wealth of methods that return transformed versions of
the string’s content. One example is the capitalize() method seen above. Strings
also have a lower() method, which (surprise!) converts the string to all lowercase
letters (Figure 2.715):

>>> "HONEY BADGER".lower()
'honey badger'

Note that the lower() method returns a new string, without changing (or mutating)
the original:

>>> animal = "HONEY BADGER"
>>> animal.lower()
'honey badger'

15. Image courtesy of Pavel Kovaricek/Shutterstock.

58 Chapter 2: Strings

Figure 2.7: This honey badger used to be a HONEY BADGER, but he don’t care.

>>> animal
'HONEY BADGER'

This is the sort of method that could be useful, for example, when standardizing
on lowercase letters in an email address:

>>> first_name = "Michael"
>>> username = first_name.lower()
>>> f"{username}@example.com" # Sample email address
'michael@example.com'

As you might be able to guess, Python supports the opposite operation as well;
before looking at the example below, see if you can guess the method for converting
a string to uppercase (Figure 2.816).

I’m betting you got the right answer (or at least came close):

>>> last_name.upper()
'HARTL'

16. Image courtesy of Arco1/123RF.

http://knowyourmeme.com/memes/honey-badger

2.5 Methods 59

Figure 2.8: Early typesetters kept large letters in the “upper case” and small letters in
the “lower case”.

Being able to guess answers like this is a hallmark of technical sophistication, but as
noted in Box 1.2 another key skill is being able to use the documentation. In particular,
the Python documentation page on str has a long list of useful string methods.17 Let’s
take a look at some of them (Figure 2.9).

Inspecting the methods in Figure 2.9, we see one that looks like this:

str.find(sub[, start[, end]])

Return the lowest index in the string where substring sub is found within the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return
-1 if sub is not found.

17. You can find such pages by going directly to the official Python documentation, but the truth is
that I nearly always find such pages by Googling things like “python string”. Be mindful of the version
number—although Python is quite stable at this point, if you notice any discrepancies make sure you’re
using documentation compatible with your own version of Python.

https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/
https://www.google.com/search?q=python+string

60 Chapter 2: Strings

Figure 2.9: Some Python string methods.

This indicates that the find()method takes an argument, sub, and returns the location
where the substring starts:

>>> "hello".find("lo")
3
>>> "hello".find("ol")
-1

(Note that 3 corresponds to the fourth letter, not the third, a convention known as
“zero offset” or “zero-based indexing”; see Section 2.6.)

The result for a nonexistent substring means that we can test whether a string
contains a substring by comparing to -1:

2.5 Methods 61

>>> soliloquy = "To be, or not to be, that is the question:"
>>> soliloquy.find("To be") != -1 # Not Pythonic
True

The True return value indicates that soliloquy does contain the substring "To be".
But the find() documentation also includes an important note:

The find() method should be used only if you need to know the position of sub. To check if
sub is a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

Applying this to soliloquy yields the results shown in Listing 2.21 (Figure 2.1018).

Listing 2.21: Include or does not include? That is the question.

>>> soliloquy = "To be, or not to be, that is the question:" # Just a reminder
>>> "To be" in soliloquy # Does it include the substring "To be"?
True
>>> "question" in soliloquy # What about "question"?
True
>>> "nonexistent" in soliloquy # This string doesn't appear.
False
>>> "TO BE" in soliloquy # String inclusion is case-sensitive.
False

2.5.1 Exercises

1. Write the Python code to test whether the string “hoNeY BaDGer” includes the
string “badger” without regard to case.

2. What is the Python method for stripping leading and trailing whitespace from a
string? The result should be as shown in Listing 2.22 with FILL_IN replaced by
the method name.

18. Image courtesy of Everett Collection/Shutterstock.

https://docs.python.org/3/library/stdtypes.html#str.find

62 Chapter 2: Strings

Figure 2.10: Hamlet, Prince of Denmark, asks: “To be, or not to be, that is the question.”

Listing 2.22: Stripping whitespace.

>>> " spacious ".FILL_IN()
'spacious'

2.6 String Iteration
Our final topic on strings is iteration, which is the practice of repeatedly stepping
through an object one element at a time. Iteration is a common theme in computer
programming, and we’ll get plenty of practice in this tutorial. We’ll also see how one
sign of your growing power as a developer is learning how to avoid iteration entirely
(as discussed in Chapter 6 and Section 8.5).

In the case of strings, we’ll be learning how to iterate one character at a time. There
are two main prerequisites to this: First, we need to learn how to access a particular
character in a string, and second, we need to learn how to make a loop.

We can figure out how to access a particular string character by consulting
the Common Sequence Operations (https://docs.python.org/3/library/stdtypes.html

http://shakespeare.mit.edu/hamlet/
https://en.wikipedia.org/wiki/Suicide
https://docs.python.org/3/library/stdtypes.html#common-sequence-operations
https://docs.python.org/3/library/stdtypes.html#common-sequence-operations

2.6 String Iteration 63

#common-sequence-operations), which indicates that s[i] (using square brackets)
gives the “ith item of s, origin 0” for sequences, including strings. (The main sequences
listed are lists and tuples, which are covered in Chapter 3, and ranges, which we’ll be
looking at in just a moment.) Applying this bracket notation to the soliloquy string
from Section 2.5 lets us see how it works, as shown in Listing 2.23.

Listing 2.23: Investigating the behavior of str[index].

>>> soliloquy # Just a reminder of what the string is
'To be, or not to be, that is the question:'
>>> soliloquy[0]
'T'
>>> soliloquy[1]
'o'
>>> soliloquy[2]
' '

We see in Listing 2.23 that Python supports a bracket notation for accessing string
elements, so that [0] returns the first character, [1] returns the second, and so on.
(We’ll discuss this possibly counterintuitive numbering convention, called “zero off-
set” or “zero-based indexing”, further in Section 3.1.) Each number 0, 1, 2, etc., is
called an index (plural indexes or indices).

Now let’s look at our first example of a loop. In particular, we’ll use a for loop
that defines an index value i and does an operation for each value in the range() of
length 5 (Listing 2.24).

Listing 2.24: A simple for loop.

>>> for i in range(5):
... print(i)
...
0
1
2
3
4

Here we’ve used the range(5) function, which as we see creates an object with
numbers in the range 0–4.

https://docs.python.org/3/library/stdtypes.html#common-sequence-operations
https://en.wiktionary.org/wiki/indexes#English
https://en.wiktionary.org/wiki/indices#English

64 Chapter 2: Strings

Listing 2.24 is Python’s version of the classic “for loop” that is exceptionally com-
mon across an astonishing variety of programming languages, from C and C++ to
JavaScript, Perl, and PHP. Unlike those languages, though, which explicitly incre-
ment a counter variable, Python defines a range of values directly via a special Range
data type.

Listing 2.24 is arguably a little more elegant than the equivalent “classic” for loop
seen in Learn Enough JavaScript to Be Dangerous (Listing 2.25), but it’s still not very good
Python.

Listing 2.25: A for loop in JavaScript.

> for (i = 0; i < 5; i++) {
console.log(i);

}
0
1
2
3
4

As a language and as a community, Python is especially vigilant about avoid-
ing plain for loops. As computer scientist (and personal friend) Mike Vanier
(Figure 2.1119) once put it in an email to Paul Graham:

This [tedious repetition] grinds you down after a while; if I had a nickel for every time I’ve
written “for (i = 0; i < N; i++)” in C I’d be a millionaire.

Figure 2.11: Just a few more for loops and Mike Vanier will be a millionaire.

19. Image © Mike Vanier.

https://www.learnenough.com/javascript
http://users.cms.caltech.edu/~mvanier/
http://paulgraham.com/vanlfsp.html
http://paulgraham.com/

2.6 String Iteration 65

In order to avoid getting ground down, we’ll learn how to use for to loop over ele-
ments directly. We’ll also see how Python lets us avoid loops entirely using functional
programming (Chapter 6 and Section 8.5).

For now, though, let’s build on Listing 2.24 to iterate through all the characters in
the first line of Hamlet’s famous soliloquy. The only new thing we need is the index
for when the loop should stop. In Listing 2.24, we hard-coded the upper limit (5),
and we could do the same here if we wanted. The soliloquy variable is a bit long to
count the characters by hand, though, so let’s ask Python to tell us using the len()
property (Section 2.4):

>>> len(soliloquy)
42

This exceptionally auspicious result suggests writing code like this:

for i in range(42):
print(soliloquy[i])

This code will work, and it is in perfect analogy with Listing 2.24, but it also raises a
question: Why hard-code the length when we can just use the len() method in the
loop itself?

The answer is that we shouldn’t. The resulting improved for loop appears in
Listing 2.26.

Listing 2.26: Combining range(), len(), and a for loop.

>>> for i in range(len(soliloquy)): # Not Pythonic
... print(soliloquy[i])
...
T
o

b
e
.
.
.
t
i
o
n
:

http://www.independent.co.uk/life-style/history/42-the-answer-to-life-the-universe-and-everything-2205734.html

66 Chapter 2: Strings

Although Listing 2.26 works just fine, it is not Pythonic. Instead, the most
Pythonic way to iterate through string characters is to use for by itself, because it
turns out that the default behavior of for applied to a string is simply to consider
each character in turn, as seen in Listing 2.27.

Listing 2.27: Looping through a string with for.

>>> for c in soliloquy: # Pythonic
... print(c)
...
T
o

b
e
.
.
.
t
i
o
n
:

As noted previously, there are often alternatives to looping, but the for style of
looping is still an excellent place to start. As we’ll see in Chapter 8, one powerful
technique is to write a test for the functionality we want, then get it passing any way
we can, and then refactor the code to use a more elegant method. The second step in
this process (called test-driven development, or TDD) often involves writing inelegant
but easy-to-understand code—a task at which the humble for loop excels.

2.6.1 Exercises

1. Write a for loop that prints out the characters of soliloquy in reverse order.
Hint: What is the effect of the reversed() function on a string?

2. One disadvantage of the plain for loop in Listing 2.27 is that we no longer have
access to the index value itself. We could solve this as in Listing 2.28, but the
Pythonic way to do it is to use the enumerate() function to gain access to the
index and the element at the same time. Confirm that you can use enumerate()
to obtain the result shown in Listing 2.29.

2.6 String Iteration 67

Listing 2.28: Using an index with string access.

>>> for i in range(len(soliloquy)): # Not Pythonic
... print(f"Character {i+1} is '{soliloquy[i]}'")
...
Character 1 is 'T'
Character 2 is 'o'
Character 3 is ' '
Character 4 is 'b'
Character 5 is 'e'
Character 6 is ','
Character 7 is ' '
.
.
.

Listing 2.29: Iterating through a string with an index.

>>> for i, c in enumerate(soliloquy): # Pythonic
... print(f"Character {i+1} is '{c}'")
...
Character 1 is 'T'
Character 2 is 'o'
Character 3 is ' '
Character 4 is 'b'
Character 5 is 'e'
Character 6 is ','
Character 7 is ' '
.
.
.

This page intentionally left blank

CHAPTER 3
Lists

In Chapter 2, we saw that strings can be thought of as sequences of characters in
a particular order. In this chapter, we’ll learn about the list data type, which is the
general Python container for a list of arbitrary elements in a particular order. Python
lists are similar to the array data type in other languages (such as JavaScript and Ruby),
so programmers familiar with other languages can probably guess a lot about how
Python lists behave. (Although Python does have a built-in array type, in this tutorial
“array” always refers to the ndarray data type defined by the NumPy library, which is
covered in Section 11.2.)

We’ll start by explicitly connecting strings and lists via the split() method (Sec-
tion 3.1), and then learn about various other list methods and techniques throughout
the rest of the chapter. In Section 3.6, we’ll also take a quick look at two closely related
data types, Python tuples and sets.

3.1 Splitting
So far we’ve spent a lot of time understanding strings, and there’s a natural way to get
from strings to lists via the split() method:

$ source venv/bin/activate
(venv) $ python3
>>> "ant bat cat".split(" ") # Split a string into a three-element list.
['ant', 'bat', 'cat']

We see from this result that split() returns a list of the strings that are separated from
each other by a space in the original string.

69

https://docs.python.org/3/library/array.html

70 Chapter 3: Lists

Splitting on space is one of the most common operations, but we can split on
nearly anything else as well (Listing 3.1).

Listing 3.1: Splitting on arbitrary strings.

>>> "ant,bat,cat".split(",")
['ant', 'bat', 'cat']
>>> "ant, bat, cat".split(", ")
['ant', 'bat', 'cat']
>>> "antheybatheycat".split("hey")
['ant', 'bat', 'cat']

Many languages support this sort of splitting, but note that Python includes an empty
string in the final case illustrated above, which some languages (such as Ruby) trim
automatically. We can avoid this extra string in the common case of splitting on
newlines using splitlines() instead (Listing 3.2).

Listing 3.2: Splitting on newlines vs. splitlines().

>>> s = "This is a line.\nAnd this is another line.\n"
>>> s.split("\n")
['This is a line.', 'And this is another line.', '']
>>> s.splitlines()
['This is a line.', 'And this is another line.']

Many languages allow us to split a string into its component characters by splitting
on the empty string, but this doesn’t work in Python:

>>> "badger".split("")
"badger".split("")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: empty separator

In Python, the best way to do this is using the list() function directly on the
string:

>>> list("badger")
['b', 'a', 'd', 'g', 'e', 'r']

3.2 List Access 71

Because Python can naturally iterate over a string’s characters, this technique is rarely
needed explicitly; instead, we’ll typically use iterators, which we’ll learn about in
Section 5.3.

Perhaps the most common use of split() is with no arguments; in this case, the
default behavior is to split on whitespace (such as spaces, tabs, or newlines):

>>> "ant bat cat".split()
['ant', 'bat', 'cat']
>>> "ant bat\t\tcat\n duck".split()
['ant', 'bat', 'cat', 'duck']

We’ll investigate this case more closely when discussing regular expressions in
Section 4.3.

3.1.1 Exercises

1. Assign a to the result of splitting the string “A man, a plan, a canal, Panama” on
comma-space. How many elements does the resulting list have?

2. Can you guess the method to reverse a in place? (Google around if necessary.)

3.2 List Access
Having connected strings with lists via the split() method, we’ll now discover a
second close connection as well. Let’s start by assigning a variable to a list of characters
created using list():

>>> a = list("badger")
['b', 'a', 'd', 'g', 'e', 'r']

Here we’ve followed tradition and called the variable a, both because it’s the first letter
of the alphabet and as a nod to the array type that lists so closely resemble.

We can access particular elements of a using the same bracket notation we first
encountered in the context of strings in Section 2.6, as seen in Listing 3.3.

Listing 3.3: List access with the bracket notation.

>>> a[0]
'b'
>>> a[1]

https://en.wikipedia.org/wiki/Whitespace_character
https://www.google.com/search?q=python+reverse+list

72 Chapter 3: Lists

'a'
>>> a[2]
'd'

We see from Listing 3.3 that, as with strings, lists are zero-offset, meaning that the
“first” element has index 0, the second has index 1, and so on. This convention can be
confusing, and in fact it’s common to refer to the initial element for zero-offset lists as
the “zeroth” element as a reminder that the indexing starts at 0. This convention can
also be confusing when using multiple languages (some of which start list indexing
at 1), as illustrated in the xkcd comic strip “Donald Knuth”.1

So far we’ve dealt exclusively with lists of characters, but Python lists can contain
all types of elements (Listing 3.4).

Listing 3.4: Creating a list with several types of elements.

>>> soliloquy = "To be, or not to be, that is the question:"
>>> a = ["badger", 42, "To be" in soliloquy]
>>> a
['badger', 42, True]
>>> a[2]
True
>>> a[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

We see here that the square bracket access notation works as usual for a list of mixed
types, which shouldn’t come as a surprise. We also see that trying to access a list index
outside the defined range raises an error if we try to access an element that’s out of
range.

Another convenient feature of Python bracket notation is supporting negative
indices, which count from the end of the list:

>>> a[-2]
42

1. This particular xkcd strip takes its name from renowned computer scientist Donald Knuth (pronounced
“kuh-NOOTH”), author of The Art of Computer Programming and creator of the TEX typesetting system used
to prepare many technical documents, including this one.

https://en.wikipedia.org/wiki/0th
https://xkcd.com/
https://m.xkcd.com/163/
https://en.wikipedia.org/wiki/Donald_knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

3.2 List Access 73

Among other things, negative indices give us a compact way to select the last
element in a list. Because len() (Section 2.4) works on lists as well as strings, we
could do it directly by subtracting 1 from the length (which we have to do because
lists are zero-offset):

>>> a[len(a) - 1]
True

But it’s even easier like this:

>>> a[-1]
True

A final common case is where we want to access the final element and remove it at
the same time. We’ll cover the method for doing this in Section 3.4.3.

By the way, starting in Listing 3.4, we used a literal square-bracket syntax to define
lists by hand. This notation is so natural that you probably didn’t even notice it, and
indeed it’s the same format the REPL uses when printing out lists.

We can use this same notation to define the empty list [], which just evaluates to
itself:

>>> []
[]

You may recall from Section 2.4.2 that empty or nonexistent things like "", 0, and
None are False in a boolean context. This pattern holds for the empty list as well:

>>> bool([])
False

3.2.1 Exercises

1. We’ve seen that list(str) returns a list of the characters in a string. How can we
make a list consisting of the numbers in the range 0–4? Hint: Recall the range()
function first encountered in Listing 2.24.

2. Show that you can create a list of numbers in the range 17–41 using list() with
range(17, 42).

74 Chapter 3: Lists

Figure 3.1: Python is unusually good at slicing.

3.3 List Slicing
In addition to supporting the bracket notation described in Section 3.2, Python excels
at a technique known as list slicing (Figure 3.12) for accessing multiple elements at a
time. In anticipation of learning to sort in Section 3.4.2, let’s redefine our list a to have
purely numerical elements:

>>> a = [42, 8, 17, 99]
[42, 8, 17, 99]

One way to slice a list is to use the slice() function and provide two arguments
corresponding to the index number where the slice should start and where it should
end. For example, slice(2, 4) lets us pull out the elements with index 2 and 3,
ending at 4:

>>> a[slice(2, 4)] # Not Pythonic
[17, 99]

This can be a little tricky to understand since there is no element with index 4 due
to lists being zero-offset. We can understand this better by imagining a pointer that

2. Image courtesy of Artjazz/Shutterstock.

3.3 List Slicing 75

moves one element to the right as it creates the slice; it starts at 2, selects element 2 as
it moves to 3, and then selects element 3 as it moves to 4.

The explicit slice() notation is rarely used in real Python code; far more
common is the equivalent notation using colons, like this:

>>> a[2:4] # Pythonic
[17, 99]

Note that the index convention is the same: To select elements with indices 2 and 3,
we include a final range that is one more than the value of the final index in the slice
(in this case, 3 + 1 = 4).

In the case of our current list, 4 is the length of the list, so in effect we are slicing
from the element with index 2 to the end. This is such a common task that Python
has a special notation for it—we just leave the second index off entirely:

>>> a[2:] # Pythonic
[17, 99]

As you might guess, the same basic notation works to slice from the front of the list:

>>> a[:2] # Pythonic
[42, 8]

The general pattern here is that a[start:end] selects from index start to index
end-1, where either can be omitted to select from the start or to the end. Python also
supports an extension to this syntax taking the form a[start:-end:step], which is
the same as regular list slicing except taken step at a time. For example, we can select
numbers from a range 3 at a time as follows:

>>> numbers = list(range(20))
>>> numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
>>> numbers[0:20:3] # Not Pythonic
[0, 3, 6, 9, 12, 15, 18]

Or we could start at, say, index 5 and end at index 17:

>>> numbers[5:17:3]
[5, 8, 11, 14]

76 Chapter 3: Lists

As with regular slicing, we can omit values if we want the start or the end:

>>> numbers[:10:3] # Goes from the beginning to 10-1
[0, 3, 6, 9]
>>> numbers[5::3] # Goes from 5 to the end
[5, 8, 11, 14, 17]

We can replicate the result of numbers[0:20:3] more Pythonically by omitting
both 0 and 20:

>>> numbers[::3] # Pythonic
[0, 3, 6, 9, 12, 15, 18]

We can even go backward using a negative step:

>>> numbers[::-3]
[19, 16, 13, 10, 7, 4, 1]

This suggests a (perhaps too clever) way to reverse a list, which is to use a step of -1.
Applying this idea to our original list looks like this:

>>> a[::-1]
[99, 17, 8, 42]

You may encounter this [::-1] construction in real-life Python code, so it’s important
to know what it does, but there are more convenient and readable ways to reverse a
list, as discussed in Section 3.4.2.

3.3.1 Exercises

1. Define a list with the numbers 0 through 9. Use slicing and len() to select the
third element through the third-to-last. Accomplish the same task using a negative
index.

2. Show that strings also support slicing by selecting just "bat" from the string "ant
bat cat". (You might have to experiment a little to get the indices just right.)

3.4 More List Techniques 77

3.4 More List Techniques
There are many other things we can do with lists other than accessing and selecting
elements. In this section we’ll discuss element inclusion, sorting and reversing, and
appending and popping.

3.4.1 Element Inclusion

As with strings (Section 2.5), lists support testing for element inclusion using the in
keyword:

>>> a = [42, 8, 17, 99]
[42, 8, 17, 99]
>>> 42 in a
True
>>> "foo" in a
False

3.4.2 Sorting and Reversing

Python has powerful facilities for sorting and reversing lists. They come in two general
types: in-place and generators. Let’s take a look at some examples to see what this means.

We’ll start by sorting a list in place—an excellent trick that in ye olden days of C
often required a custom implementation.3 In Python, we just call sort():

>>> a = [42, 8, 17, 99]
>>> a.sort()
>>> a # mutated list
[8, 17, 42, 99]

As you might expect for a list of integers, a.sort() sorts the list numerically (unlike,
e.g., JavaScript, which confusingly sorts them “alphabetically”, so that 17 comes
before 8). We also see that (unlike (https://www.learnenough.com/ruby-tutorial/
arrays#sec-more_array_methods) Ruby but like (https://www.learnenough.com/
javascript-tutorial/arrays#sec-more_array_methods) JavaScript) sorting a list changes,
or mutates, the list itself. (We’ll see in a moment that it returns None.)

3. This isn’t entirely fair to C: Python itself is written in C, so sort() actually is just such a “custom
implementation”!

https://en.wiktionary.org/wiki/ye#Etymology_2
https://en.wiktionary.org/wiki/olden#English
hhttps://www.learnenough.com/r/learn_enough_javascript/arrays/more_array_methods#sec-more_array_methods
https://www.learnenough.com/ruby-tutorial/arrays#sec-more_array_methods
https://www.learnenough.com/ruby-tutorial/arrays#sec-more_array_methods
https://www.learnenough.com/javascript-tutorial/arrays#sec-more_array_methods
https://www.learnenough.com/javascript-tutorial/arrays#sec-more_array_methods

78 Chapter 3: Lists

We can use reverse() to reverse the elements in a list:

>>> a.reverse()
>>> a
[99, 42, 17, 8]

As with sort(), note that reverse() mutates the list itself.
Such mutating methods can help demonstrate a common gotcha about Python

lists involving list assignment. Suppose we have a list a1 and want a copy called a2
(Listing 3.5).

Listing 3.5: A dangerous assignment.

>>> a1 = [42, 8, 17, 99]
>>> a2 = a1 # Dangerous!

The assignment in the second line is dangerous because a2 points to the same location
in the computer’s memory as a1, which means that if we mutate a1 it changes a2 as
well:

>>> a1.sort()
>>> a1
[8, 17, 42, 99]
>>> a2
[8, 17, 42, 99]

We see here that a2 has changed even though we didn’t do anything to it directly.
(You can avoid this using the list() function or the copy() method, as in a2 =
list(a1) or a2 = a1.copy().)

Python in-place methods are highly efficient, but usually more convenient are the
related sorted() and reversed() functions. For example, we can obtain a sorted
list as follows:

>>> a = [42, 8, 17, 99]
>>> sorted(a) # Pythonic
[8, 17, 42, 99]
>>> a
[42, 8, 17, 99]

Here, unlike the case of sort(), the original list is unchanged.

3.4 More List Techniques 79

Similarly, we can (almost) obtain a reversed list using reversed():

>>> a
[42, 8, 17, 99]
>>> reversed(a)
<list_reverseiterator object at 0x109561910>

Unfortunately, the parallel structure with sorted() is slightly broken, at least as
of this writing. Rather than returning a list, the reversed() function returns an
iterator, which is a special type of Python object designed to be (you guessed it) iter-
ated over. This isn’t usually a problem because we’ll usually be joining or looping over
the reversed elements, in which case the generator will serve just fine (Section 5.3),
but when we really need a list we can call the list() function directly (Section 3.1):

>>> list(reversed(a))
[99, 42, 17, 8]

As noted, this minor wart rarely makes a difference since the generator’s behavior is
effectively identical to the list version when being iterated over.4

Comparison
Lists support the same basic equality and inequality comparisons as strings (Chapter 2):

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a == b
True
>>> a != b
False

Python also supports is, which tests whether two variables represent the same object.
Because a and b, although they contain the same elements, are not the same object in
Python’s memory system, == and is return different results in this case:

>>> a == b
True

4. It’s actually even better in certain ways since the generator doesn’t require creating the entire list in memory.
See Section 5.3 for more information.

http://www.catb.org/jargon/html/W/wart.html

80 Chapter 3: Lists

>>> a is b
False

In contrast, the lists a1 and a2 from Listing 3.5 are equal using both comparisons:

>>> a1 == a2
True
>>> a1 is a2
True

The second True values follows because a1 and a2 truly are the exact same object. This
behavior is effectively the same as the === syntax supported by many other languages,
such as Ruby and JavaScript.

According to the PEP 8 style guide, is should always be used when comparing
with None. For example, we can use is to confirm that the list methods for reversing
and sorting in place return None:

>>> a.reverse() == None # Not Pythonic
True
>>> a.sort() == None # Not Pythonic
True
>>> a.reverse() is None # Pythonic
True
>>> a.sort() is None # Pythonic
True

3.4.3 Appending and Popping

One useful pair of list methods is append() and pop()—append() lets us append an
element to the end of a list, while pop() removes it and returns the value:

>>> a = sorted([42, 8, 17, 99])
>>> a
[8, 17, 42, 99]
>>> a.append(6) # Appending to a list
>>> a
[8, 17, 42, 99, 6]
>>> a.append("foo")
>>> a
[8, 17, 42, 99, 6, 'foo']
>>> a.pop() # Popping an element off
'foo'

https://peps.python.org/pep-0008/#programming-recommendations

3.4 More List Techniques 81

>>> a
[8, 17, 42, 99, 6]
>>> a.pop()
6
>>> a.pop()
99
>>> a
[8, 17, 42]

Note that pop() returns the value of the final element (while removing it as a side
effect), while append() returns None (as indicated by nothing being printed after an
append).

We are now in a position to appreciate the comment made in Section 3.2 about
obtaining the last element of the list, as long as we don’t mind mutating it:

>>> the_answer_to_life_the_universe_and_everything = a.pop()
>>> the_answer_to_life_the_universe_and_everything
42

3.4.4 Undoing a Split

A final example of a list method, one that brings us full circle from Section 3.1, is
join(). Just as split() splits a string into list elements, join() joins list elements
into a string (Listing 3.6).

Listing 3.6: Different ways to join.

>>> a = ["ant", "bat", "cat", "42"]
['ant', 'bat', 'cat', '42']
>>> "".join(a) # Join on empty space.
'antbatcat42'
>>> ", ".join(a) # Join on comma-space.
'ant, bat, cat, 42'
>>> " -- ".join(a) # Join on double dashes.
'ant -- bat -- cat -- 42'

Note that in all cases shown in Listing 3.6 the lists we’re joining consist wholly of
strings. What if we wanted a list containing, say, the number 42 rather than the string
"42"? It doesn’t work by default:

82 Chapter 3: Lists

>>> a = ["ant", "bat", "cat", 42]
>>> ", ".join(a)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: sequence item 3: expected str instance, int found

I mention this mainly because many languages, including JavaScript and Ruby, auto-
matically convert objects to strings when joining, so this could be considered a minor
gotcha in Python for people familiar with such languages.

One solution in Python is to use the str() function, which we’ll see again in
Section 4.1.2:

>>> str(42)
'42'

Then to complete the join() we can use a generator expression that returns str(e) for
each element in the list:

>>> ", ".join(str(e) for e in a)
'ant, bat, cat, 42'

This somewhat advanced construction is related to comprehensions, which we will cover
more in Chapter 6.

3.4.5 Exercises

1. To sort a list in reverse order, it’s possible to sort and then reverse, but the
combined operation is so useful that both sort() and sorted() support a
keyword argument (Section 5.1.2) that does it automatically. Confirm that
a.sort(reverse=True) and sorted(a, reverse=True) both have the effect
of sorting and reversing at the same time.

2. Using the list documentation (https://docs.python.org/3/tutorial/datastructures
.html), figure out how to insert an element at the beginning of a list.

3. Combine the two lists shown in Listing 3.7 into a single list using the extend()
method. Does extend() mutate a1? Does it mutate a2?

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html

3.5 List Iteration 83

Listing 3.7: Extending lists.

>>> a1 = ["a", "b", "c"]
>>> a2 = [1, 2, 3]
>>> FILL_IN
>>> a1
['a', 'b', 'c', 1, 2, 3]

3.5 List Iteration
One of the most common tasks with lists is iterating through their elements and per-
forming an operation with each one. This might sound familiar, since we solved the
exact same problem with strings in Section 2.6, and indeed the solution is virtually the
same. All we need to do is adapt the for loop from Listing 2.27 to lists, i.e., replace
soliloquy with a, as shown in Listing 3.8.

Listing 3.8: Combining list access and a for loop.

>>> a = ["ant", "bat", "cat", 42]
>>> for i in range(len(a)): # Not Pythonic
... print(a[i])
...
ant
bat
cat
42

That’s convenient, but it’s not the best way to iterate through lists, and Mike Vanier
still wouldn’t be happy (Figure 3.25).

Luckily, looping the Right WayTM is easier than it is in most other lan-
guages, so we can actually cover it here (unlike in, e.g., Learn Enough JavaScript
to Be Dangerous (https://www.learnenough.com/javascript), when we had to wait
until Chapter 5 (https://www.learnenough.com/javascript-tutorial/functions#sec-
iteration_for_each)). The trick is knowing that, as with strings, the default behavior
of for...in is to return each element in sequence, as shown in Listing 3.9.

5. Image © Mike Vanier.

https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript-tutorial/functions#sec-iteration_for_each
https://www.learnenough.com/javascript-tutorial/functions#sec-iteration_for_each

84 Chapter 3: Lists

Figure 3.2: Mike Vanier is still annoyed by typing out for loops.

Figure 3.3: Avoiding range(len()) has made Mike Vanier a little happier.

Listing 3.9: Using for to iterate over a list the Right Way™.

>>> for e in a: # Pythonic
... print(e)
...
ant
bat
cat
42

Using this style of for loop, we can iterate directly through the elements in a list,
thereby avoiding having to type out Mike Vanier’s bête noire, “for (i = 0; i < N; i++)”.
The result is cleaner code and a happier programmer (Figure 3.36).

By the way, we can use enumerate() if for some reason we need the index itself,
as shown in Listing 3.10. (If you solved the exercise corresponding to Listing 2.29,
the code in Listing 3.10 might look familiar.)

6. Image © Mike Vanier.

https://en.wiktionary.org/wiki/b%C3%AAte_noire

3.5 List Iteration 85

Listing 3.10: Printing list elements with index.

>>> for i, e in enumerate(a): # Pythonic
... print(f"a[{i}] = {e}")
...
a[0] = ant
a[1] = bat
a[2] = cat
a[3] = 42

Note the final results in Listing 3.10 aren’t quite right because we really should show,
say, the first element as "ant" instead of as ant. Fixing this minor blemish is left as an
exercise.

Finally, it’s possible to break out of a loop early using the break keyword
(Listing 3.11).

Listing 3.11: Using break to interrupt a for loop.

>>> for i, e in enumerate(a):
... if e == "cat":
... print(f"Found the cat at index {i}!")
... break
... else:
... print(f"a[{i}] = {e}")
...
a[0] = ant
a[1] = bat
Found the cat at index 2!
>>>

In this case the execution of the loop stops at index 2 and doesn’t proceed to any
subsequent indices. We’ll see a similar construction using the return keyword in
Section 5.1.

3.5.1 Exercises

1. Use reversed() to print out a list’s elements in reverse order.

2. We saw in Listing 3.10 that interpolating the values of the list into the string
led to printing out, say, ant instead of "ant". We could put the quote marks
in by hand, but then that would print 42 out as "42", which is also wrong.

86 Chapter 3: Lists

Solve this conundrum using the repr() function (Section 2.3) to interpolate a
representation of each list element, as shown in Listing 3.12.

Listing 3.12: A refinement to Listing 3.10.

>>> for i, e in enumerate(a):
... print(f"a[{i}] = {repr(e)}")
...
???

3.6 Tuples and Sets
In addition to lists, Python also supports tuples, which are basically lists that can’t be
changed (i.e., tuples are immutable). By the way, I generally say “toople”, though you
will also hear “tyoople” and “tupple”.

We can create literal tuples in much the same way that we created literal lists. The
only difference is that tuples use parentheses instead of square brackets:

>>> t = ("fox", "dog", "eel")
>>> t
('fox', 'dog', 'eel')
>>> for e in t:
... print(e)
...
fox
dog
eel

We see here that iterating over a tuple uses the same for...in syntax used for lists
(Listing 3.9).

Because tuples are immutable, trying to change them raises an error:

>>> t.append("goat")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'append'
>>> t.sort()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute 'sort'

3.6 Tuples and Sets 87

Otherwise, tuples support many of the same operations as lists, such as slicing or
non-mutating sorting:

>>> t[1:]
('dog', 'eel')
>>> sorted(t)
['dog', 'eel', 'fox']

Note in the second case that sorted() can take a tuple as an argument but that it
returns a list.

By the way, we can also leave off parentheses when defining tuples:

>>> u = "fox", "dog", "eel"
>>> u
('fox', 'dog', 'eel')
>>> t == u
True

I think this notation is potentially confusing and generally prefer to use parentheses
when defining tuples, but you should know about it in case you see it in other people’s
code. The main exceptions are when simply displaying several variables in the REPL
or when doing assignment via so-called tuple unpacking, which lets you make multiple
assignments at once:

>>> a, b, c = t # Very Pythonic; works for lists, too
>>> a
'fox'
>>> a, b, c # Tuple to show the variable values

Finally, it’s worth noting that defining a tuple of one element requires a trailing
comma because an object in parentheses alone is just the object itself:

>>> ("foo")
'foo'
>>> ("foo",)
('foo',)

Python also has native support for sets, which correspond closely to the mathe-
matical definition and can be thought of as lists of elements where repeat values are
ignored and the order doesn’t matter. Sets can be initialized literally using curly braces
or by passing a list or a tuple (or in fact any iterable) to the set() function:

https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://www.pythonlikeyoumeanit.com/Module2_EssentialsOfPython/Iterables.html

88 Chapter 3: Lists

>>> s1 = {1, 2, 3, 4}
>>> s2 = {3, 1, 4, 2}
>>> s3 = set([1, 2, 2, 3, 4, 4])
>>> s1, s2, s3
({1, 2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4})

Set equality can be tested with == as usual:

>>> s1 == s2
True
>>> s2 == s3
True
>>> s1 == s3
True
>>> {1, 2, 3} == {3, 1, 2}
True

Sets can also mix types (and can be initialized with a tuple instead of a list):

>>> set(("ant", "bat", "cat", 1, 1, "cat"))
{'bat', 'ant', 'cat'}

Note that in all cases duplicate values are ignored.
Python sets support many common set operations, such as union and intersection:

>>> s1 = {1, 2, "ant", "bat"}
>>> s2 = {2, 3, "bat", "cat"}
>>> s1 | s2 # Set union
{'bat', 1, 2, 'ant', 3, 'cat'}
>>> s1 & s2 # Set intersection
{'bat', 2}

See “Sets in Python” (https://realpython.com/python-sets/) for more information.
Because they are unordered, set elements can’t be selected directly (how would

Python know which set element to pick?) but can be tested for inclusion or iterated
over:

>>> s = {1, 2, 3, 4}
>>> s[0]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'set' object is not subscriptable

https://en.wikipedia.org/wiki/Algebra_of_sets
https://realpython.com/python-sets/

3.6 Tuples and Sets 89

>>> 3 in s
True
>>> for e in s:
... print(f"{e} is an element of the set")
...
1 is an element of the set
2 is an element of the set
3 is an element of the set
4 is an element of the set

Finally, it’s worth noting that, like the empty list, the empty tuple and the empty
set are both False in a boolean context:

>>> bool(())
False
>>> bool(set())
False

Note here that, perhaps counterintuitively, we can’t use {} for the empty set because
that combination is reserved for the empty dictionary, which we’ll discuss in Sec-
tion 4.4. We also don’t have to include a trailing comma in (), which is the empty
tuple as required.

We can confirm these statements using the type() function:

>>> type(())
<class 'tuple'>
>>> type({})
<class 'dict'>
>>> type(set())
<class 'set'>

Here we see that (), {}, and set() are of class tuple, dictionary, and set, respectively.
(We’ll discuss more about what a class is in Chapter 7.)

3.6.1 Exercises

1. Confirm the existence of a tuple() function by converting sorted(t) from a
list to a tuple.

2. Create a set with numbers in the range 0–4 by combining set() with range().
(Recall the use of range() in Listing 2.24.) Confirm that the pop() method
mentioned in Section 3.4.3 allows you to remove one element at a time.

This page intentionally left blank

CHAPTER 4
Other Native Objects

Now that we’ve taken a look at strings and lists (plus tuples and sets), we’ll continue
with a tour of some other important Python features and objects: math, dates, regular
expressions, and dictionaries.

4.1 Math
Like most programming languages, Python supports a large number of mathematical
operations:

$ source venv/bin/activate
(venv) $ python3
>>> 1 + 1
2
>>> 2 - 3
-1
>>> 2 * 3
6
>>> 10/5
2.0

Note that division gives you the answer that you’d expect:

>>> 10/4
2.5
>>> 2/3
0.6666666666666666

We see here that Python uses floating-point division by default. This stands in contrast
to some other languages, such as C and Ruby, in which / is integer division that returns

91

https://en.wikipedia.org/wiki/Floating-point_arithmetic

92 Chapter 4: Other Native Objects

the number of times the denominator goes into the numerator. In other words, 10/4
in a language like C is 2 instead of 2.5; to perform the same operation in Python, we
can use two slashes instead of one:

>>> 10//4 # Integer division
2
>>> 2//3
0

Because of its great numerical capabilities, many programmers, including me, find
it convenient to fire up a Python interpreter and use it as a simple calculator when
the need arises. It’s not fancy, but it’s quick and relatively powerful, and the ability to
define variables often comes in handy as well.

4.1.1 More Advanced Operations

Python supports more advanced mathematical operations via the math object (which
is technically a module, a special kind of object we’ll learn more about starting in
Chapter 7). The math module has utilities for things like mathematical constants,
roots, and trigonometric functions:

>>> import math
>>> math.pi
3.141592653589793
>>> math.sqrt(2)
1.4142135623730951
>>> math.cos(0)
1.0
>>> math.cos(2*math.pi)
1.0

We see here that the way to use the math module is to load it using import math and
then access the module contents using math. (the module name followed by a dot).
This is a general pattern with Python modules; the use of the math. prefix is known
as a namespace.

There is one gotcha for those coming from high school (and even college) text-
books that use ln x for the natural logarithm (base e). Like most other programming
languages, Python uses log x instead:1

1. It is unclear why introductory math textbooks settled on using ln x for the natural logarithm when
mathematicians generally write it as log x, and even when they write it as ln x they still often pronounce
it as “log x”.

https://docs.python.org/3/library/math.html
https://en.wiktionary.org/wiki/gotcha#Etymology_2
https://en.wikipedia.org/wiki/Natural_logarithm

4.1 Math 93

>>> math.log(math.e)
1
>>> math.log(10)
2.302585092994046

Mathematicians typically indicate base-ten logarithms using log10, and Python
follows suit with log10:

>>> math.log10(10)
1.0
>>> math.log10(1000000)
6.0
>>> math.log10(1_000_000)
6.0
>>> math.log10(math.e)
0.4342944819032518

Note here that we can use underscores in a number as a separator to make it easier to
read—thus, 1000000 and 1_000_000 both represent the number one million.

Finally, Python also supports exponentiation via the ** operator:

>>> 2**3
8
>>> math.e**100
2.6881171418161212e+43

The final result here, using a number followed by e+43, is Python’s way of expressing
the scientific notation for e100 ≈ 2.6881171418161212 × 1043.

The math documentation (https://docs.python.org/3/library/math.html) in-
cludes a more comprehensive list of further operations.

4.1.2 Math to String

We discussed in Chapter 3 how to get from strings to arrays (and vice versa) using
split() and join(). Similarly, Python allows us to convert between numbers and
strings.

Probably the most common way to convert from a number to a string is using the
str() function, which we saw briefly before in Section 3.4.4. For example, Listing 4.1
shows how to use str() to convert the circle constant tau (Box 4.1 and Figure 4.1)
to a string.

https://docs.python.org/3/library/math.html

94 Chapter 4: Other Native Objects

Listing 4.1: Using tau for the circle constant.

>>> math.tau
6.283185307179586
>>> str(math.tau)
'6.283185307179586'

Box 4.1: The rise of tau

In the corresponding math sections of Learn Enough JavaScript to Be Dangerous
(https://www.learnenough.com/javascript) and Learn Enough Ruby to Be Dangerous
(https://www.learnenough.com/ruby), I had to add the definition of tau by hand,
but in Listing 4.1 note that math.tau is part of Python’s official math library.

This is a point of particular satisfaction for me, since the use of tau (τ) to
represent the circle constant C/r = 6.283185 . . . was proposed in a math essay
I published in 2010 called The Tau Manifesto (https://tauday.com/tau-manifesto)
(which also established the math holiday Tau Day (https://tauday.com/)). Up until
that point, the constant C/r had no commonly used name (other than “2π”), but
τ has seen increasing adoption over the years, including support in Google’s online
calculator, Khan Academy, and computer languages such as Microsoft .NET, Julia,
and Rust (and of course Python!) (https://tauday.com/state-of-the-tau).

Although adding tau to Python was not without controversy, ultimately it was
included in Python 3.6 (and later) as an Easter egg for the kinds of math, science,
and computer nerds who enjoy that sort of thing. I hope you might be one of them!

The str() function also works on bare numbers:

>>> str(6.283185307179586)
'6.283185307179586'

To go the other direction, we can use the int() (“integer”) and float() func-
tions:

>>> int("6")
6
>>> float("6.283185307179586")
6.283185307179586

https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://docs.python.org/3/library/math.html#math.tau
https://tauday.com/tau-manifesto
https://tauday.com/
https://tauday.com/state-of-the-tau
https://www.google.com/search?q=tau*1
https://www.google.com/search?q=tau*1
https://blog.khanacademy.org/happy-tau-day/
https://tauday.com/state-of-the-tau
https://bugs.python.org/issue12345
https://en.wikipedia.org/wiki/Easter_egg_(media)

4.1 Math 95

Figure 4.1: Some special angles in terms of τ = C/r .

Be careful not to use int() on a string that looks like a float(); in many lan-
guages, this returns the integer part of the string (so that "6.28" and "6.98" both
yield 6), but in Python it raises an error:

>>> int("6.28")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '6.28'

It is valid to call int() on a float, though, which has the expected result:

>>> int(6.28)
6
>>> int(6.9)
6

This means we can convert a string to an integer by calling the two functions in
sequence:

96 Chapter 4: Other Native Objects

>>> int(float("6.28"))
6

By the way, there’s a useful trick to retrieve the result of the previously executed
command in the REPL using an underscore _, which represents the value of the
previously executed command:

>>> float("6.28")
6.28
>>> int(_)
6

Finally, it’s sometimes convenient to be able to leave off the module name if you’re
doing lots of calculations with a constant or function. In such cases, you can use the
from <module> import <things> syntax (Listing 4.2).

Listing 4.2: Importing specific items from a module.

>>> from math import sin, cos, tau # Pythonic

This lets us use sin(), cos(), and tau without the math. namespace prefix:

>>> cos(tau)
1.0
>>> sin(tau/3)
0.8660254037844387
>>> cos(tau/3)
-0.49999999999999983
>>> sin(tau/3)**2 + cos(tau/3)**2
1.0

Note that cos(τ/3), which is exactly equal to −1
2 , is displayed as

-0.49999999999999983

due to numerical roundoff error. (Also, there’s nothing special in the last line about
τ/3—sin2 θ + cos2 θ = 1 for any angle θ .)

Note: You will sometimes see people import all the contents of a module as
follows:

4.2 Times and Datetimes 97

>>> from math import * # Dangerous and extremely unPythonic

This practice is strongly discouraged because it carries a high risk of collisions, where
two functions or variables have the same name. Avoiding collisions is part of why, in
the words of Tim Peters’ “The Zen of Python” (Listing 1.6), “Namespaces are one
honking great idea—let’s do more of those!”

4.1.3 Exercises

1. What happens when you call float() on the string "1.24e6"? What about if
you call str() on the result?

2. Show that int(6.28) and int(6.98) both equal 6. This is the same behavior as
the floor function (written in mathematics as ⌊x⌋). Show that Python’s mathmodule
has a floor() function with the same effect as int().

4.2 Times and Datetimes
Other frequently used built-in objects are the closely related time and datetime
modules. For example, we can get the current time using the time() method:

>>> import time
>>> time.time()
1661191145.946213

This returns the number of seconds since the epoch, defined as January 1, 1970.
We can get a more conveniently formatted string using the ctime() method (the
documentation doesn’t say, but this probably stands for “convert time”):

>>> time.ctime()
'Mon Aug 22 11:00:32 2022'

Python puts a lot of other useful methods in the datetime module. As with other
Python objects, datetime objects include a variety of methods:

>>> import datetime
>>> now = datetime.datetime.now()
>>> now.year

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Unix_time
https://docs.python.org/3/library/time.html#time.ctime
https://docs.python.org/3/library/datetime.html

98 Chapter 4: Other Native Objects

2022
>>> now.month
8
>>> now.day
22
>>> now.hour
16

Because many useful methods are defined on the separate datetime object within
the datetime module, it’s often more convenient to use from to import just that one
object (using the same basic syntax seen in Listing 4.2):

>>> from datetime import datetime
>>> now = datetime.now()
>>> now.year
2022
>>> now.day
22
>>> now.month
8
>>> now.hour
16

This can be a bit confusing, and indeed it’s quite unusual for a module to define an
object with exactly the same name as the module itself.

It’s also possible to initialize datetime objects with specific dates and times, such
as the first Moon landing (Figure 4.22):

>>> moon_landing = datetime(1969, 7, 20, 20, 17, 40)
1969-07-20 20:17:40 -0700
>>> moon_landing.day
20

By default, datetime uses the local time zone, but this introduces weird location
dependence to the operations, so it’s a good practice to use UTC instead:3

2. Image courtesy of Castleski/Shutterstock.

3. For most practical purposes, Coordinated Universal Time (UTC) is the same as Greenwich Mean Time.
But why call it UTC? From the NIST Time and Frequency FAQ: Q: Why is UTC used as the acronym
for Coordinated Universal Time instead of CUT? A: In 1970 the Coordinated Universal Time system was
devised by an international advisory group of technical experts within the International Telecommunication
Union (ITU). The ITU felt it was best to designate a single abbreviation for use in all languages in order to
minimize confusion. Since unanimous agreement could not be achieved on using either the English word
order, CUT, or the French word order, TUC, the acronym UTC was chosen as a compromise.

https://en.wikipedia.org/wiki/Apollo_11
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://en.wikipedia.org/wiki/Greenwich_Mean_Time
https://www.nist.gov/pml/time-and-frequency-division/nist-time-frequently-asked-questions-faq#cut

4.2 Times and Datetimes 99

Figure 4.2: Buzz Aldrin and Neil Armstrong somehow got to the Moon (and back!)
without Python.

>>> from datetime import timezone
>>> now = datetime.now(timezone.utc)
>>> print(now)
2022-08-22 18:28:03.943097+00:00

To make a datetime object for the Moon landing, we need to pass the time zone
as a keyword argument (first seen in Section 2.3 and discussed further in Section 5.1.2)
using tzinfo (short for “time zone information”):

>>> moon_landing = datetime(1969, 7, 20, 20, 17, 40, tzinfo=timezone.utc)
>>> print(moon_landing)
1969-07-20 20:17:40+00:00

Finally, datetime objects can be subtracted from each other:

>>> print(now - moon_landing)
19390 days, 22:15:36.779053

100 Chapter 4: Other Native Objects

The result here is the number of days, hours, minutes, and seconds since the day and
time of the Moon landing. (Your results, of course, will vary, because time marches
on, and your value for datetime.now will differ.)

You may have noticed that the month and day are returned as unit-offset values,
which differs from the zero-offset indexing used for lists (Section 3.2). For example,
in the eighth month (August), the return value of now.month() is 8 rather than 7 (as
it would be if months were being treated like indices of a zero-offset list). There is
one important value that is returned as a zero-offset index, though:

>>> moon_landing.weekday()
6

Here weekday returns the index of the weekday, and because it’s zero-offset the 6
index indicates that the Moon landing happened on the seventh day of the week.

We have to be careful here, because in many places (including the United States)
day 0 is Sunday, and indeed some programming languages (such as JavaScript and
Ruby) follow this convention. But the official international standard is that Monday
is the first day, and Python follows this convention instead.

As a result, we can get the name of the day of the week by making a list of strings
for the days of the week (assigned to an ALL CAPS identifier, a common Python
convention indicating a constant), and then using the return value of weekday as an
index in the list with the square bracket notation (Section 3.1):

>>> DAYNAMES = ["Monday", "Tuesday", "Wednesday",
... "Thursday", "Friday", "Saturday", "Sunday"]
>>> DAYNAMES[moon_landing.weekday()]
'Sunday'
>>> DAYNAMES[datetime.now().weekday()]
'Monday'

(These day names are actually available as part of the calendar module via
calendar.day_name. You just have to run import calendar to load the module.
See Section 4.2.1 for an example.) Your results for the last line will vary, of course,
unless you happen to be reading this on a Monday.

As a final exercise, let’s update our Flask hello app from Listing 1.11 with a greeting
including the day of the week. The code appears in Listing 4.3, with the result as
shown in Figure 4.3. (Refer to Section 1.5 for the commands to run the Flask app.)
Note that Listing 4.3 follows the convention of importing system libraries first (e.g.,
datetime), followed by third-party libraries (e.g., flask), separated by newlines and

https://www.timeanddate.com/calendar/days/monday.html
https://www.timeanddate.com/calendar/days/monday.html
https://docs.python.org/3/library/calendar.html
https://peps.python.org/pep-0008/#imports

4.2 Times and Datetimes 101

followed by two newlines. Fixing the unPythonic location of DAYNAMES in Listing 4.3
is left as an exercise (Section 4.2.1).

Listing 4.3: Adding a greeting customized to the day of the week.
hello_app.py

from datetime import datetime

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello_world():

UnPythonic location

Figure 4.3: A greeting customized just for today.

102 Chapter 4: Other Native Objects

DAYNAMES = ["Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday"]

dayname = DAYNAMES[datetime.now().weekday()]
return f"<p>Hello, world! Happy {dayname}.</p>"

4.2.1 Exercises

1. Use Python to calculate how many seconds after the Moon landing you were
born. (Or maybe you were even born before the Moon landing—in which case,
lucky you! I hope you got to watch it on TV.)

2. Show that Listing 4.3 works even if you pull DAYNAMES out of the hello_world
function, as shown in Listing 4.4. (This is the preferred location for constants
in general—under library imports and separated from the rest of the file by two
newlines.) Then use the calendar module to eliminate the constant entirely
(Listing 4.5).

Listing 4.4: Pulling DAYNAMES out of the function.
hello_app.py

from datetime import datetime

from flask import Flask

DAYNAMES = ["Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday"]

app = Flask(__name__)

@app.route("/")
def hello_world():

dayname = DAYNAMES[datetime.now().weekday()]
return f"<p>Hello, world! Happy {dayname}.</p>"

Listing 4.5: Using the built-in day names.
hello_app.py

from datetime import datetime
import calendar

4.3 Regular Expressions 103

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello_world():

dayname = calendar.day_name[datetime.now().weekday()]
return f"<p>Hello, world! Happy {dayname}.</p>"

4.3 Regular Expressions
Python has full support for regular expressions, often called regexes or regexps for
short, which are a powerful mini-language for matching patterns in text. A full
mastery of regular expressions is beyond the scope of this book (and perhaps
beyond the scope of human ability), but the good news is that there are many
resources available for learning about them incrementally. (Some such resources
are mentioned in “Grepping” (https://www.learnenough.com/command-line-
tutorial/inspecting_files#sec-grepping) in Learn Enough Command Line to Be Dangerous
(https://www.learnenough.com/command-line) and “Global find and replace” in
Learn Enough Text Editor to Be Dangerous (https://www.learnenough.com/text-editor-
tutorial/advanced_text_editing#sec-global_find_and_replace).) The most important
thing to know about is the general idea of regular expressions; you can fill in the
details as you go along.

Regexes are notoriously terse and error-prone; as programmer Jamie Zawinski
famously said:

Some people, when confronted with a problem, think “I know, I’ll use regular expressions.”
Now they have two problems.

Luckily, this situation is greatly ameliorated by web applications like regex101, which
let us build up regexes interactively (Figure 4.4). Moreover, such resources typically
include a quick reference to assist us in finding the code for matching particular
patterns (Figure 4.5).

Note that regex101 includes Python-specific regexes (which you can tell has been
selected in Figure 4.4 due to the Python line having a checkmark next to it). In
practice, languages differ little in their implementation of regular expressions, but it’s
wise to use the correct language-specific settings when available, and always to double-
check when moving a regex to a different language.

https://docs.python.org/3/library/re.html
https://m.xkcd.com/208/
https://m.xkcd.com/208/
https://www.learnenough.com/command-line-tutorial/inspecting_files#sec-grepping
https://www.learnenough.com/command-line-tutorial/inspecting_files#sec-grepping
https://www.learnenough.com/command-line-tutorial/inspecting_files#sec-grepping
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://www.learnenough.com/r/learn_enough_text_editor/advanced_text_editing/editing_projects#sec-global_find_and_replace
https://www.learnenough.com/text-editor
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#sec-global_find_and_replace
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#sec-global_find_and_replace
https://en.wikipedia.org/wiki/Jamie_Zawinski
https://blog.codinghorror.com/regular-expressions-now-you-have-two-problems/
https://regex101.com/

104 Chapter 4: Other Native Objects

Figure 4.4: An online regex builder.

Figure 4.5: A close-up of the regex reference.

https://regex101.com/
https://regex101.com/

4.3 Regular Expressions 105

Figure 4.6: 90210 (Beverly Hills) is one of the most expensive ZIP codes in America.

Let’s take a look at some simple regex matches in Python. A basic regex consists of
a sequence of characters that matches a particular pattern. We can create a new regex
using a string, which is nearly always a raw string (Section 2.2.2) so that it handles spe-
cial characters like backslashes automatically. For example, here’s a regex that matches
standard American ZIP codes (Figure 4.64), consisting of five digits in a row:

>>> zip_code = r"\d{5}"

If you use regular expressions a lot, eventually you’ll memorize many of these rules,
but you can always look them up in a quick reference (Figure 4.5).

Now let’s see how to tell if a string matches a regex. The way to do this in Python
is with the re module, which includes a search method:

>>> import re
>>> re.search(zip_code, "no match")

4. Image courtesy of 4kclips/123RF.

https://en.wikipedia.org/wiki/ZIP_Code
https://pxhere.com/en/photo/1372032

106 Chapter 4: Other Native Objects

Here re.search returned None (which we can infer from the REPL not show-
ing any result), indicating no match. Because None is False in a boolean context
(Section 2.4.2), we can use this result with if:

>>> if re.search(zip_code, "no match"):
... print("It's got a ZIP code!")
... else:
... print("No match!")
...
No match!

Now let’s take a look at a valid match:

>>> re.search(zip_code, "Beverly Hills 90210")
<re.Match object; span=(14, 19), match='90210'>

This result is a somewhat cryptic re.Match object; in practice, its main use is in
boolean contexts as above, like this:

>>> if re.search(zip_code, "Beverly Hills 90210"):
... print("It's got a ZIP code!")
... else:
... print("No match!")
...
It's got a ZIP code!

Another common and instructive regex operation involves creating a list of
all the matches. We’ll start by defining a longer string, one with two ZIP codes
(Figure 4.75):

>>> s = "Beverly Hills 90210 was a '90s TV show set in Los Angeles."
>>> s += " 91125 is another ZIP code in the Los Angeles area."
>>> s
"Beverly Hills 90210 was a '90s TV show set in Los Angeles. 91125 is another
ZIP code in the Los Angeles area."

You should be able to use your technical sophistication (Box 1.2) to infer what the +=
operator does here if you haven’t seen it before (which might involve doing a quick
Google search).

5. Image courtesy of Kitleong/123RF.

https://www.google.com/search?q=python+plus+equals
https://www.google.com/search?q=python+plus+equals

4.3 Regular Expressions 107

Figure 4.7: 91125 is a dedicated ZIP code for the campus of the California Institute of
Technology (Caltech).

To find out whether the string matches the regex, we can use the findall()
method to find a list of matches:

>>> re.findall(zip_code, s)
['90210', '91125']

It’s also easy to use a literal regex directly, such as this findall() to find all multi-letter
words that are in ALL CAPS:

>>> re.findall(r"[A-Z]{2,}", s)
['TV', 'ZIP']

See if you can find the rules in Figure 4.5 used to make the regex above.

4.3.1 Splitting on Regexes

Our final example of regexes combines the power of pattern matching with the split
method we saw in Section 3.1. In that section, we saw how to split on spaces, like
this:

>>> "ant bat cat duck".split(" ")
['ant', 'bat', 'cat', 'duck']

http://www.caltech.edu/

108 Chapter 4: Other Native Objects

We can obtain the same result in a more robust way by splitting on whitespace.
Consulting the quick reference (Figure 4.5), we find that the regex for whitespace is
\s, and the way to indicate “one or more” is with the plus sign +. Thus, we can split
on whitespace as follows:

>>> re.split(r"\s+", "ant bat cat duck")
["ant", "bat", "cat", "duck"]

The reason this is so nice is that now we can get the same result if the strings are
separated by multiple spaces, tabs, newlines, etc.:

>>> re.split(r"\s+", "ant bat\tcat\nduck")
["ant", "bat", "cat", "duck"]

As we saw in Section 3.1, this pattern is so useful that it’s actually the default behav-
ior for split(). When we call split() with zero arguments, Python splits on
whitespace automatically:

>>> "ant bat\tcat\nduck".split()
["ant", "bat", "cat", "duck"]

4.3.2 Exercises

1. Write a regex that matches the extended-format ZIP code consisting of five digits,
a hyphen, and a four-digit extension (such as 10118-0110). Confirm that it works
using re.search() and the caption in Figure 4.8.6

2. Write a regex that splits only on newlines. Such regexes are useful for splitting a
block of text into separate lines. In particular, test your regex by pasting the poem
in Listing 4.6 into the console and using sonnet.split(/your regex/). What
is the length of the resulting list?

Listing 4.6: Some text with newlines.

sonnet = """Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,

6. Image courtesy of Jordi2r/123RF.

4.4 Dictionaries 109

Figure 4.8: ZIP code 10118-0110 (the Empire State Building).

Or bends with the remover to remove.
O no, it is an ever-fixed mark
That looks on tempests and is never shaken
It is the star to every wand'ring bark,
Whose worth's unknown, although his height be taken.
Love's not time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
 If this be error and upon me proved,
 I never writ, nor no man ever loved."""

4.4 Dictionaries
Our final example of a simple Python data type is a dictionary, which in most other
languages is called a hash or an associative array. You can think of dictionaries as being
like lists but with generic labels rather than integers as indices, so instead of a[0] = 0
we could have d["name"] = "Michael". Each element is thus a pair of values: a
label (the key) and an element of any type (the value). These elements are also known

https://en.wikipedia.org/wiki/Empire_State_Building

110 Chapter 4: Other Native Objects

as key–value pairs, much like language dictionaries consist of words (keys) and their
associated definitions (values).

The most familiar choice for key labels is strings (Chapter 2); indeed, this is by far
the most common choice in languages that support associative arrays. We’ll thus focus
on creating dictionaries using string keys. As a simple example, let’s create an object to
store the first and last names of a user, such as we might have in a web application:

>>> user = {} # {} is an empty dictionary.
>>> user["first_name"] = "Michael" # Key "first_name", value "Michael"
>>> user["last_name"] = "Hartl" # Key "last_name", value "Hartl"

As you can see, an empty dictionary is represented by curly braces, which is why we
needed to use set() in Section 3.6 for an empty set. We can also assign values using
the same square bracket syntax as for lists. We can retrieve values in the same way:

>>> user["first_name"] # Element access is like lists
'Michael'
>>> user["last_name"]
'Hartl'
>>> user["nonexistent"]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'nonexistent

Note in the last example that dictionaries raise an error when the key doesn’t exist. This
won’t generally happen when iterating over keys (Section 4.4.1), but in contexts where
you don’t know whether the key exists the get() method is more convenient:

>>> user.get("last_name")
'Hartl'
>>> user.get("nonexistent")
>>> repr(user.get("nonexistent"))
'None'

Here we’ve included a call to repr() just to emphasize that the result of get() is
None when the key is nonexistent since the REPL won’t generally display it.

If we take a look at how dictionaries are represented, we see that they consist of
keys and values separated by colons:

>>> user
{'first_name': 'Michael', 'last_name': 'Hartl'}

4.4 Dictionaries 111

It is possible (and often convenient) to use this syntax to define dictionaries
directly:

>>> moonman = {"first_name": "Buzz", "last_name": "Aldrin"}
>>> moonman
{'first_name': 'Buzz', 'last_name': 'Aldrin'}

Let’s take a look at a bigger dictionary consisting of keys equal to prominent
moonwalkers and values corresponding to the dates of their first moonwalks:

>>> moonwalks = {"Neil Armstrong": 1969,
... "Buzz Aldrin": 1969,
... "Alan Shepard": 1971,
... "Eugene Cernan": 1972,
... "Michael Jackson": 1983}

We can look at the keys and values separately, which (as of Python 3.6 and later) are
stored in order in special-purpose Python objects:

>>> moonwalks.keys()
dict_keys(['Neil Armstrong', 'Buzz Aldrin', 'Alan Shepard',
'Eugene Cernan', 'Michael Jackson'])
>>> moonwalks.values()
dict_values([1969, 1969, 1971, 1972, 1983])

Note that earlier versions of Python didn’t order dictionary elements, so you should
take care when making any assumptions about ordering.

Like a list index, a dictionary key maps to only one value at a time. This means that
we can replace the value corresponding to a key but we can’t have two identical keys.
As a result, it’s sometimes useful to think of dictionary keys as being like an ordered
set, since (like sets) they can’t have repeated elements. Indeed, the special-purpose
keys() object mentioned above, technically known as a view, can be treated like a set
in some contexts; for example, the following code performs a set intersection as in
Section 3.6:

>>> apollo_11 = {"Neil Armstrong", "Buzz Aldrin"}
>>> moonwalks.keys() & apollo_11
{'Neil Armstrong', 'Buzz Aldrin'}

https://docs.python.org/3.8/library/stdtypes.html#dict-views

112 Chapter 4: Other Native Objects

By the way, we can test for the inclusion of a particular dictionary key using the
same in keyword that works for lists (Section 3.4.1):

>>> "Buzz Aldrin" in moonwalks
True

Note here that we can omit the keys() part and just use in with the full dictionary.
We’ll see another example of this convention in Section 4.4.1.

4.4.1 Dictionary Iteration

As with lists, tuples, and sets, one of the most common dictionary tasks is iterating
over the elements. You might be tempted to iterate over the keys as follows:

>>> for key in moonwalks.keys(): # Not Pythonic
... print(f"{key} first performed a moonwalk in {moonwalks[key]}.")
...
Neil Armstrong first performed a moonwalk in 1969
Buzz Aldrin first performed a moonwalk in 1969
Alan Shepard first performed a moonwalk in 1971
Eugene Cernan first performed a moonwalk in 1972
Michael Jackson first performed a moonwalk in 1983

As noted in the comment, this isn’t Pythonic. The reason is that iterating over the
keys is the default:

>>> for key in moonwalks: # Somewhat Pythonic
... print(f"{key} first performed a moonwalk in {moonwalks[key]}.")
...
Neil Armstrong first performed a moonwalk in 1969
Buzz Aldrin first performed a moonwalk in 1969
Alan Shepard first performed a moonwalk in 1971
Eugene Cernan first performed a moonwalk in 1972
Michael Jackson first performed a moonwalk in 1983

This is somewhat Pythonic, but when using both keys and values (as we are here) it’s
even better to iterate over the dictionary’s items():

>>> moonwalks.items()
dict_items([('Neil Armstrong', 1969), ('Buzz Aldrin', 1969), ('Alan
Shepard', 1971), ('Eugene Cernan', 1972), ('Michael Jackson', 1983)])

4.4 Dictionaries 113

This leads to the elegant iteration shown in Listing 4.7.

Listing 4.7: Iterating through a dictionary’s items().

>>> for name, year in moonwalks.items(): # Pythonic
... print(f"{name} first performed a moonwalk in {year}")
...
Neil Armstrong first performed a moonwalk in 1969
Buzz Aldrin first performed a moonwalk in 1969
Alan Shepard first performed a moonwalk in 1971
Eugene Cernan first performed a moonwalk in 1972
Michael Jackson first performed a moonwalk in 1983

Note that we’ve also changed to meaningful names in Listing 4.7, using name, year
in preference to the less specific key, value.

4.4.2 Merging Dictionaries

One common operation is merging dictionaries, where the elements of two dictionaries
are combined into one. For example, consider two dictionaries consisting of academic
subjects with corresponding test scores:

>>> tests1 = {"Math": 75, "Physics": 99}
>>> tests2 = {"History": 77, "English": 93}

It would be nice to be able to create a tests dictionary combining all four subject–
score combinations.

Older versions of Python didn’t natively support merging dictionaries at all, but
Python 3.5 added this ** syntax:

>>> {**tests1, **tests2} # Kind of Pythonic
{'Math': 75, 'Physics': 99, 'History': 77, 'English': 93}

That’s pretty strange-looking syntax if you ask me, and it’s included here mainly
because you might encounter it in other people’s code. Luckily, as of Python 3.9
there’s a great way to merge dictionaries using the pipe operator |:

>>> tests1 | tests2 # Very Pythonic
{'Math': 75, 'Physics': 99, 'History': 77, 'English': 93}

114 Chapter 4: Other Native Objects

When the dictionaries have no overlapping keys, merging them simply involves
combining all key–value pairs. But if the second dictionary does have one or more keys
in common, then its values take precedence. In this case, we can think of updating the
first dictionary with the contents of the second.7 For example, suppose we combine
the tests into a single variable using a merge:

>>> test_scores = tests1 | tests2
{'Math': 75, 'Physics': 99, 'History': 77, 'English': 93}

Now suppose the student is allowed to retake tests for the two lowest scores:

>>> retests = {"Math": 97, "History": 94}

At this point, we can update the original test scores with the updated values from the
retests (Listing 4.8).

Listing 4.8: Updating a dictionary using a merge.

>>> test_scores | retests
{'Math': 97, 'Physics': 99, 'History': 94, 'English': 93}

We see that the "Math" and "History" scores have been updated with the values
from the second dictionary.

4.4.3 Exercises

1. Define a dictionary for a user with three attributes (keys): "username",
"password", and "password_confirmation". How would you test if the
password matches the confirmation?

2. We’ve seen in Listing 2.29 and Listing 3.10 that Python strings and lists support
an enumerate() function in cases where we need the iteration index. Confirm
that we can do the same thing with dictionaries using code like Listing 4.9.

7. For this reason, dictionary (or, rather, hash) merges in Ruby use the update method.

4.5 Application: Unique Words 115

3. By reversing the elements in Listing 4.8, show that dictionary merges aren’t sym-
metric, so d1 | d2 is not in general the same as d2 | d1. When are they the
same?

Listing 4.9: Using enumerate() with a dictionary.

>>> for i, (name, year) in enumerate(moonwalks.items()): # Pythonic
... print(f"{i+1}. {name} first performed a moonwalk in {year}")
...
1. Neil Armstrong first performed a moonwalk in 1969
2. Buzz Aldrin first performed a moonwalk in 1969
3. Alan Shepard first performed a moonwalk in 1971
4. Eugene Cernan first performed a moonwalk in 1972
5. Michael Jackson first performed a moonwalk in 1983

4.5 Application: Unique Words
Let’s apply the dictionaries from Section 4.4 to a challenging exercise, consisting of
our longest program so far. Our task is to extract all the unique words in a fairly long
piece of text, and count how many times each word appears.

Because the sequence of commands is rather extensive, our main tool will be a
Python file (Section 1.3), executed using the python3 command. (We’re not going
to make it a self-contained shell script as in Section 1.4 because we don’t intend for
this to be a general-purpose utility program.) At each stage, I suggest using Python
to execute the code interactively if you have any question about the effects of a given
command.

Let’s start by creating our file:

(venv) $ touch count.py

Now fill it with a string containing the text, which we’ll choose to be Shake-
speare’s Sonnet 1168 (Figure 4.99), as borrowed from Listing 4.6 and shown again
in Listing 4.10.

8. Note that in the original pronunciation used in Shakespeare’s time, words like “love” and “remove”
rhymed, as did “come” and “doom”.

9. Image courtesy of Psychoshadowmaker/123RF.

https://www.sparknotes.com/nofear/shakespeare/sonnets/sonnet_116
https://youtu.be/bt7OynPUIY8
https://pixabay.com/en/ship-night-star-sky-ocean-2787544/

116 Chapter 4: Other Native Objects

Figure 4.9: Sonnet 116 compares love’s constancy to the guide star for a wandering bark
(ship).

Listing 4.10: Adding some text.
count.py

import re

sonnet = """Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove.
O no, it is an ever-fixed mark
That looks on tempests and is never shaken
It is the star to every wand'ring bark,
Whose worth's unknown, although his height be taken.
Love's not time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
 If this be error and upon me proved,
 I never writ, nor no man ever loved."""

https://www.sparknotes.com/nofear/shakespeare/sonnets/sonnet_116
https://en.wikipedia.org/wiki/Celestial_navigation
https://en.wiktionary.org/wiki/bark#Etymology_3

4.5 Application: Unique Words 117

Our plan will be to use a dictionary called uniques with keys equal to the unique
words and values equal to the number of occurrences in the text:

uniques = {}

For the purposes of this exercise, we’ll define a “word” as a run of one or more word
characters (i.e., letters or numbers, though there are none of the latter in the present
text). This match can be accomplished with a regular expression (Section 4.3), which
includes a pattern (\w) for exactly this case (Figure 4.5):

words = re.findall(r"\w+", sonnet)

This uses the findall() method from Section 4.3 to return a list of all the strings
that match “one or more word characters in a row”. (Extending this pattern to
include apostrophes (so that it matches, e.g., “wand’ring” as well) is left as an exercise
(Section 4.5.1).)

At this point, the file should look like Listing 4.11.

Listing 4.11: Adding an object and the matching words.
count.py

import re

sonnet = """Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove.
O no, it is an ever-fixed mark
That looks on tempests and is never shaken
It is the star to every wand'ring bark,
Whose worth's unknown, although his height be taken.
Love's not time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
 If this be error and upon me proved,
 I never writ, nor no man ever loved."""

uniques = {}
words = re.findall(r"\w+", sonnet)

118 Chapter 4: Other Native Objects

Now for the heart of our program. We’re going to iterate through the words list
and do the following:

1. If the word already has an entry in the uniques object, increment its count by 1.

2. If the word doesn’t have an entry yet in uniques, initialize it to 1.

The result, using the += operator we met briefly in Section 4.3, looks like this:

for word in words:
if word in uniques:

uniques[word] += 1
else:

uniques[word] = 1

Finally, we’ll print out the result to the terminal:

print(uniques)

The full program (with added comments) appears as in Listing 4.12.

Listing 4.12: A program to count words in text.
count.py

sonnet = """Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove.
O no, it is an ever-fixed mark
That looks on tempests and is never shaken
It is the star to every wand'ring bark,
Whose worth's unknown, although his height be taken.
Love's not time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
 If this be error and upon me proved,
 I never writ, nor no man ever loved."""

Unique words
uniques = {}
All words in the text
words = re.findall(r"\w+", sonnet)

Iterate through `words` and build up a dictionary of unique words.

4.5 Application: Unique Words 119

for word in words:
if word in uniques:

uniques[word] += 1
else:

uniques[word] = 1

print(uniques)

The result of running count.py in the terminal looks something like this:

(venv) $ python3 count.py
{'Let': 1, 'me': 2, 'not': 4, 'to': 4, 'the': 4, 'marriage': 1, 'of': 2,
'true': 1, 'minds': 1, 'Admit': 1, 'impediments': 1, 'Love': 3, 'is': 4,
'love': 1, 'Which': 1, 'alters': 2, 'when': 1, 'it': 3, 'alteration': 1,
'finds': 1, 'Or': 1, 'bends': 1, 'with': 2, 'remover': 1, 'remove': 1,
'O': 1, 'no': 2, 'an': 1, 'ever': 2, 'fixed': 1, 'mark': 1, 'That': 1,
'looks': 1, 'on': 1, 'tempests': 1, 'and': 4, 'never': 2, 'shaken': 1,
'It': 1, 'star': 1, 'every': 1, 'wand': 1, 'ring': 1, 'bark': 1, 'Whose': 1,
'worth': 1, 's': 4, 'unknown': 1, 'although': 1, 'his': 3, 'height': 1,
'be': 2, 'taken': 1, 'time': 1, 'fool': 1, 'though': 1, 'rosy': 1, 'lips': 1,
'cheeks': 1, 'Within': 1, 'bending': 1, 'sickle': 1, 'compass': 1, 'come': 1,
'brief': 1, 'hours': 1, 'weeks': 1, 'But': 1, 'bears': 1, 'out': 1, 'even': 1,
'edge': 1, 'doom': 1, 'If': 1, 'this': 1, 'error': 1, 'upon': 1, 'proved': 1,
'I': 1, 'writ': 1, 'nor': 1, 'man': 1, 'loved': 1}

This constitutes a good example of a solution “by hand” that is reasonably
Pythonic but has a version that is even more Pythonic, though also substantially more
advanced (Section 4.5.1). As noted in Box 1.1, “Pythonic” is a sliding scale, and the
program in Listing 4.12 is an excellent start.

4.5.1 Exercises

1. Extend the regex used in Listing 4.12 to include an apostrophe, so it matches, e.g.,
“wand’ring”. Hint: Combine the first reference regex at regex101 (Figure 4.10)
with \w, an apostrophe, and the plus operator +.

2. By running the code in Listing 4.13, show that we can effectively repli-
cate the results of Listing 4.12 using the powerful Counter() func-
tion from the Python collections module. See this excellent video
(https://www.youtube.com/watch?v=8OKTAedgFYg&t=364s) for more detail
on this subject.

https://regex101.com/
https://www.youtube.com/watch?v=8OKTAedgFYg&t=364s
https://www.youtube.com/watch?v=8OKTAedgFYg&t=364s

120 Chapter 4: Other Native Objects

Figure 4.10: An exercise hint.

Listing 4.13: Using the powerful Counter() function.

import re

from collections import Counter

sonnet = """Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove.
O no, it is an ever-fixed mark
That looks on tempests and is never shaken
It is the star to every wand'ring bark,
Whose worth's unknown, although his height be taken.
Love's not time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
 If this be error and upon me proved,
 I never writ, nor no man ever loved."""

words = re.findall(r"\w+", sonnet)
print(Counter(words))

CHAPTER 5
Functions and Iterators

So far in this tutorial, we’ve seen several examples of Python functions, which are
one of the most important ideas in Python, and indeed in all of computing. In this
chapter, we’ll learn how to define functions of our own (Figure 5.1). We’ll also learn
a bit more about iterators (mentioned briefly in Section 3.4.2), both because Python
often uses such objects as the return values of built-in functions and because they’re
important in their own right.

In case you’re not running the Python shell already, you should activate the virtual
environment and start the REPL as usual:

$ source venv/bin/activate
(venv) $ python3

Figure 5.1: Time to level up.

5.1 Function Definitions
As we’ve seen with functions like print() (Section 2.3), len() (Section 2.4), and
sorted() and reversed() (Section 3.4.2), function calls in Python consist of a name
and zero or more arguments in parentheses:

print("hello, world!")

121

122 Chapter 5: Functions and Iterators

One of the most important tasks in programming involves defining our own functions,
which in Python can be done using the def keyword. (As discussed in Section 2.5,
functions attached to objects (such as split() and islower()) are also called methods.
We’ll learn how to define methods of our own in Chapter 7.)

Let’s take a look at a simple example of a function definition in the REPL. We’ll
start with a function that takes a single numerical argument and returns the square, as
shown in Listing 5.1.1

Listing 5.1: Defining a function.

>>> def square(x):
... return x*x
...
>>> square(10)
100

(Here we could also use x**2, which would be the same thing.) The function ends
with the return keyword followed by the return value for the function.

In the case of square(), the ending of the function was also the beginning because
it’s only one line. But, as you might expect, a function can also consist of multiple
steps, such as the function shown in Listing 5.2 to return a list of squares from 0 up
to (n-1)**2 (in accordance with the usual behavior of range()).

Listing 5.2: Returning a list of squares.

>>> def squares_list(n):
... squares = []
... for i in range(n+1):
... squares.append(i**2)
... return squares
...
>>> squares_list(11)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Listing 5.2 includes a common pattern of initializing a variable, changing it, and
then returning the changed value. We’ll see how to replace this pattern with a more
compact version in Chapter 6.

1. Python doesn’t have a type mechanism to enforce, say, numerical arguments to functions. There is a
typing library, though, with support for type hints.

https://docs.python.org/3/library/typing.html

5.1 Function Definitions 123

It’s worth noting that return acts immediately, much like the break keyword we
saw in Listing 3.11, so we can use it to interrupt a loop. Indeed, return interrupts
the entire function, so as soon as Python sees an occurrence of return it leaves the
function entirely. For example, we can write a function to return the first number in
a list bigger than 10, or None if no such number exists, as shown in Listing 5.3.

Listing 5.3: Using return to return immediately from a for loop.

>>> def bigger_than_10(numbers):
... for n in numbers:
... if n > 10:
... return n
... return None
...
>>> bigger_than_10(squares_list(11))
16

Note that we’ve included an explicit return None in Listing 5.3, but in fact returning
None is the default, so you can actually leave that step off. We’ll include it for now but
we’ll drop it starting in Listing 5.21.

Now that we’ve seen a few example functions, let’s write a function that we’ll
actually use in an application—in this case, the Flask web app created in Section 1.5.
In particular, we’ll define a function called dayname() that takes a single datetime
argument (Section 4.2) and returns the day of the week represented by the given time.

Recall from Section 4.2 that a datetime object has a method called weekday()
representing the (zero-offset) index of the day of the week:

>>> from datetime import datetime
>>> now = datetime.now()
>>> now.weekday()
3

In that same section, we mentioned briefly that the calendar library includes an
object for the days of the week:

>>> import calendar
>>> calendar.day_name
<calendar._localized_day object at 0x100f13910>
>>> list(calendar.day_name)
['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']

124 Chapter 5: Functions and Iterators

Here we’ve used the list() function to convert the “localized day” object into a list
for easier viewing.

The day_name object allows us to find the day of the week as follows:

>>> list(calendar.day_name)[0]
'Monday'

Here we’ve used a bracket with an index to access the corresponding element of the
list (Section 3.2), but it turns out you can use the same syntax with the “localized day”
object directly:

>>> calendar.day_name[0]
'Monday'

This is exactly the kind of behavior you might not have been able to guess ahead of
time, and is a great example of the value of the REPL for experimentation (a key
component of technical sophistication (Box 1.2)).

Putting weekday() and day_name together lets us find the day of the week
corresponding to the numerical index:

>>> calendar.day_name[datetime.now().weekday()]
'Thursday'

This works just fine, but it is getting rather long. It would be convenient to
encapsulate this definition and logic in a dayname() function, so that we could write

dayname(datetime.now())

By combining the elements above, we can accomplish this as shown in Listing 5.4.

Listing 5.4: Defining dayname() in the REPL.

>>> def dayname(time):
... """Return the name of the day of the week for the given time."""
... return calendar.day_name[time.weekday()]
...
>>>

5.1 Function Definitions 125

We see in Listing 5.4 that a Python function starts with the def keyword followed
by the function name and any arguments; next, there’s an optional but highly recom-
mended docstring (not usually used in the REPL but included here for reasons we’ll see
in a moment); then, there’s the function body, which determines the return value of
the function using the return keyword (which in this case is the only line in the body,
not counting the docstring); finally, the function is ended by a newline. Note that this
final fact contrasts with nearly all other programming languages, which typically end
function definitions with a closing curly brace (e.g., C, C++, Perl, PHP, Java, and
JavaScript), a closing parenthesis (most varieties of Lisp), or a special keyword like end
(e.g., Ruby).

We can test the newly defined function as follows:

>>> dayname(datetime.now())
'Thursday'

This might not seem like a big improvement, but note that it’s conceptually simpler
because we don’t have to think about the implementation (i.e., finding the element
of an object corresponding to the value of weekday()). This sort of abstraction layer
between function name and implementation is useful even if the function definition
is only one or two lines. (Indeed, I consider one- or two-line functions to be a sign of
good program design.) We’ll put this function to good use in Section 5.2 to simplify
the customized greeting in our hello app (Listing 4.3).

As noted in Section 2.1, including a triple-quoted docstring as in Listing 5.4 is a
standard practice with Python functions.2 In addition to being useful to people reading
the code, the docstring itself is available in the REPL via the help() function:

>>> help(dayname)

The result of running help() is system-dependent; on my system, run-
ning help(dayname) in a terminal gives the result shown in Figure 5.2.
(This uses the less interface covered (https://www.learnenough.com/command-
line-tutorial/inspecting_files#sec-less_is_more) in Learn Enough Command Line to Be
Dangerous (https://www.learnenough.com/command-line), so I typed q to quit.)

2. Python docstrings typically use the imperative mood, so “Return the name” rather than “Returns the
name”.

https://www.learnenough.com/command-line-tutorial/inspecting_files#sec-less_is_more
https://www.learnenough.com/command-line-tutorial/inspecting_files#sec-less_is_more
https://www.learnenough.com/command-line-tutorial/inspecting_files#sec-less_is_more
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://en.wikipedia.org/wiki/Imperative_mood

126 Chapter 5: Functions and Iterators

Figure 5.2: The result of running help(dayname).

As previously noted, we wouldn’t ordinarily include a docstring in a func-
tion defined in the REPL, but we included it in Listing 5.4 so that we could
illustrate help() as in Figure 5.2. Because built-in Python functions generally define
docstrings, using help() in the REPL is useful with them as well (Section 5.1.3).

5.1.1 First-Class Functions

One possibly surprising feature of Python functions is that they can be treated as
regular variables in many ways (sometimes referred to as first-class objects). For example,
let’s take another look at the square() function defined in Listing 5.1:

https://www.geeksforgeeks.org/first-class-functions-python/

5.1 Function Definitions 127

>>> def square(x):
... return x*x
...
>>> square(10)
100

We can actually assign this to a new variable and call it just as before:

>>> pow2 = square
>>> pow2(7)
49

Perhaps even cooler, we can pass functions as arguments to other functions. For
example, we can create a function to apply another function and then add 1 like this:

>>> def function_adder(x, f):
... return f(x) + 1
...
>>>

We can then pass square as an argument (without parentheses, so not square()):

>>> function_adder(10, square)
101

Built-in Python functions work the same way:

>>> import math
>>> function_adder(100, math.log10)
3.0

This last result follows because log10 100 = log10 102 = 2 and 2+1 = 3. (Why does
Python display it as 3.0?)3

5.1.2 Variable and Keyword Arguments

In addition to regular arguments, Python functions support variable-length arguments
and keyword arguments. While we won’t need to define functions with these sorts

3. Answer: The math.log10() function returns floating-point values rather than integers.

128 Chapter 5: Functions and Iterators

of arguments in this tutorial, we will need them in a few places since many built-in
Python functions use them. They are also valuable for more advanced work in Python.
Let’s take a quick look at how they work.

Suppose we define a function foo() with two arguments, bar and baz:

>>> def foo(bar, baz):
... print((bar, baz))
...
>>> foo("hello", "world")
('hello', 'world')

Here we’ve printed out a tuple (Section 3.6) of the two arguments as a way of showing
what their values are.

But what if we didn’t know how many arguments we wanted? For example, this
won’t work:

>>> foo("hello", "world", "good day!")
File "<stdin>", line 1, in <module>

TypeError: foo() takes 2 positional arguments but 3 were given

Python supports a variable number of arguments via the special asterisk or “star”
syntax *args (often pronounced “star args”):4

>>> def foo(*args):
... print(args)
...
>>> foo("hello", "world", "good day!")
('hello', 'world', 'good day!')

We see here that Python has automatically created a tuple of the arguments, which
works for any number:

>>> foo("This", "is a bunch", "of arguments", "to the function")
('This', 'is a bunch', 'of arguments', 'to the function')

A related construction uses a double-asterisk or double-star syntax for keywords,
which are key–value pairs separated with an equals sign. The analogue of *args in

4. You could use *anything, but *args is conventional.

5.1 Function Definitions 129

this case is called **kwargs (often pronounced “star star kwargs” or “star star keyword
args”); if *args results in a tuple, see if you can guess what **kwargs does:

>>> def foo(**kwargs):
... print(kwargs)
...
>>> foo(a="hello", b="world", bar="good day!")
{'a': 'hello', 'b': 'world', 'bar': 'good day!'}

As you might have guessed, **kwargs automatically converts the key–value pairs in
the argument into Python’s standard data type for such pairs, namely, a dictionary
(Section 4.4).

One common pattern is to combine *args and **kwargs, resulting in the ability
to accept a large variety of argument types. A simple example appears in Section 5.1.3.

5.1.3 Exercises

1. Run help(len) in the Python interpreter to confirm that help() works
on built-in functions as well. What is the result of running the command
help(print)? (The result in this case is called a multi-line docstring.)

2. Define a deriver() function as shown in Listing 5.5 that takes in a function
and returns how much it changes over a small interval h. Confirm that you get
the result shown for the square() function mentioned at the beginning of Sec-
tion 5.1.1 (which was first defined in Listing 5.1). What is the result of evaluating
deriver(math.cos, math.tau/2)?5

3. Define a function foo() with both *args and **kwargs as shown in Listing 5.6.
What do you get when you execute the function as shown in the final state-
ment of Listing 5.6? (Note that you should not type ... in the call to foo(); as
we have seen when defining functions, those are continuation characters added
automatically by the Python interpreter.)

5. Some alert readers may recognize deriver() as the quotient that approaches the derivative as h → 0.
Since the derivative of cos x is 0 at τ/2 (corresponding to a minimum), the value of deriver(math.cos,
math.tau/2) should be close to 0 as well. The derivative of x2, meanwhile, is 2x, which accounts for the
value shown in Listing 5.5 for the square() function when x = 3.

https://peps.python.org/pep-0257/#multi-line-docstrings
https://en.wikipedia.org/wiki/Derivative

130 Chapter 5: Functions and Iterators

Listing 5.5: Deriving the rate of change over a small interval.

>>> def deriver(f, x):
... h = 0.00001
... return (f(x+h) - f(x))/h
...
>>> deriver(square, 3)
6.000009999951316

Listing 5.6: Defining a function with both *args and **kwargs.

>>> def foo(*args, **kwargs):
... print(args)
... print(kwargs)
...
>>> foo("This", "is a bunch", "of arguments", "to the function",
... a="hello", b="world", bar="good day!")

5.2 Functions in a File
Although defining functions in a REPL is convenient for demonstration purposes, it’s
a bit cumbersome, and a better practice is to put them in a file (as we did with the
script in Section 4.5). We’ll start by moving the function defined in Section 5.1 into
hello_app.py, and we’ll then move it to an even more convenient external file.

Using such an external resource requires the presence of a somewhat mysterious
file called __init__.py, which causes Python to interpret our project directory as a
package. The file doesn’t have to have any content, though—it just has to exist, which
we can arrange with touch:

(venv) $ touch __init__.py

(We’ll learn a little more about this file requirement when we make a proper package
in Chapter 8.) With that, we’re ready to run our Flask app at the command line as in
Section 1.5:

(venv) $ flask --app hello_app.py --debug run

5.2 Functions in a File 131

Let’s recall the current state of our hello application, which looks like Listing 5.7.
(This is the same as Listing 4.3; your code may differ if you solved the exercises in
Section 4.2.1.)

Listing 5.7: The current state of our hello app.
hello_app.py

from datetime import datetime

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello_world():

DAYNAMES = ["Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday"]

dayname = DAYNAMES[datetime.now().weekday()]
return f"<p>Hello, world! Happy {dayname}.</p>"

Our first step is to put the function definition from Section 5.1 into this file, as
shown in Listing 5.8.

Listing 5.8: Adding a function for the day of the week.
hello_app.py

from datetime import datetime
import calendar

from flask import Flask

def dayname(time):
"""Return the name of the day of the week for the given time."""
return calendar.day_name[time.weekday()]

app = Flask(__name__)

@app.route("/")
def hello_world():

DAYNAMES = ["Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "Sunday"]

dayname = DAYNAMES[datetime.now().weekday()]
return f"<p>Hello, world! Happy {dayname}.</p>"

132 Chapter 5: Functions and Iterators

Then, we can use the dayname() function to delete the unneeded lines and edit the
body of hello_world() down to a single line, as shown in Listing 5.9. At this point,
you should be able to confirm that the app is working, as shown in Figure 5.3.

Listing 5.9: Replacing the greeting.
hello_app.py

from datetime import datetime
import calendar

from flask import Flask

def dayname(time):
"""Return the name of the day of the week for the given time."""
return calendar.day_name[time.weekday()]

app = Flask(__name__)

@app.route("/")
def hello_world():

return f"<p>Hello, world! Happy {dayname(datetime.now())}.</p>"

We can make the code in Listing 5.9 even cleaner by factoring the dayname()
function into a separate file and then including it into our app. We’ll start by cutting
the function and pasting it into a new file, day.py:

(venv) $ touch day.py

The resulting files appear as in Listing 5.10 and Listing 5.11.6 Note that we’ve slightly
updated the greeting in Listing 5.11 so that we can tell our new code is actually
working.

Listing 5.10: The dayname() function in a file.
day.py

import calendar

def dayname(time):

6. In some editors, you can use Shift-Command-V to paste in a selection using the local indentation level,
which saves us the trouble of dedenting it by hand.

5.2 Functions in a File 133

Figure 5.3: The result of a functional greeting.

"""Return the name of the day of the week for the given time."""
return calendar.day_name[time.weekday()]

Listing 5.11: Our greeting with the function cut.
hello_app.py

from datetime import datetime

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello_world():

return f"<p>Hello, world! Happy {dayname(datetime.now())} from a file!</p>"

134 Chapter 5: Functions and Iterators

As you can verify by reloading the browser, the app doesn’t work—it crashes
immediately, and all we get is the Flask error page (Figure 5.4), which indicates that
there was an exception of type NoMethodError. (Exceptions are simply a standardized
way of indicating particular kinds of errors in a program.) We can find out more about
what went wrong by looking at the error message, which indicates that the dayname()
method isn’t defined; zooming in on the message, we see that it even tells us the exact
line that has the problem (Figure 5.5).

This practice is a powerful debugging technique: If your Python program crashes,
inspecting the error message should be your method of first resort. Moreover, if you
can’t see right away what went wrong, Googling the error message will often yield
useful results (Box 5.1).

Figure 5.4: A sure sign our app isn’t working.

5.2 Functions in a File 135

Figure 5.5: Using the Flask crash page to find an error.

Box 5.1: Debugging Python

One skill that’s an essential part of technical sophistication is debugging: the art of
finding and correcting errors in computer programs.While there’s no substitute for
experience, here are some techniques that should give you a leg up when tracking
down the inevitable glitches in your code:

• Trace the execution with print. When trying to figure out why a particular pro-
gram is going awry, it’s often helpful to display variable values with temporary
print statements, which can be removed when the bug is fixed. This technique
is especially useful when combined with the repr() function, which returns a
literal representation of the object (Section 4.3), as in print(repr(a)).

• Comment out code. It’s sometimes a good idea to comment out code you sus-
pect is unrelated to the problem to allow you to focus on the code that isn’t
working.

• Use the REPL. Firing up the Python interpreter and pasting in the problematic
code is frequently an excellent way to isolate the problem. When debugging a
script, calling it with python3 -i script.py will drop you into the REPL when
an error is reached. (A more advanced version of the REPL technique is pdb,
the Python Debugger.)

• Google it. Googling error messages or other search terms related to the bug
(which often leads to helpful threads at Stack Overflow) is an essential skill for
every modern software developer (Figure 5.6).

https://docs.python.org/3/library/pdb.html
https://stackoverflow.com/

136 Chapter 5: Functions and Iterators

Figure 5.6: How did people ever debug before Google?

The reason for the crash is that we’ve removed dayname() from hello_app.py,
so naturally our app has no idea what it is. The solution is to import it in much
the same way that we imported flask, datetime, and calendar, as shown in
Listing 5.12. Note that the import statement in Listing 5.11 includes the current direc-
tory (python_tutorial/day), which is necessary because our project directory isn’t
on the Python include path by default.7 (This is fine for now, but among other things
it prevents the app as written from being deployed to production (Section 1.5.1).
Utilities intended to be used more often, or in production environments, should be
included as packages, a subject we’ll take up in Chapter 8 and apply in Chapter 9 and
Chapter 10.)

It’s worth noting at this time that Listing 5.12 includes a full set of imports—
modules from the standard library (datetime), a third-party library (flask), and a

7. How would you figure out how to add the current directory to the import path? Here’s how I’d do it:
python add to import path.

https://www.google.com/search?q=python+add+to+import+path

5.2 Functions in a File 137

custom library (python_tutorial.day)—which by convention are separated from
each other by newlines (and from the rest of the file by two newlines).

Listing 5.12: Using a function from an external file.
hello_app.py

from datetime import datetime

from flask import Flask

from python_tutorial.day import dayname

app = Flask(__name__)

@app.route("/")
def hello_world():

return f"<p>Hello, world! Happy {dayname(datetime.now())} from a file!</p>"

At this point, the app is working! The result should look something like Figure 5.7.

Figure 5.7: An updated greeting.

https://peps.python.org/pep-0008/#imports

138 Chapter 5: Functions and Iterators

5.2.1 Exercise

1. Let’s replace the interpolated string in Listing 5.11 with a greeting() function
in day.py. Fill in the code labeled FILL_IN in Listing 5.13 to get Listing 5.14 to
work.

Listing 5.13: Defining a greeting() function.
day.py

import calendar

def dayname(time):
"""Return the name of the day of the week for the given time."""
return calendar.day_name[time.weekday()]

def greeting(time):
"""Return a friendly greeting based on the current time."""
return FILL_IN

Listing 5.14: Importing and using the greeting() function.
hello_app.py

from datetime import datetime

from flask import Flask

from python_tutorial.day import dayname

app = Flask(__name__)

@app.route("/")
def hello_world():

return greeting(datetime.now())

5.3 Iterators
In this section, we’ll start developing the palindrome theme mentioned in the intro-
duction (Chapter 1). Our goal is to write a function called ispalindrome() that
returns True if its argument is the same forward and backward, and False otherwise.

5.3 Iterators 139

We can express the simplest possible definition of a palindrome as “a string is equal to
the string reversed.” (We’ll steadily expand this definition over time.) In order to do
this, we need to be able to reverse a string.

One straightforward way to reverse a string would be to combine the list() and
join() functions (Section 3.4.4) with the ability to reverse a list using reverse()
(Section 3.4.2):

>>> s = "foobar"
>>> a = list(s)
>>> a.reverse()
>>> "".join(a)
'raboof'

This would work, but a far more elegant method comes from observing that the
reversed() function, which we saw applied to lists in Section 3.4.2, also works on
strings:

>>> reversed("foobar")
<reversed object at 0x104858d60>

As noted in the Python documentation, reversed() returns a reverse iterator. An
iterator is a powerful Python facility that represents a stream of data—in this case, a
string of characters—that gets accessed in sequence. We’ll see how to define a special
kind of iterator known as a generator in Section 5.3.1, and we’ll implement a full custom
iterator in Section 7.2.

One way to see the result of reversed() is to iterate through the reversed object
using for (Listing 5.15):

Listing 5.15: Using a for loop on an iterator.

>>> for c in reversed("foobar"):
... print(c)
...
r
a
b
o
o
f

https://docs.python.org/3/library/functions.html#reversed
https://docs.python.org/3/glossary.html#term-iterator

140 Chapter 5: Functions and Iterators

We can also use list() to look at the elements directly:

>>> list(reversed("foobar"))
['r', 'a', 'b', 'o', 'o', 'f']

We see here that list() runs through the reversed iterator and gives us the actual list
of characters. Note that, unlike the code in Listing 5.15, using list() creates the full
object in memory. For a small list like the one here it makes little difference, but for
large lists the difference could be significant.8

We saw in Section 3.4.4 how to use join() to combine such a list (in this case,
on the empty space ""):

>>> "".join(list(reversed("foobar")))
'raboof'

This is excellent progress toward being able to detect palindromes, as we now have
a way to find the reverse of a string, but it turns out that join() also automatically
runs through an iterable object, so we can actually eliminate the intermediate call to
list():

>>> "".join(reversed("foobar"))
'raboof'

At this point, we’re in a position to test for a palindrome by comparing a string
with its own reverse:

>>> "foobar" == "".join(reversed("foobar"))
False
>>> "racecar" == "".join(reversed("racecar"))
True

With this technique in our toolkit, we’re ready to write the first version of our
palindrome method.

Let’s put our function for detecting palindromes into its own file, which we’ll call
palindrome.py:

(venv) $ touch palindrome.py

8. Indeed, it’s possible to create iterators for infinite sets, such as the natural numbers, which can’t be
instantiated in memory even in principle.

https://realpython.com/introduction-to-python-generators/#example-2-generating-an-infinite-sequence
https://en.wikipedia.org/wiki/Natural_number

5.3 Iterators 141

What should we call the palindrome-detecting function? Well, the palindrome detec-
tor should take in a string and return True when the string is a palindrome and False
otherwise. This makes it a boolean method. Recall from Section 2.5 that boolean
methods in Python generally start with the word “is”, which suggests the definition in
Listing 5.16. (Actually, for such a module-level function, not attached to an object, the
snake-case name is_palindrome might be more conventional. But we are planning
to attach it to an object; see Chapter 7.)

Listing 5.16: Our initial ispalindrome() function.
palindrome.py

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

def ispalindrome(string):
"""Return True for a palindrome, False otherwise."""
return string == reverse(string)

The code in Listing 5.16 uses the == comparison operator (Section 2.4) to return the
right boolean value.

We can test the code in Listing 5.16 by importing the palindrome file in the
Python interpreter:

>>> import palindrome

This makes ispalindrome() available through the module name:

>>> palindrome.ispalindrome("racecar")
True
>>> palindrome.ispalindrome("Racecar")
False

As seen in the second example, our palindrome detector says “Racecar” isn’t
a palindrome, so to make our detector a little more general we can use lower()
to make the string lowercase before the comparison. A working version appears in
Listing 5.17.

142 Chapter 5: Functions and Iterators

Listing 5.17: Detecting palindromes independent of case.
palindrome.py

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

def ispalindrome(string):
"""Return True for a palindrome, False otherwise."""
return string.lower() == reverse(string.lower())

Returning to the REPL, we can reload the detector (using the convenient reload()
function from the importlib module)9 and apply it as follows:

>>> from importlib import reload
>>> reload(palindrome)
>>> palindrome.ispalindrome("Racecar")
True

Success!
As a final refinement, let’s follow the Don’t Repeat Yourself (or “DRY”) prin-

ciple and eliminate the duplication in Listing 5.17. Inspecting the code, we see that
string.lower() gets used twice, which suggests declaring a variable (which we’ll
call processed_content) to represent the actual string that gets compared to its own
reverse (Listing 5.18).

Listing 5.18: Eliminating some duplication.
palindrome.py

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

def ispalindrome(string):
"""Return True for a palindrome, False otherwise."""
processed_content = string.lower()
return processed_content == reverse(processed_content)

9. This is exactly the kind of thing you should think to Google (Box 1.2), using, say, python how to reload
a module.

https://docs.python.org/3/library/importlib.html
https://www.google.com/search?q=python+how+to+reload+a+module
https://www.google.com/search?q=python+how+to+reload+a+module

5.3 Iterators 143

Listing 5.18 eliminates one call to lower() at the cost of an extra line, so it’s not obvi-
ously better than Listing 5.17, but we’ll see starting in Chapter 8 that having a separate
variable gives us much greater flexibility in detecting more complex palindromes.

As a final step, we should check that the ispalindrome() function is still working
as advertised:

>>> reload(palindrome)
>>> palindrome.ispalindrome("Racecar")
True
>>> palindrome.ispalindrome("Able was I ere I saw Elba")
True

As you might guess, confirming such things by hand quickly gets tedious, and we’ll see
in Chapter 8 how to write automated tests to check our code’s behavior automatically.

5.3.1 Generators

A generator, which we first saw in Section 3.4.2, is a special kind of iterator built using
a special operation called yield. The effect of yield is to produce each element of
the sequence in turn.

For example, we can create a string generator by yielding each character in the
string:

>>> def characters(string):
... for c in string:
... yield c
... return None
...
>>> characters("foobar")
<generator object characters at 0x11f9c1540

(We’ve returned None here, but we’ll see in Listing 5.21 that we can actually leave off
return since None is the default.)

Now calling characters() on a string returns a generator object, which we can
iterate over as usual:

>>> for c in characters("foobar"):
... print(c)
...

144 Chapter 5: Functions and Iterators

f
o
o
b
a
r

We can join() it as well:

>>> "".join(characters("foobar"))
'foobar'

Converting a string to an iterator is instructive but not very useful since we can
already iterate over regular strings. Let’s take a look at a more interesting example that
shows off the virtues of generators.

Suppose we wanted to write a function to find numbers that contain all of the
digits 0–9.10 One clever way of doing this is noting that the set() function introduced
in Section 3.6 can actually take a string as an argument, and returns the set of characters
that make up the string:

>>> set("1231231234")
{'2', '4', '3', '1'}

Note that, as required for sets, repeated elements are simply ignored. (Also recall that
the order of the elements doesn’t matter.)

This observation suggests that we can detect a number having all ten digits by con-
verting it to a string as in Section 4.1.2 and then comparing it to the set corresponding
to all digits:

>>> str(132459360782)
'132459360782'
>>> set(str(132459360782))
{'8', '7', '9', '3', '4', '0', '2', '6', '1', '5'}
>>> set(str(130245936782)) == set("0123456789")
True

A function to return the first such occurrence then appears in Listing 5.19, with an
example showing how it works on a short list of integers. Note that Listing 5.19 uses

10. Thanks to Tom Repetti for this example and for his help in preparing this section.

5.3 Iterators 145

the same technique shown in Listing 5.3 to return from the function immediately
once a particular condition is satisfied.

Listing 5.19: Finding a number with all ten digits.

>>> def has_all_digits(numbers):
... for n in numbers:
... if set(str(n)) == set("0123456789"):
... return n
... return None
...
>>> has_all_digits([1424872341, 1236490835741, 12341960523])
1236490835741

Now let’s use our function to find the first perfect square with all of the digits 0–9.
One way of doing this is to create a list using all the numbers up to some big number;
since we don’t know how high to go, let’s try a hundred million, or 108 (with a +1
because range(n) ends at n-1, although it doesn’t really matter). The result appears
in Listing 5.20.

Listing 5.20: Creating a big list of squares.

>>> squares = []
>>> for n in range(10**8 + 1):
... squares.append(n)
...
>>>

(We’ll see a better way to make this list in Section 6.4.1.) As of this writing, the above
code takes a loooong time even on a relatively new computer, to the point where
I just hit Ctrl-C to break out of the loop. (As it turns out, we don’t have to go all
the way to 108, but we don’t know that ahead of time, and this demonstrates the
principle.)

The reason the solution in Listing 5.20 takes so long is that the entire range has to
be iterated over and the entire list has to be created in memory. A far better solution
uses yield to create a generator, which supplies the next square only when needed.
We can create such a squares generator as shown in Listing 5.21; note that we have
left off the return, so None will be returned by default.

146 Chapter 5: Functions and Iterators

Listing 5.21: A squares generator.

>>> def squares_generator():
... for n in range(10**8 + 1):
... yield n**2
...
>>> squares = squares_generator()

By the way, you may wonder why the call to range() in Listing 5.21 doesn’t just
create exactly the list we’re trying to avoid. The answer is that it used to, and you had
to use xrange() to avoid creating the whole thing in memory. But as of Python 3,
the range() function does precisely what we want, producing the next element in
the range only when needed. This pattern is known as lazy evaluation, and indeed is
exactly the behavior produced by a generator as well.

With the final assignment in Listing 5.21, we’re ready to find the first square
containing all the digits:

>>> has_all_digits(squares)
1026753849

Putting in commas for readability gives the result 1, 026, 753, 849, and you can
confirm using math.sqrt() that it is equal to 32, 0432.

5.3.2 Exercises

1. Using the Python interpreter, determine whether or not your system supports
using the ispalindrome() function from Listing 5.17 on emojis. (You may find
the Emojipedia links to the racing car and fox face emojis helpful.) If your system
supports emojis in this context, the result should look something like Figure 5.8.
(Note that an emoji is a “palindrome” if it’s the same when you flip it horizontally,
so the fox-face emoji is a palindrome but the racecar emoji isn’t, even though the
word “racecar” is a palindrome.)

2. Using the code in Listing 5.22, show that it’s possible to express the
ispalindrome() function in one line using the advanced slice operator [::-1]
discussed in Section 3.3. (Some Python programmers may prefer this approach,
but I believe the decrease in length doesn’t justify the loss in clarity.)

3. Write a generator function that returns the first 50 even numbers.

https://en.wikipedia.org/wiki/Lazy_evaluation
https://emojipedia.org/
https://emojipedia.org/racing-car/
https://emojipedia.org/fox-face/

5.3 Iterators 147

Figure 5.8: Detecting palindromic emojis.

Listing 5.22: A compact but rather obscure version of ispalindrome().
palindrome.py

def ispalindrome(string):
"""Return True for a palindrome, False otherwise."""
return string.lower() == string.lower()[::-1]

This page intentionally left blank

CHAPTER 6
Functional Programming

Having learned how to define functions and apply them in a couple of different con-
texts, now we’re going to take our programming to the next level by learning the
basics of functional programming, a style of programming that emphasizes—you guessed
it—functions. As we’ll see, functional programming in Python frequently employs a
powerful (and very Pythonic) class of techniques called comprehensions, which typi-
cally involve using functions to conveniently construct Python objects with particular
elements. The most common comprehensions are list comprehensions and dictionary com-
prehensions, which make lists and dictionaries, respectively. We’ll also see an example
of how to use generator comprehensions to replicate the results of Section 5.3.1, as well
as a brief introduction to set comprehensions.

This is a challenging chapter, and you may have to get in some reps to fully grok
it (Box 6.1), but the rewards are rich indeed.

Box 6.1: Getting in your reps

In contexts ranging frommartial arts to chess to language learning, practitioners will
reach a point where no amount of analysis or reflection will help them improve—
they just need to get in some more repetitions, or “reps”.

It’s amazing how much you can improve by trying something, kinda-sorta (but
maybe not quite) getting it, and then just doing it again. In the context of a tuto-
rial like this one, sometimes that means rereading a particularly tricky section or
chapter. Some people (including yours truly) will even reread an entire book.

One important aspect of getting in your reps is suspending self-judgment—
allow yourself not to be good right away. (Many people—including, again, yours

149

http://catb.org/jargon/html/G/grok.html
https://en.wiktionary.org/wiki/yours_truly

150 Chapter 6: Functional Programming

truly—often require practice to get good at being okay with not being good right
away. Meta-reps, as it were.)

Give yourself a break, get in your reps, and watch your technical sophistication
grow by the day.

Our general technique for approaching functional programming will be to per-
form a task involving a sequence of commands (called “imperative programming”,1

which is what we’ve mostly been doing so far), and then show how to do the same
thing using functional programming.

For convenience, we’ll create a file for our explorations, rather than typing
everything at the REPL:

(venv) $ touch functional.py

6.1 List Comprehensions
We begin our study of functional programming with a technique that will give you
an Einstein-level comprehension of Python (Figure 6.12). This technique, known as
list comprehensions, lets us use functions to build up lists using a single command. Its
effects are broadly similar to the map function covered in Learn Enough JavaScript to
Be Dangerous (https://www.learnenough.com/javascript) and Learn Enough Ruby to
Be Dangerous (https://www.learnenough.com/ruby)—indeed, Python itself supports
map, but list comprehensions are much more Pythonic.

Let’s look at a concrete example. Suppose we had a list of mixed-case strings,
and we wanted to create a corresponding list of lowercase strings joined on a hyphen
(making the result appropriate for use in URLs), like this:

"North Dakota" -> "north-dakota"

Using previous techniques from this tutorial, we could do this as follows:

1. Define a variable containing a list of strings.

2. Define a second variable (initially empty) for the URL-friendly list of strings.

1. From Latin imper−at−ıvus, “proceeding from a command.”

2. Image courtesy of GL Archive/Alamy.

https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://en.wiktionary.org/wiki/imperativus#Latin
https://commons.wikimedia.org/wiki/File:Albert_Einstein_Head.jpg

6.1 List Comprehensions 151

Figure 6.1: Albert Einstein was a master of comprehensions.

3. For each item in the first list, append() (Section 3.4.3) a lowercase version
(Section 2.5) that’s been split on whitespace (Section 4.3) and then joined
(Section 3.4.4) on hyphens. (You could split on a single space " " instead, but
splitting on whitespace is so much more robust that it’s a good practice to use it
by default.)

Let’s build this up in the REPL before putting it into our file. We’ll start with an
example of Step 3 for a single state:

(venv) $ python3
>>> state = "North Dakota"
>>> state.lower()
'north dakota'
>>> state.lower().split()
['north', 'dakota']
>>> "-".join(state.lower().split())
'north-dakota'

152 Chapter 6: Functional Programming

Note the use of the combination lower().split(), which applies two methods in
succession in a process known as method chaining. While not as prevalent in Python as
in some other object-oriented languages (due in large part to Python’s use of iterators
(Section 5.3)), it is still definitely worth knowing.

Combining this join() with the other steps outlined above gives us the code
shown in Listing 6.1. This is fairly complicated code, so being able to read Listing 6.1
is a good test of your growing technical sophistication. (If it isn’t easy to read, firing
up the Python interpreter and getting it to work in the REPL is a good idea.)

Listing 6.1: Making URL-appropriate strings from a list.
functional.py

states = ["Kansas", "Nebraska", "North Dakota", "South Dakota"]

urls: Imperative version
def imperative_urls(states):

urls = []
for state in states:

urls.append("-".join(state.lower().split()))
return urls

print(imperative_urls(states))

The result of running Listing 6.1 looks like this:

(venv) $ python3 functional.py
['kansas', 'nebraska', 'north-dakota', 'south-dakota']

Now let’s see how we can do the same thing using a list comprehension. We’ll start
with a few simpler examples, beginning with one that simply replicates the list()
function:

>>> list(range(10)) # list() function
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> [n for n in range(10)] # List comprehension
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The second command—the list comprehension—creates a list consisting of each n for
n in the range 0–9. What makes it more flexible than list() is that we can use it
with other operations as well, such as squaring:

6.1 List Comprehensions 153

>>> [n*n for n in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Applying a similar technique to a list of strings lets us create a list of lowercase versions
by calling the lower() method (which is just a type of function) on each string in
turn:

>>> [s.lower() for s in ["ALICE", "BOB", "CHARLIE"]]
['alice', 'bob', 'charlie']

Returning to our main example, we can think of the transformation “convert to
lowercase then split then join” as a single operation, and use a list comprehension to
apply that operation in sequence to each element in the list. The result is so compact
that it easily fits in the REPL:

>>> states = ["Kansas", "Nebraska", "North Dakota", "South Dakota"]
>>> ["-".join(state.lower().split()) for state in states]
['kansas', 'nebraska', 'north-dakota', 'south-dakota']

Pasting this into functional.py, we see just how much shorter it is, as shown
in Listing 6.2.

Listing 6.2: Adding a functional technique using a list comprehension.
functional.py

states = ["Kansas", "Nebraska", "North Dakota", "South Dakota"]

urls: Imperative version
def imperative_urls(states):

urls = []
for state in states:
urls.append("-".join(state.lower().split()))

return urls

print(imperative_urls(states))

urls: Functional version
def functional_urls(states):

return ["-".join(state.lower().split()) for state in states]

print(functional_urls(states))

154 Chapter 6: Functional Programming

We can confirm at the command line that the results are the same:

(venv) $ python3 functional.py
['kansas', 'nebraska', 'north-dakota', 'south-dakota']
['kansas', 'nebraska', 'north-dakota', 'south-dakota']

With Python list comprehensions, we can process those states without a map
(Figure 6.23).

As a final refinement, let’s factor the method chain responsible for making the
strings URL-compatible into a separate auxiliary function called urlify():

def urlify(string):
"""Return a URL-friendly version of a string.

Example: "North Dakota" -> "north-dakota"

Figure 6.2: Some list comprehensions are equivalent to a map.

3. Image courtesy of Creative Jen Designs/Shutterstock.

6.1 List Comprehensions 155

"""
return "-".join(string.lower().split())

Note that we’ve included a multi-line docstring that includes an example of a success-
ful operation. Defining this function in functional.py and using it in the imperative
and functional versions gives the code in Listing 6.3.

Listing 6.3: Defining an auxiliary function.
functional.py

states = ["Kansas", "Nebraska", "North Dakota", "South Dakota"]

def urlify(string):
"""Return a URL-friendly version of a string.

Example: "North Dakota" -> "north-dakota"
"""
return "-".join(string.lower().split())

urls: Imperative version
def imperative_urls(states):

urls = []
for state in states:
urls.append(urlify(state))

return urls

print(imperative_urls(states))

urls: Functional version
def functional_urls(states):

return [urlify(state) for state in states]

print(functional_urls(states))

As before, the results are the same:

(venv) $ python3 functional.py
['kansas', 'nebraska', 'north-dakota', 'south-dakota']
['kansas', 'nebraska', 'north-dakota', 'south-dakota']

Compared to the imperative version, the functional version is a fourth as many
lines (1 instead of 4), doesn’t mutate any variables (often an error-prone step in

https://peps.python.org/pep-0257/#multi-line-docstrings

156 Chapter 6: Functional Programming

Figure 6.3: Functional programming makes Mike Vanier happiest of all.

imperative programming), and indeed eliminates the intermediate list (urls) entirely.
This is the sort of thing that makes Mike Vanier very happy (Figure 6.34).

6.1.1 Exercise

1. Using a list comprehension, write a function that takes in the states variable and
returns a list of URLs of the form https://example.com/<urlified form>.

6.2 List Comprehensions with Conditions
In addition to supporting the creation of lists using for, Python list comprehensions
also support the use of conditions using if to select only elements satisfying particular
criteria. In this way, list comprehensions with conditions can replicate the behavior
of JavaScript’s filter and Ruby’s select. (As with map, Python actually supports
this directly via filter; also as with map, the comprehension version is far more
Pythonic.)

4. Last I checked, Mike’s favorite language was a “purely functional” language called Haskell. Image © Mike
Vanier.

https://www.haskell.org/

6.2 List Comprehensions with Conditions 157

Suppose, for example, that we wanted to select the strings in our states list
that consist of more than one word, keeping the names that have only one. As in
Section 6.1, we’ll write an imperative version first:

1. Define a list to store single-word strings.

2. For each element in the list, append() it to the storage list if splitting it on
whitespace yields a list with length 1.

The result looks like Listing 6.4. Note that in Listing 6.4 and subsequent listings the
vertical dots indicate omitted code.

Listing 6.4: Solving a filtering problem imperatively.
functional.py

states = ["Kansas", "Nebraska", "North Dakota", "South Dakota"]
.
.
.
singles: Imperative version
def imperative_singles(states):

singles = []
for state in states:

if len(state.split()) == 1:
singles.append(state)

return singles

print(imperative_singles(states))

Note in Listing 6.4 the familiar pattern from Listing 6.1: We first define an
auxiliary variable in order to maintain state (no pun intended); then loop over the
original list, mutating the variable as necessary; then return the mutated result. It’s not
particularly pretty, but it works:

(venv) $ python3 functional.py
['kansas', 'nebraska', 'north-dakota', 'south-dakota']
['kansas', 'nebraska', 'north-dakota', 'south-dakota']
['Kansas', 'Nebraska']

Now let’s see how to do the same task using a list comprehension. As in
Section 6.1, we’ll start with a simple numerical example in the REPL. We’ll begin by
looking at the modulo operator %, which returns the remainder after dividing an integer

https://en.wikipedia.org/wiki/State_(computer_science)

158 Chapter 6: Functional Programming

by another integer. In other words, 17 % 5 (read “seventeen mod 5”) is 2, because 5
goes into 17 three times (giving 15), with a remainder of 17 − 15 = 2. In particular,
considering integers modulo 2 divides them into two equivalence classes: even numbers
(remainder 0 (mod 2)) and odd numbers (remainder 1 (mod 2)). In code:

>>> 16 % 2 # even
0
>>> 17 % 2 # odd
1
>>> 16 % 2 == 0 # even
True
>>> 17 % 2 == 0 # odd
False

We can use % in a list comprehension to process a list of numbers and include a
number only if it is even:

>>> [n for n in range(10) if n % 2 == 0]
[0, 2, 4, 6, 8]

This is exactly the same as a regular list comprehension but with an extra if.
Using this idea, we see that the functional version of Listing 6.4 is much

cleaner—indeed, as in Listing 6.2, it condenses to a single line, as we can see in the
REPL:

>>> [state for state in states if len(state.split()) == 1]
['Kansas', 'Nebraska']

Placing the result in our example file again underscores how much more compact the
functional version is than the imperative version (Listing 6.5).

Listing 6.5: Solving a selection problem functionally.
functional.py

states = ["Kansas", "Nebraska", "North Dakota", "South Dakota"]
.
.
.
singles: Imperative version
def imperative_singles(states):

singles = []
for state in states:

6.3 Dictionary Comprehensions 159

if len(state.split()) == 1:
singles.append(state)

return singles

print(imperative_singles(states))

singles: Functional version
def functional_singles(states):

return [state for state in states if len(state.split()) == 1]

print(functional_singles(states))

As required, the result is the same:

(venv) $ python3 functional.py
['kansas', 'nebraska', 'north-dakota', 'south-dakota']
['kansas', 'nebraska', 'north-dakota', 'south-dakota']
['Kansas', 'Nebraska']
['Kansas', 'Nebraska']

As compact as list comprehensions can be, it’s worth noting that there are
limitations to their use. In particular, as the logic inside list comprehensions gets
more complicated, they can quickly become unwieldy. It is therefore considered
unPythonic to build up complicated list comprehensions; if you find yourself try-
ing to squeeze too much content into a single comprehension, consider using a good
old-fashioned for loop instead.

6.2.1 Exercise

1. Write two equivalent list comprehensions that return the Dakotas: one using in
(Section 2.5) to test for the presence of the string “Dakota” and one that tests for
the length of the split list being 2.

6.3 Dictionary Comprehensions
Our next example of functional programming uses dictionary comprehensions, giv-
ing us functional powers on par with the great lexicographer Dr Samuel Johnson
(Figure 6.45). This technique is broadly equivalent to the reduce and inject

5. Image courtesy of Rosenwald Collection. N.B. The omission of the period after “Dr”, which is a common
British convention, is frequently followed when referring to Dr Johnson.

https://en.wiktionary.org/wiki/lexicographer
https://en.wikipedia.org/wiki/Samuel_Johnson
https://en.wikipedia.org/wiki/File:Samuel_Johnson_by_Joshua_Reynolds.jpg

160 Chapter 6: Functional Programming

Figure 6.4: Dr Johnson, master of dictionary comprehensions.

functions introduced in Learn Enough JavaScript to Be Dangerous and Learn Enough Ruby
to Be Dangerous, respectively; readers of the corresponding and rather tricky sections
in those tutorials may appreciate how much simpler dictionary comprehensions can
be. (Python 2 actually includes a reduce() method, but it was removed from default
Python 3; it is, however, still available via the functools module.)

Our example will build on the list comprehensions from Section 6.1 and
Section 6.2 involving the names of a few U.S. states. In particular, we’ll make a dictio-
nary that associates state names to the length of each name, with a result that will look
like this:6

6. Note that conventions on formatting dictionaries vary widely, and it’s a good idea to pick one and generally
stick to it.

https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://docs.python.org/3/library/functools.html#functools.reduce
https://stackoverflow.com/questions/3985563/python-best-formatting-practice-for-lists-dictionary-etc

6.3 Dictionary Comprehensions 161

{
"Kansas": 6,
"Nebraska": 8,
"North Dakota": 12,
"South Dakota": 12

}

We can accomplish this imperatively by initializing a lengths object and then iter-
ating through the states, setting lengths[dictionary] equal to the corresponding
length:

lengths[state] = len(state)

The full example appears in Listing 6.6.

Listing 6.6: An imperative solution for state–length correspondence.
functional.py

.

.

.
lengths: Imperative version
def imperative_lengths(states):

lengths = {}
for state in states:

lengths[state] = len(state)
return lengths

print(imperative_lengths(states))

If we run the program at the command line, the desired dictionary appears as the
final part of the output:

(venv) $ python3 functional.py
.
.
.
{'Kansas': 6, 'Nebraska': 8, 'North Dakota': 12, 'South Dakota': 12}

The functional version is almost absurdly simple. As with list comprehensions, we
use for to create an element in the comprehension for each element in the list; for
dictionary comprehensions, we just use curly braces instead of square brackets and a

162 Chapter 6: Functional Programming

key–value pair instead of a single element. In the present case, it looks like this in the
REPL:

>>> {state: len(state) for state in states}
{'Kansas': 6, 'Nebraska': 8, 'North Dakota': 12, 'South Dakota': 12}

Pasting this into our file then yields Listing 6.7.

Listing 6.7: A functional solution for state–length correspondence.
functional.py

.

.

.
lengths: Imperative version
def imperative_lengths(states):

lengths = {}
for state in states:

lengths[state] = len(state)
return lengths

print(imperative_lengths(states))

lengths: Functional version
def functional_lengths(states):

return {state: len(state) for state in states}

print(functional_lengths(states))

Running this at the command line yields the expected result:

(venv) $ python3 functional.py
.
.
.
{'Kansas': 6, 'Nebraska': 8, 'North Dakota': 12, 'South Dakota': 12}
{'Kansas': 6, 'Nebraska': 8, 'North Dakota': 12, 'South Dakota': 12}

As with the examples in Section 6.1 and Section 6.2, the dictionary comprehension
condenses the functionality of the imperative version to a single line. This is not always
the case, but such large compressions are a common feature of functional program-
ming. (This is but one of many reasons why “LOC” or “lines of code” is a dubious
metric of program size or programmer productivity.)

6.4 Generator and Set Comprehensions 163

6.3.1 Exercise

1. Using a dictionary comprehension, write a function that associates each element
in stateswith its URL-compatible versions. Hint: Reuse the urlify() function
defined in Listing 6.3.

6.4 Generator and Set Comprehensions
In this section, we’ll replicate the result from Section 5.3.1 using comprehensions,
starting with a list comprehension and then using a generator comprehension. We’ll also
include a brief example of set comprehensions.

6.4.1 Generator Comprehensions

Recall from Section 5.3.1 that we defined a function to find a number containing all
digits 0–9, as reproduced in Listing 6.8.

Listing 6.8: Finding a number with all ten digits (again).

>>> def has_all_digits(numbers):
... for n in numbers:
... if set(str(n)) == set("0123456789"):
... return n
... return None

In Listing 5.20, we used an imperative solution to build up a list of perfect squares,
but gave up because it was taking too long. With the techniques in Section 6.1, we’re
now in a position to create the same list using a list comprehension:

>>> squares = [n**2 for n in range(10**8 + 1)]

Unfortunately, although syntactically nicer, this code still has to iterate over the entire
range and create the entire list in memory. As in Section 5.3.1, I lost patience and hit
Ctrl-C to interrupt the execution before it was finished.

Now for the analogue of Listing 5.21, which used yield to yield each squared
number in turn. We can create this behavior even more conveniently using a generator
comprehension, which looks just like a list comprehension except with parentheses
instead of square brackets:

164 Chapter 6: Functional Programming

>>> squares = (n**2 for n in range(10**8 + 1))

As with the generator in Listing 5.21, this supplies the next number only when
required, which means we can find the first perfect squares with all ten digits as we
did in Section 5.3.1:

>>> has_all_digits(squares)
1026753849

This is the same answer of 1, 026, 753, 849 = 32, 0432 that we got in Section 5.3.1,
but with much less code.

6.4.2 Set Comprehensions

Set comprehensions can be used to quickly make sets if the rules can be specified
simply. The syntax both without and with conditions is nearly identical to the syntax
for list comprehensions in Section 6.1 and Section 6.2, just with curly braces in place
of square brackets.

For example, we can make a set of all the numbers between 5 and 20 as
follows:

>>> {n for n in range(5, 21)}
{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

And we can make a set of the even numbers greater than 0 like this:

>>> {n for n in range(10) if n % 2 == 0}
{0, 2, 4, 6, 8}

Set operations such as intersection (&) work as usual:

>>> {n for n in range(5, 21)} & {n for n in range(10) if n % 2 == 0}
{8, 6}

6.4.3 Exercise

1. Write a generator comprehension that returns the first 50 even numbers.

6.5 Other Functional Techniques 165

6.5 Other Functional Techniques
Although comprehensions are among the most common and powerful functional
techniques in Python, the language includes many other techniques as well. One
example is summing the elements in a list (or range), which we can do iteratively
using the code in Listing 6.9. Note the familiar pattern of initializing a variable (in
this case, total) and then adding to it in some way (in this case, literally adding a
number).7

Listing 6.9: An imperative solution for summing integers.
functional.py

.

.

.
numbers = range(1, 101) # 1 up to 100

sum: Imperative solution
def imperative_sum(numbers):

total = 0
for n in numbers:
total += n

return total

print(imperative_sum(numbers))

The result is 5050 as required:

(venv) $ python3 functional.py
.
.
.
5050

The functional (and very Pythonic) solution is to use the built-in sum() func-
tion:

>>> sum(range(1, 101))
5050

7. Because it’s conventional to speak of summing the numbers between 1 and 100—rather than the numbers
between 0 and 100—Listing 6.9 uses range(1, 101) to generate the number range 1–100, but of course
the answer would be the same if we used range(101) since adding 0 doesn’t change the sum.

166 Chapter 6: Functional Programming

Using this in our functional file gives us the one additional line shown in Listing 6.10.

Listing 6.10: A fully Pythonic solution for summing integers.
functional.py

.

.

.
numbers = range(1, 11) # 1 up to 10

sum: Imperative solution
def imperative_sum(numbers):

total = 0
for n in numbers:

total += n
return total

print(imperative_sum(numbers))
print(sum(numbers))

We can confirm at the command line that the results agree:

(venv) $ python3 functional.py
.
.
.
5050
5050

A similar facility is the prod() function in the math module, which returns the
product of the list elements. The itertools module includes a large variety of similar
tools.

6.5.1 Functional Programming and TDD

In many cases, the imperative approach offers the most straightforward solution to
a problem, which can make imperative solutions a good place to start even though
they are usually longer than their functional counterparts. Indeed, we might not even
know the latter exists; a common situation is to write an imperative solution for a
particular task, such as the sum shown in Listing 6.9, only to discover later on that

https://docs.python.org/3/library/itertools.html

6.5 Other Functional Techniques 167

there’s a functional way to do it (in this case, using the built-in sum() function). But
making changes to working code can be risky, which might make us understandably
reluctant to change to the functional version.

My favorite technique for managing this challenge is test-driven development
(TDD), which involves writing an automated test that captures the desired behavior in
code. We can then get the test to pass using any method we want, including an ugly
but easy-to-understand imperative solution. At that point, we can refactor the code—
changing its form but not its function—to use a more concise functional solution. As
long as the test still passes, we can be confident that the code still works.

In Chapter 8, we’ll apply this exact technique to the principal object developed
in Chapter 7. In particular, we’ll use TDD to implement a fancy extension to the is-
palindrome() function first seen in Section 5.3, one that detects such complicated
palindromes as “A man, a plan, a canal—Panama!” (Figure 6.58).

Figure 6.5: Teddy Roosevelt was a man with a plan.

8. Image courtesy of Everett Collection Historical/Alamy Stock Photo.

https://en.wikipedia.org/wiki/Theodore_Roosevelt
https://en.wikipedia.org/wiki/Theodore_Roosevelt#Latin_America_and_Panama_Canal

168 Chapter 6: Functional Programming

6.5.2 Exercise

1. Use math.prod() to find the product of the numbers in the range 1–10. How
does this compare to math.factorial(10)?

CHAPTER 7
Objects and Classes

So far in this tutorial, we’ve seen many examples of Python objects. In this chapter,
we’ll learn how to use Python classes to make objects of our own, which have both
data (attributes) and functions (methods) attached to them. We’ll also learn how to
define a custom iterator for our class. Finally, we’ll learn how to reuse functionality
with inheritance.

7.1 Defining Classes
Classes are a way of organizing data and functions into a single convenient object. In
Python, we can create a class of our own using two basic elements:

1. Use the class keyword to define the class.

2. Use the special __init__ method (often called an initializer function) to specify
how to initialize a class.

Our concrete example will be a Phrase class with a content attribute, which
we’ll put in palindrome.py (last seen in Section 5.3). Let’s build it up piece by
piece (for simplicity we’ll omit the reverse() and ispalindrome() functions for
the moment). The first element is the class itself (Listing 7.1).

Listing 7.1: Defining a Phrase class.
palindrome.py

class Phrase:
"""A class to represent phrases."""

169

170 Chapter 7: Objects and Classes

if __name__ == "__main__":
phrase = Phrase()
print(phrase)

In Listing 7.1, we’ve created an instance (particular object) of the Phrase class
using

phrase = Phrase()

which automatically calls __init__ under the hood. The strange-looking syntax

if __name__ == "__main__":

arranges to execute the subsequent code if the file is run at the command line but not
when the class is loaded into other files. This convention is very much Pythonic but
can seem a bit obscure; most Python developers just learn this trick by example, but
see the official documentation (https://docs.python.org/3/library/__main__.html) if
you’re interested in an explanation.

Meanwhile, the final print() in Listing 7.1 lets us see some concrete (if not
especially instructive) results at the command line:

$ source venv/bin/activate
(venv) $ python3 palindrome.py
<__main__.Phrase object at 0x10267afa0>

This shows Python’s abstract internal representation of a bare instance of the Phrase
class. (Should your results match exactly?) We also see where the value "__main__"
comes from in if __name__ == "__main__"—it’s the “top-level code environ-
ment”, which is the environment (containing classes, functions, variables, etc.) in
which Python shell scripts are executed.

We’ll start filling in Listing 7.1 in a moment, but before moving on we should
note that, unlike variables and methods, Python classes use CamelCase (with a lead-
ing capital) instead of snake_case (Section 2.2). CamelCase, which is named for the
resemblance of the capital letters to humps of a camel (Figure 7.11), involves separating
words using capitalization rather than with underscores. It’s hard to tell with Phrase,

1. Image courtesy of Utsav Academy and Art Studio. Pearson India Education Services Pvt. Ltd.

https://docs.python.org/3/library/__main__.html
https://docs.python.org/3/library/__main__.html#module-__main__
https://docs.python.org/3/library/__main__.html#module-__main__
https://en.wikipedia.org/wiki/Camel_case

7.1 Defining Classes 171

Figure 7.1: The origin of CamelCase.

since it’s only a single word, but we’ll see the principle more clearly illustrated in
Section 7.3, which defines a class called TranslatedPhrase.

Eventually, we’ll use Phrase to represent a phrase like “Madam, I’m Adam.” that
can qualify as a palindrome even if it’s not literally the same forward and backward.
At first, though, all we’ll do is define a Phrase initializer function that takes in an
argument (the content) and sets a data attribute called content.2 As we’ll see, we can
access an object’s attributes using the same dot notation used for methods.

In order to add the attribute, we first need to define the __init__ method that
gets called when we initialize an object using Phrase() (Listing 7.2). The use of
double underscores is a convention in Python used to indicate “magic” methods
used internally for defining object behavior. We’ll see a couple more examples of
such magic or “dunder” (double-VndFSscore) methods in Section 7.2. (Underscores,
both double and single, have special meaning for Python attributes and methods; see
Section 7.4.1 for more.)

2. Python data attributes correspond to Ruby instance variables and JavaScript properties. Where Ruby uses
the @ symbol and JavaScript uses this (followed by a dot), Python uses self (followed by a dot).

https://stackoverflow.com/questions/1301346/what-is-the-meaning-of-single-and-double-underscore-before-an-object-name

172 Chapter 7: Objects and Classes

Listing 7.2: Defining __init__.
palindrome.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

if __name__ == "__main__":
phrase = Phrase("Madam, I'm Adam.")
print(phrase.content)

Listing 7.2 initializes a data attribute called content, which is distinguished by being
attached to the self object and inside the class represents the object itself.3 Note that
calling them both content is just a convention; we could have written this as well:

def __init__(self, foo):
self.bar = foo

That would probably be confusing to human readers but wouldn’t bother Python one
bit.

With the definition in Listing 7.2, we now have a working example:

(venv) $ python3 palindrome.py
Madam, I'm Adam.

We can also now assign directly to content using the dot notation, as seen in
Listing 7.3.

Listing 7.3: Assigning to an object attribute.
palindrome.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

3. If you ever find yourself writing classes with a large number of attributes, take a look at the dataclasses
module. Data classes use a special decorator called @dataclass to create methods like __init__ automatically,
saving you the trouble of typing out a bunch of self.<something> = <something> initializations.

https://docs.python.org/3/library/dataclasses.html
https://en.wikipedia.org/wiki/Decorator_pattern

7.1 Defining Classes 173

if __name__ == "__main__":
phrase = Phrase("Madam, I'm Adam.")
print(phrase.content)

phrase.content = "Able was I, ere I saw Elba."
print(phrase.content)

The result is as you probably can guess:

(venv) $ python3 palindrome.py
Madam, I'm Adam.
Able was I, ere I saw Elba.

At this point, we’re ready to restore the reverse() and ispalindrome() func-
tions in our initial definition of Phrase, as shown in Listing 7.4 (which also deletes
the calls to print() and related lines, though you are welcome to keep them if you
like since they will be executed only when the file is run as a script due to the if
__name__ == "__main__" trick).

Listing 7.4: Our initial Phrase class definition.
palindrome.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

def ispalindrome(string):
"""Return True for a palindrome, False otherwise."""
processed_content = string.lower()
return processed_content == reverse(processed_content)

Just as a reality check, it’s a good idea to run it in the REPL to catch any syntax errors,
etc.:

(venv) $ source venv/bin/activate
(venv) $ python3

174 Chapter 7: Objects and Classes

>>> import palindrome
>>> phrase = palindrome.Phrase("Racecar")
>>> phrase.content
'Racecar'
>>> palindrome.ispalindrome(phrase.content)
True

As a next step, we’ll move the ispalindrome() function into the Phrase object
itself, adding it as a method. (Because reverse() is of potentially general utility, we’ll
leave it outside the class. Note that it is available inside the class even if placed after
the class definition.) The only things we need to do are (1) change the method to
take zero arguments and (2) use the Phrase content instead of the variable string.
Exactly how to do this second step is shown in Listing 7.5.

Listing 7.5: Moving ispalindrome() into the Phrase class.
palindrome.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
processed_content = self.content.lower()
return processed_content == reverse(processed_content)

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

As with the assignment in Listing 7.2, Listing 7.5 shows that inside the ispalin-
drome() method we can access the value of content through self.

The result of Listing 7.5 is that we can now call ispalindrome() directly on a
phrase instance. After reloading the palindrome module as in Section 5.3, we can
confirm in the REPL:

>>> from importlib import reload
>>> reload(palindrome)
>>> phrase = palindrome.Phrase("Racecar")

7.1 Defining Classes 175

Figure 7.2: A Formula One palindrome.

>>> phrase.ispalindrome()
True

It worked! A phrase instance initialized with the string “Racecar” knows that it’s a
palindrome (Figure 7.24).

The palindrome detector in Listing 7.5 is fairly rudimentary, but we now have a
good foundation for building (and testing) a more sophisticated palindrome detector
in Chapter 8.

7.1.1 Exercises

1. By filling in the code in Listing 7.6, add a louder method to the Phrase object
that returns a LOUDER (all-caps) version of the content. Confirm in the REPL
that the result appears as in Listing 7.7. Hint: Use the appropriate string method
from Section 2.5.

2. Restore the if __name__ == "__main__"material from Listing 7.3 and confirm
that it is not run when importing palindrome.py.

4. Image courtesy of Msyaraafiq/Shutterstock.

https://en.wikipedia.org/wiki/Formula_One

176 Chapter 7: Objects and Classes

Listing 7.6: Making the content LOUDER.
palindrome.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
processed_content = self.content.lower()
return processed_content == reverse(processed_content)

def louder(self):
"""Make the phrase LOUDER."""
FILL IN

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

Listing 7.7: Using louder() in the REPL.

>>> reload(palindrome)
>>> p = palindrome.Phrase("yo adrian!")
>>> p.louder()
'YO ADRIAN!'

7.2 Custom Iterators
Previously in this tutorial, we’ve seen how to iterate through several different Python
objects, including strings (Section 2.6), lists (Section 3.5), and dictionaries (Sec-
tion 4.4.1). We also encountered iterators directly in Section 5.3. In this section, we’ll
learn how to add an iterator to a custom class as well.

Using the class defined in Listing 7.5, we can iterate through the content directly
(since it’s just a string):

>>> phrase = palindrome.Phrase("Racecar")
>>> for c in phrase.content:

7.2 Custom Iterators 177

... print(c)

...
R
a
c
e
c
a
r

This is roughly analogous to iterating through the keys of a dictionary using

for key in dictionary.keys(): # Not Pythonic
print(key)

But recall from Section 4.4.1 that this works without calling the keys()method:

for key in dictionary: # Pythonic
print(key)

It would be nice if we could do the same thing with a Phrase instance, like this:

phrase = palindrome.Phrase("Racecar")
for c in phrase:

print(c)

We can do this with a custom iterator. The general requirements for an iterator
are twofold:

1. An __iter__ method that does any necessary setup and then returns self

2. A __next__ method that returns the next element in the sequence

Note that, as with __init__, the methods to perform iteration use the double-
underscore convention to indicate that they are magic (dunder) methods used to
define the behavior of Python objects.

In our particular case, we also need the iter() function, which turns an ordinary
object into an iterator. We can see how this works with a string in the REPL:

>>> phrase_iterator = iter("foo") # makes a string iterator
>>> type(phrase_iterator) # use type() to find the type

178 Chapter 7: Objects and Classes

<class 'str_iterator'>
>>> next(phrase_iterator)
'f'
>>> next(phrase_iterator)
'o'
>>> next(phrase_iterator)
'o'
>>> next(phrase_iterator)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

We see from the type() function that iter() takes in a string and returns a string
iterator. Calling next() on the iterator yields the next element in the sequence until
it reaches the end, as indicated by the special StopIteration exception.

Our strategy for adding an iterator to the Phrase class looks like this:

1. In __iter__, create a phrase iterator based on the content attribute using
iter(), and then return self as required by the way Python iterators work.

2. In __next__, call next() on the phrase iterator and return the result.

Converting these steps to code gives the result in Listing 7.8.

Listing 7.8: Adding an iterator to the Phrase class.
palindrome.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
processed_content = self.content.lower()
return processed_content == reverse(processed_content)

def __iter__(self):
self.phrase_iterator = iter(self.content)
return self

def __next__(self):
return next(self.phrase_iterator)

7.3 Inheritance 179

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

With the code in Listing 7.8, we can reload the palindrome module to see if it
worked:

>>> reload(palindrome)
>>> phrase = palindrome.Phrase("Racecar")
>>> for c in phrase:
... print(c)
R
a
c
e
c
a
r

Yup! We can now iterate through a Phrase object without having to specify the
content attribute explicitly.

7.2.1 Exercise

1. Using the REPL, determine if list(phrase) works after the custom iterator
has been defined as in Listing 7.8. What about joining on the empty string using
"".join(phrase)?

7.3 Inheritance
When learning about Python classes, it’s useful to investigate the class hierarchy using
the __class__ and __mro__ attributes, where the latter stands for method resolution
order, which turns out to print the exact hierarchy we need.

Let’s look at an example of what this means in the case of a familiar type of object,
a string:

>>> s = "foobar"
>>> type(s) # one way to get the class
<class 'str'>
>>> s.__class__ # another way to get the class
<class 'str'>

https://stackoverflow.com/questions/2611892/how-to-get-the-parents-of-a-python-class
https://stackoverflow.com/questions/2611892/how-to-get-the-parents-of-a-python-class

180 Chapter 7: Objects and Classes

>>> s.__class__.__mro__
(<class 'str'>, <class 'object'>)

What this tells us is that a string is of class str, which in turn is of type object. The
latter is known as a superclass because it is usually thought of as being “above” the str
class.

A diagram of the resulting class hierarchy appears in Figure 7.3. We see here that
the superclass of str is object, which is where the hierarchy ends. This pattern is true
of every Python object: Trace back the class hierarchy far enough and you’ll always
reach object, which has no superclass itself.

The way Python’s class hierarchy works is that each class inherits the attributes and
methods of classes further up in the hierarchy. For example, we’ve just seen how to
find the class of an object of type str:

>>> "honey badger".__class__
<class 'str'>

But where does the __class__ attribute come from? The answer is that str inherits
__class__ from object itself:

>>> object().__class__
<class 'object'>

The class of each object with object as superclass stores its class name in __class__.

Figure 7.3: The inheritance hierarchy for the str class.

https://en.wiktionary.org/wiki/super#Latin

7.3 Inheritance 181

Let’s return now to the Phrase class we defined in Section 7.1. As presently
defined, Phrase has a content attribute, which in the terminology of object-oriented
programming is known as a has-a relationship. Such a design is known as composition,
where a Phrase is composed of a content attribute (possibly among other things).
Another way of looking at the situation is to say that a Phrase is a string, which is
known as an is-a relationship. In this case, we could arrange for the Phrase class to
inherit from Python’s native string class, called str, using code as in Listing 7.9.5 A
visual representation of the corresponding class hierarchies appears in Figure 7.4 and
Figure 7.5 (with Phrase in place of palindrome.Phrase for brevity).

Listing 7.9: Inheriting from str.
palindrome.rb

class Phrase(str):
"""A class to represent phrases."""
.
.
.

Figure 7.4: The class hierarchy for the Phrase class with composition.

5. As we’ll see in Section 7.4, the way to implement inheritance in Python is simply to include the superclass
as an argument (in this case, str).

https://en.wikipedia.org/wiki/Has-a
https://en.wikipedia.org/wiki/Is-a

182 Chapter 7: Objects and Classes

Figure 7.5: The class hierarchy for the Phrase class with inheritance from str.

Which design to adopt depends on our preferences as programmers and the gen-
eral practices of the corresponding programming community. In particular, different
language communities vary in their enthusiasm for inheriting from built-in objects
like str. For example, such a practice is common in the Ruby community, even to
the point of adding methods to the base String6 class itself.

In contrast, many members of the Python community prefer to use composition
in this case. In my survey of Pythonistas, some considered inheriting from str to
be fine, but a majority considered it to be unPythonic, with one even stating that it
seemed like a “Ruby developer writing Python.” Perhaps the best test is that I actu-
ally implemented it when preparing this chapter; having Phrase inherit from str
was fairly straightforward, but having TranslatedPhrase inherit from Phrase (Sec-
tion 7.4) was extremely tricky (whereas the Ruby and even JavaScript versions were
much easier). In order to avoid this complexity, and in accordance with my percep-
tion of generally preferred Python practices, this chapter uses composition instead of
inheritance.

6. String is the Ruby analogue of Python’s str class.

7.4 Derived Classes 183

7.3.1 Exercise

1. What are the class hierarchies for lists and dictionaries?

7.4 Derived Classes
Let’s build on the techniques in Section 7.3 to make a class that inherits from Phrase,
which we’ll call TranslatedPhrase. The purpose of this so-called derived class (or
subclass) is to reuse as much of Phrase as possible while giving us the flexibility to,
say, test if a translation is a palindrome.

We’ll start by factoring processed_content() into a separate method, as shown
in Listing 7.10. We’ll see in a moment why this is useful in the current context, though
it’s a nice refinement in any case. Note that Listing 7.10 also eliminates the custom
iterator from Section 7.2 for brevity, though you are welcome to retain it.

Listing 7.10: Factoring processed_content() into a method.
palindrome.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Process content for palindrome testing."""
return self.content.lower()

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

Now we’re ready to inherit from Phrase. We’ll start by including the name of
the superclass as an argument to the derived class:

class TranslatedPhrase(Phrase):
"""A class to represent phrases with translation."""
pass

184 Chapter 7: Objects and Classes

Our plan is to use TranslatedPhrase like this:

TranslatedPhrase("recognize", "reconocer")

where the first argument is the Phrase content and the second argument is the trans-
lation. As a result, a TranslatedPhrase instance needs a translation attribute,
which we’ll create using __init__ as with content in Listing 7.2:

class TranslatedPhrase(Phrase):
"""A class to represent phrases with translation."""

def __init__(self, content, translation):
Handle content here.
self.translation = translation

Note that __init__ takes two arguments, content and translation. We’ve
handled translation like a normal attribute, but what to do about content? The
answer is a special Python function called super():

class TranslatedPhrase(Phrase):
"""A class to represent phrases with translation."""

def __init__(self, content, translation):
super().__init__(content)
self.translation = translation

This calls the __init__ method for the superclass—in this case, Phrase. The result
is that the content attribute gets set as in Listing 7.10.

Putting everything together gives the TranslatedPhrase class shown in List-
ing 7.11.

Listing 7.11: Defining TranslatedPhrase.
palindrome.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

7.4 Derived Classes 185

def processed_content(self):
return self.content.lower()

class TranslatedPhrase(Phrase):
"""A class to represent phrases with translation."""

def __init__(self, content, translation):
super().__init__(content)
self.translation = translation

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

Because TranslatedPhrase inherits from the Phrase object, an instance of Trans-
latedPhrase automatically has all the methods of a Phrase instance, including
ispalindrome(). Let’s create a variable called frase (pronounced “FRAH-seh”,
Spanish for “phrase”) to see how it works (Listing 7.12).

Listing 7.12: Defining a TranslatedPhrase.

>>> reload(palindrome)
>>> frase = palindrome.TranslatedPhrase("recognize", "reconocer")
>>> frase.ispalindrome()
False

We see that frase has an ispalindrome() method as claimed, and that it returns
False because “recognize” isn’t a palindrome.

But what if we wanted to use the translation instead of the content for deter-
mining whether the translated phrase is a palindrome or not? Because we factored
processed_content() into a separate method (Listing 7.10), we can do this by
overriding the processed_content() method in TranslatedPhrase, as seen in
Listing 7.13.

Listing 7.13: Overriding a method.
palindrome.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

186 Chapter 7: Objects and Classes

def processed_content(self):
"""Process the content for palindrome testing."""
return self.content.lower()

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

class TranslatedPhrase(Phrase):
"""A class to represent phrases with translation."""

def __init__(self, content, translation):
super().__init__(content)
self.translation = translation

def processed_content(self):
"""Override superclass method to use translation."""
return self.translation.lower()

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

The key point in Listing 7.13 is that we’re using self.translation in the
TranslatedPhrase version of processed_content(), so Python knows to use that
one instead of the one in Phrase. Because the translation “reconocer” is a palindrome,
we get a different result from the one we got in Listing 7.12, as shown in Listing 7.14.

Listing 7.14: Calling ispalindrome() after overriding processed_content().

>>> reload(palindrome)
>>> frase = palindrome.TranslatedPhrase("recognize", "reconocer")
>>> frase.ispalindrome()
True

The resulting inheritance hierarchy appears as in Figure 7.6.
This practice of overriding gives us great flexibility. We can trace the execution

of frase.ispalindrome() for the two different cases:

Case 1: Listing 7.11 and Listing 7.12
1. frase.ispalindrome() calls ispalindrome() on the frase instance,

which is a TranslatedPhrase. Since there is no ispalindrome() method
in the TranslatedPhrase object, Python uses the one from Phrase.

7.4 Derived Classes 187

Phrase

object

TranslatedPhrase

Figure 7.6: The inheritance hierarchy for the TranslatedPhrase class.

2. The ispalindrome() method in Phrase calls the processed_content
method. Since there is no processed_content() method in the Trans-
latedPhrase object, Python uses the one from Phrase.

3. The result is to compare the processed version of the TranslatedPhrase
instance with its own reverse. Since “recognize” isn’t a palindrome, the result
is False.

Case 2: Listing 7.13 and Listing 7.14
1. frase.ispalindrome() calls ispalindrome() on the frase instance,

which is a TranslatedPhrase. As in Case 1, there is no ispalindrome()
method in the TranslatedPhrase object, so Python uses the one from
Phrase.

2. The ispalindrome() method in Phrase calls the processed_content
method. Since there now is a processed_content() method in the
TranslatedPhrase object, Python uses the one from TranslatedPhrase
instead of the one in Phrase.

188 Chapter 7: Objects and Classes

Figure 7.7: Narciso se reconoce. (Narcissus recognizes himself.)

3. The result is to compare the processed version of self.translation with
its own reverse. Since “reconocer” is a palindrome, the result is True.

¿Puedes «reconocer» un palíndromo en español? (Can you “reconocer” [recognize] a
palindrome in Spanish?) (See Figure 7.7.7)

7.4.1 Exercises

1. You may have noticed that the processed_content() method is only used
internally to the classes. Many object-oriented languages have a way of desig-
nating such methods as private, a practice known as encapsulation. Python doesn’t
have truly private methods, but it does have a convention for indicating them
using a leading underscore. Confirm that the classes still work after changing
processed_content() to _processed_content() as shown in Listing 7.15.

7. John William Waterhouse, “Echo and Narcissus”, 1903 (detail). Image courtesy of Archivart/Alamy Stock
Photo.

https://es.wikipedia.org/wiki/Narciso_(mitolog%C3%ADa)
https://en.wikipedia.org/wiki/Narcissus_(mythology)

7.4 Derived Classes 189

Listing 7.15: Using a convention for private methods.
palindrome.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def _processed_content(self):

"""Process the content for palindrome testing."""
return self.content.lower()

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""

return self._processed_content() == reverse(self._processed_content())

class TranslatedPhrase(Phrase):
"""A class to represent phrases with translation."""

def __init__(self, content, translation):
super().__init__(content)
self.translation = translation

def _processed_content(self):

"""Override superclass method to use translation."""
return self.translation.lower()

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

Note: Python has a second convention, known as name mangling, that uses two lead-
ing underscores. With this convention, Python automatically changes the name
of the method in a standard way so that it can’t be easily accessed through an
object instance.

2. It might make sense when iterating over a TranslatedPhrase to use the trans-
lation instead of the untranslated content. Arrange for this by overriding the
__iter__ method in the derived class (Listing 7.16). Confirm using the Python
interpreter that the updated iterator works as expected. (Note that Listing 7.16
incorporates the private method convention from the previous exercise.)

https://www.geeksforgeeks.org/name-mangling-in-python/
https://docs.python.org/3/tutorial/classes.html#private-variables

190 Chapter 7: Objects and Classes

Listing 7.16: Overriding the __iter__ method.
palindrome.py

class Phrase:
"""A class to represent phrases."""
.
.
.
def __iter__(self):

self.phrase_iterator = iter(self.content)

return self

def __next__(self):
return next(self.phrase_iterator)

class TranslatedPhrase(Phrase):
"""A class to represent phrases with translation."""

def __init__(self, content, translation):
super().__init__(content)
self.translation = translation

def _processed_content(self):
"""Override superclass method to use translation."""
return self.translation.lower()

def __iter__(self):

self.phrase_iterator = FILL_IN

return self

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

CHAPTER 8
Testing and Test-Driven
Development

Although rarely covered in introductory programming tutorials, automated testing is
one of the most important subjects in modern software development. Accordingly,
this chapter includes an introduction to testing in Python, including a first look at
test-driven development, or TDD.

Test-driven development came up briefly in Section 6.5.1, which promised that
we would use testing techniques to add an important capability to finding palindromes,
namely, being able to detect complicated palindromes such as “A man, a plan, a canal—
Panama!” (Figure 6.5) or “Madam, I’m Adam.” (Figure 8.11). This chapter fulfills that
promise.

As it turns out, learning how to write Python tests will also give us a chance
to learn how to create (and publish!) a Python package, another exceptionally useful
Python skill rarely covered in introductory tutorials.

Here’s our strategy for testing the current palindrome code and extending it to
more complicated phrases:

1. Set up our initial package (Section 8.1).

2. Write automated tests for the existing ispalindrome() functionality
(Section 8.2).

3. Write a failing test for the enhanced palindrome detector (RED) (Section 8.3).

1. “The Temptation of Adam” by Tintoretto. Image courtesy of Album/Alamy Stock Photo.

191

192 Chapter 8: Testing and Test-Driven Development

Figure 8.1: The Garden of Eden had it all—even palindromes.

4. Write (possibly ugly) code to get the test passing (GREEN) (Section 8.4).

5. Refactor the code to make it prettier, while ensuring that the test suite stays GREEN

(Section 8.5).

8.1 Package Setup
We saw as early as Section 1.5 that the Python ecosystem includes a large number
of self-contained software packages. In this section, we’ll create a package based on
the palindrome detector developed in Chapter 7. As part of this, we’ll set up the
beginnings of a test suite to test our code.

Python packages have a standard structure that can be visualized as shown in List-
ing 8.1 (which contains both generic elements like pyproject.toml and non-generic
elements like palindrome_YOUR_USERNAME_HERE). The structure includes some
configuration files (discussed in just a moment) and two directories: a src (source)
directory and a tests directory. The src directory in turn contains a directory for
the palindrome package, which includes a special required file called __init__.py

https://en.wikipedia.org/wiki/Garden_of_Eden

8.1 Package Setup 193

and the palindrome_YOUR_USERNAME_HERE module itself.2 (It is possible to flatten
the directory structure by eliminating the package directory, but the structure in
Listing 8.1 is fairly standard and is designed to mirror the official Packaging Python
Projects documentation.) The result of the structure in Listing 8.1 will be the ability
to include the Phrase class developed in Chapter 7 using the code

from palindrome_mhartl.phrase import Phrase

Listing 8.1: File and directory structure for a sample Python package.

python_package_tutorial/
├── LICENSE
├── pyproject.toml
├── README.md
├── src/
│ └── palindrome_YOUR_USERNAME_HERE/
│ ├── __init__.py
│ └── phrase.py
└── tests/

└── test_phrase.py

We can create the structure in Listing 8.1 by hand using a combination of mkdir
and touch, as shown in Listing 8.2.

Listing 8.2: Setting up a Python package.

$ cd ~/repos # Use ~/environment/repos on Cloud9
$ mkdir python_package_tutorial
$ cd python_package_tutorial
$ touch LICENSE pyproject.toml README.md
$ mkdir -p src/palindrome_YOUR_USERNAME_HERE
$ touch src/palindrome_YOUR_USERNAME_HERE/__init__.py
$ touch src/palindrome_YOUR_USERNAME_HERE/phrase.py
$ mkdir tests
$ touch tests/test_phrase.py

2. Technically, there are various distinctions between packages and modules in Python, but they are
rarely important. See this Stack Overflow comment (https://stackoverflow.com/questions/7948494/whats-
the-difference-between-a-python-module-and-a-python-package/49420164#49420164) for some of the
minutiae on the subject.

https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://packaging.python.org/en/latest/tutorials/packaging-projects/
https://stackoverflow.com/questions/7948494/whats-the-difference-between-a-python-module-and-a-python-package/49420164#49420164
https://stackoverflow.com/questions/7948494/whats-the-difference-between-a-python-module-and-a-python-package/49420164#49420164
https://stackoverflow.com/questions/7948494/whats-the-difference-between-a-python-module-and-a-python-package/49420164#49420164

194 Chapter 8: Testing and Test-Driven Development

At this point, we’ll fill in a few of the files with more information, includ-
ing the project configuration file pyproject.toml (Listing 8.3), a README file
README.md (Listing 8.4), and a LICENSE file (Listing 8.5).3 Some of these files are
only templates, so you should replace things like <username> in pyproject.toml
with your own username, the url field with the planned URL for your project, etc.
(Being able to do things like this is an excellent application of technical sophisti-
cation.) To see a concrete example of the files in this section, see the GitHub repo
(https://github.com/mhartl/python_package_tutorial) for my version of this package.

Listing 8.3: The project configuration for a Python package.
~/python_package_tutorial/project.toml

[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

[project]
name = "example_package_YOUR_USERNAME_HERE"
version = "0.0.1"
authors = [
{ name="Example Author", email="author@example.com" },

]
description = "A small example package"
readme = "README.md"
requires-python = ">=3.7"
classifiers = [

"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",

]

[project.urls]
"Homepage" = "https://github.com/pypa/sampleproject"
"Bug Tracker" = "https://github.com/pypa/sampleproject/issues"

3. Don’t worry about the details of files like pyproject.toml; I don’t understand them either. I just copied
them from the documentation (Box 1.2).

https://github.com/mhartl/python_package_tutorial
https://github.com/mhartl/python_package_tutorial
https://packaging.python.org/en/latest/tutorials/packaging-projects/

8.1 Package Setup 195

Listing 8.4: A README file for the package.
~/python_package_tutorial/README.md

Palindrome Package

This is a sample Python package for
[*Learn Enough Python to Be Dangerous*](https://www.learnenough.com/python)
by [Michael Hartl](https://www.michaelhartl.com/).

Listing 8.5: A license template for a Python package.
~/python_package_tutorial/LICENSE

Copyright (c) YYYY Your Name

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

With all that configuration done, we’re now ready to configure the environment
for development and testing. As in Section 1.3, we’ll use venv for the virtual envi-
ronment. We’ll also be using pytest for testing, which we can install using pip. The
resulting commands are shown in Listing 8.6.

196 Chapter 8: Testing and Test-Driven Development

Listing 8.6: Setting up the package environment (including testing).

$ deactivate # just in case a virtual env is already active
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install --upgrade pip
(venv) $ pip install pytest==7.1.3

At this point, as in Section 1.5.1, it’s a good idea to create a .gitignore file
(Listing 8.7), put the project under version control with Git (Listing 8.8), and create
a repository at GitHub (Figure 8.2). This last step will also give you URLs for the
configuration file in Listing 8.3.

Listing 8.7: Ignoring certain files and directories.
.gitignore

venv/

*.pyc
__pycache__/

instance/

.pytest_cache/

.coverage
htmlcov/

dist/
build/
*.egg-info/

.DS_Store

Listing 8.8: Initializing the package repository.

$ git init
$ git add -A
$ git commit -m "Initialize repository"

8.2 Initial Test Coverage 197

Figure 8.2: The package repository and README at GitHub.

8.1.1 Exercise

1. If you haven’t already, update Listing 8.3 with the right package name and fill the
url and Bug Tracker fields with the corresponding GitHub URLs (the tracker
URL is just the base URL plus /issues). Likewise, update the license template in
Listing 8.5 with your name and the current year. Commit and push your changes
up to GitHub.

8.2 Initial Test Coverage
Now that we’ve set up our basic package structure, we’re ready to get started testing.
Because the necessary pytest package has already been installed (Listing 8.6), we can
actually run the (nonexistent) tests immediately:

198 Chapter 8: Testing and Test-Driven Development

(venv) $ pytest
============================= test session starts =============================
platform darwin -- Python 3.10.6, pytest-7.1.3, pluggy-1.0.0
rootdir: /Users/mhartl/repos/python_package_tutorial
collected 0 items

============================ no tests ran in 0.00s ============================

Exact details will differ (and will be omitted in future examples for that reason), but
your results should be similar.

Now let’s write a minimal failing test and then get it to pass. Because we’ve already
created a tests directory with the test file test_phrase.py (Listing 8.2), we can
begin by adding the code shown in Listing 8.9.

Listing 8.9: The initial test suite. RED
test/test_phrase.py

def test_initial_example():
assert False

Listing 8.9 defines a function containing one assertion, which asserts that something
has a boolean value of True, in which case the assertion passes, and fails otherwise.
Because Listing 8.9 literally asserts that False is True, it fails by design:

Listing 8.10: RED

(venv) $ pytest
============================= test session starts ==============================
collected 1 item

tests/palindrome_test.py F [100%]

=================================== FAILURES ===================================
_____________________________ test_non_palindrome ______________________________

def test_non_palindrome():
> assert False
E assert False

tests/palindrome_test.py:4: AssertionError
=========================== short test summary info ============================
FAILED tests/palindrome_test.py::test_non_palindrome - assert False
============================== 1 failed in 0.01s ===============================

8.2 Initial Test Coverage 199

Figure 8.3: The RED state of the initial test suite.

By itself, this test isn’t useful, but it demonstrates the concept, and we’ll add a useful
test in just a moment.

Many systems, including mine, display failing tests in the color red, as shown in
Figure 8.3. Because of this, a failing test (or collection of tests, known as a test suite) is
often referred to as being RED. To help us keep track of our progress, the captions of
code listings corresponding to a failing test suite are labeled RED, as seen in Listing 8.9
and Listing 8.10.

To get from a failing to a passing state, we can change False to True in Listing 8.9,
yielding the code in Listing 8.11.

200 Chapter 8: Testing and Test-Driven Development

Listing 8.11: A passing test suite. GREEN
test/test_phrase.py

def test_initial_example():
assert True

As expected, this test passes:

Listing 8.12: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 1 item

tests/test_phrase.py . [100%]

============================== 1 passed in 0.00s ===============================

Because many systems display passing tests using the color green (Figure 8.4), a
passing test suite is often referred to as GREEN. As with RED test suites, the captions of
code listings corresponding to passing tests will be labeled GREEN (as seen in Listing 8.11
and Listing 8.12).

In addition to asserting that true things are True, it is often convenient to assert
that false things are not False, which we can accomplish using not (Section 2.4.1),
as shown in Listing 8.13.

Listing 8.13: A different way to pass. GREEN
test/test_phrase.py

def test_initial_example():
assert not False

8.2 Initial Test Coverage 201

Figure 8.4: A GREEN test suite.

As before, this test is GREEN:

Listing 8.14: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 1 item

tests/test_phrase.py . [100%]

============================== 1 passed in 0.00s ===============================

202 Chapter 8: Testing and Test-Driven Development

8.2.1 A Useful Passing Test

Having learned the basic mechanics of GREEN and RED tests, we’re now ready to write
our first useful test. Because we mainly want to test the Phrase class, our first step is
to fill in phrase.py with the source code for defining phrases. We’ll start with just
Phrase itself (without TranslatedPhrase), as shown in Listing 8.15. Note that for
brevity we’ve also omitted the iterator code from Section 5.3.

Listing 8.15: Defining Phrase in a package.
~/src/palindrome/phrase.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def processed_content(self):
"""Process the content for palindrome testing."""
return self.content.lower()

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

At this point, we’re ready to try importing Phrase into our test file. With the
package structure as in Listing 8.1, the Phrase class should be importable from
the palindrome package, which in turn should be available using palindrome.-
phrase.4 The result appears in Listing 8.16, which also replaces the example test from
Listing 8.13.

4. You wouldn’t necessarily have been able to guess this; it’s just the way Python packages work based on the
directory structure shown in Listing 8.1 (i.e., the phrase.py file is in a directory called palindrome).

8.2 Initial Test Coverage 203

Listing 8.16: Importing the palindrome package. RED
test/test_phrase.py

from palindrome_mhartl.phrase import Phrase

Unfortunately, the test suite doesn’t pass even though there’s no longer even a test that
could fail:

Listing 8.17: RED

(venv) $ pytest
============================= test session starts ==============================
collected 0 items / 1 error

==================================== ERRORS ====================================
__________________ ERROR collecting tests/test_phrase.py ___________________
ImportError while importing test module
'/Users/mhartl/repos/python_package_tutorial/tests/test_phrase.py'.
Hint: make sure your test modules/packages have valid Python names.
Traceback:
lib/python3.10/importlib/__init__.py:126: in import_module

return _bootstrap._gcd_import(name[level:], package, level)
tests/test_phrase.py:1: in <module>

from palindrome_mhartl.phrase import Phrase
E ImportError: cannot import name 'Phrase' from 'palindrome.palindrome'
(/Users/mhartl/repos/python_package_tutorial/src/palindrome/phrase.py)
=========================== short test summary info ============================
ERROR tests/test_phrase.py
!!!!!!!!!!!!!!!!!!!! Interrupted: 1 error during collection !!!!!!!!!!!!!!!!!!!!
=============================== 1 error in 0.03s ===============================

The issue is that our package needs to be installed in the local environment in order
to perform the import in Listing 8.16. Because it hasn’t been installed yet, the test
suite is in an error state. Although this is technically not the same as a failing state, an
error state is still often called RED.

To fix the error, we need to install the palindrome package locally, which we
can do using the command shown in Listing 8.18.

Listing 8.18: Installing an editable package locally.

(venv) $ pip install -e .

204 Chapter 8: Testing and Test-Driven Development

As you can learn from running pip install --help (or by viewing the pytest
documentation), the -e option installs the package in editable mode, so it will update
automatically when we edit the files. The location of the installation is in the current
directory, as indicated by the . (dot).

At this point, the test suite should be, if not quite GREEN, at least no longer RED:

(venv) $ pytest
============================= test session starts =============================
collected 0 items

============================ no tests ran in 0.00s ============================

Now we’re ready to start making some tests to check that the code in Listing 8.15
is actually working. We’ll start with a negative case, checking that a non-palindrome
is correctly categorized as such:

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

Here we’ve used assert to assert that "apple" should not be a palindrome
(Figure 8.55).

In similar fashion, we can test a literal palindrome (one that’s literally the same
forward and backward) with another assert:

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

Combining the code from the above discussion gives us the code shown in
Listing 8.19.

Listing 8.19: An actually useful test suite.
test/test_phrase.py

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

5. Image courtesy of Glayan/Shutterstock.

https://docs.pytest.org/en/7.1.x/explanation/goodpractices.html
https://docs.pytest.org/en/7.1.x/explanation/goodpractices.html

8.2 Initial Test Coverage 205

Figure 8.5: The word “apple”: not a palindrome.

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

Now for the real test (so to speak):

Listing 8.20: GREEN

(venv) $ pytest
============================= test session starts ==============================
platform darwin -- Python 3.10.6, pytest-7.1.3, pluggy-1.0.0
rootdir: /Users/mhartl/repos/python_package_tutorial
collected 2 items

tests/test_phrase.py .. [100%]

============================== 2 passed in 0.00s ===============================

The tests are now GREEN, indicating that they are in a passing state. That means our
code is working!

206 Chapter 8: Testing and Test-Driven Development

8.2.2 Pending Tests

Before moving on, we’ll add a couple of pending tests, which are placeholders/
reminders for tests we want to write. The way to write a pending test is to use the
skip() function, which we can include directly from the pytest package, as shown
in Listing 8.21.

Listing 8.21: Adding two pending tests. YELLOW

test/test_phrase.py

from pytest import skip

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

def test_mixed_case_palindrome():
skip()

def test_palindrome_with_punctuation():
skip()

We can see the result of Listing 8.21 by rerunning the test suite:

Listing 8.22: YELLOW

(venv) $ pytest
============================= test session starts ==============================
collected 4 items

tests/test_phrase.py ..ss [100%]

========================= 2 passed, 2 skipped in 0.00s =========================

Note how the test runner displays the letter s for each of the two “skips”. Sometimes
people speak of a test suite with pending tests as being YELLOW, in analogy with the

8.2 Initial Test Coverage 207

Figure 8.6: A YELLOW (pending) test suite.

red-yellow-green color scheme of traffic lights (Figure 8.6), although it’s also common
to refer to any non-RED test suite as GREEN.

Filling in the test for a mixed-case palindrome is left as an exercise (with a solution
shown in Listing 8.25), while filling in the second pending test and getting it to pass
is the subject of Section 8.3 and Section 8.4.

8.2.3 Exercises

1. By filling in the code in Listing 8.23, add a test for a mixed-case palindrome like
“RaceCar”. Is the test suite still GREEN (or YELLOW)?

208 Chapter 8: Testing and Test-Driven Development

2. In order to make 100% sure that the tests are testing what we think they’re testing,
it’s a good practice to get to a failing state (RED) by intentionally breaking the tests.
Change the application code to break each of the existing tests in turn, and then
confirm that they are GREEN again once the original code has been restored. An
example of code that breaks the test in the previous exercise (but not the other
tests) appears in Listing 8.24. (One advantage of writing the tests first is that this
RED–GREEN cycle happens automatically.)

Listing 8.23: Adding a test for a mixed-case palindrome.
test/test_phrase.py

from pytest import skip

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

def test_mixed_case_palindrome():
FILL_IN

def test_palindrome_with_punctuation():
skip()

Listing 8.24: Intentionally breaking a test. RED
src/palindrome/phrase.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def processed_content(self):
"""Process the content for palindrome testing."""
return self.content#.lower()

8.3 Red 209

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

8.3 Red
In this section, we’ll take the important first step toward being able to detect more
complex palindromes like “Madam, I’m Adam.” and “A man, a plan, a canal—
Panama!”. Unlike the previous strings we’ve encountered, these phrases—which
contain both spaces and punctuation—aren’t strictly palindromes in a literal sense,
even if we ignore capitalization. Instead of testing the strings as they are, we have to
figure out a way to select only the letters, and then see if the resulting letters are the
same forward and backward.

The code to do this is fairly tricky, but the tests for it are simple. This is one of
the situations where test-driven development particularly shines (Box 8.1). We can
write our simple tests, thereby getting to RED, and then write the application code any
way we want to get to GREEN (Section 8.4). At that point, with the tests protecting
us against undiscovered errors, we can change the application code with confidence
(Section 8.5).

Box 8.1: When to test

When deciding when and how to test, it’s helpful to understand why to test. In my
view, writing automated tests has three main benefits:

1. Tests protect against regressions, where a functioning feature stops working for
some reason.

2. Tests allow code to be refactored (i.e., changing its form without changing its
function) with greater confidence.

3. Tests act as a client for the application code, thereby helping determine its
design and its interface with other parts of the system.

210 Chapter 8: Testing and Test-Driven Development

Although none of the above benefits require that tests be written first, there
are many circumstances where test-driven development (TDD) is a valuable tool to
have in your kit. Deciding when and how to test depends in part on how comfort-
able you are writing tests; many developers find that, as they get better at writing
tests, they are more inclined to write them first. It also depends on how difficult
the test is relative to the application code, how precisely the desired features are
known, and how likely the feature is to break in the future.

In this context, it’s helpful to have a set of guidelines on when we should test
first (or test at all). Here are some suggestions based on my own experience:

• When a test is especially short or simple compared to the application code it
tests, lean toward writing the test first.

• When the desired behavior isn’t yet crystal clear, lean toward writing the
application code first, then write a test to codify the result.

• Whenever a bug is found, write a test to reproduce it and protect against
regressions, then write the application code to fix it.

• Write tests before refactoring code, focusing on testing error-prone code
that’s especially likely to break.

We’ll start by writing a test for a palindrome with punctuation, which just parallels
the tests from Listing 8.19:

def test_palindrome_with_punctuation():
assert palindrome.ispalindrome("Madam, I'm Adam.")

The updated test suite appears in Listing 8.25, which also includes the solution to a
couple of exercises in Listing 8.23 (Figure 8.76).

Listing 8.25: Adding a test for a punctuated palindrome. RED
test/test_phrase.py

from pytest import skip

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

6. Image courtesy of Msyaraafiq/Shutterstock.

8.3 Red 211

Figure 8.7: “RaceCar” is still a palindrome (ignoring case).

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

def test_mixed_case_palindrome():
assert Phrase("RaceCar").ispalindrome()

def test_palindrome_with_punctuation():
assert Phrase("Madam, I'm Adam.").ispalindrome()

As required, the test suite is now RED (output somewhat streamlined):

Listing 8.26: RED

(venv) $ pytest
============================= test session starts ==============================
collected 4 items

tests/test_phrase.py ...F [100%]

=================================== FAILURES ===================================
_______________________ test_palindrome_with_punctuation _______________________

def test_palindrome_with_punctuation():
> assert Phrase("Madam, I'm Adam.").ispalindrome()
E assert False

212 Chapter 8: Testing and Test-Driven Development

tests/test_phrase.py:14: AssertionError
=========================== short test summary info ============================
FAILED tests/test_phrase.py::test_palindrome_with_punctuation - assert False
========================= 1 failed, 3 passed in 0.01s ==========================

At this point, we can start thinking about how to write the application code and
get to GREEN. Our strategy will be to write a letters() method that returns only the
letters in the content string. In other words, the code

Phrase("Madam, I'm Adam.").letters()

should evaluate to this:

"MadamImAdam"

Getting to that state will allow us to use our current palindrome detector to determine
whether the original phrase is a palindrome or not.

Having made this specification, we can now write a simple test for letters()
by asserting that the result is as indicated:

assert Phrase("Madam, I'm Adam.").letters() == "MadamImAdam"

The new test appears with the others in Listing 8.27.

Listing 8.27: Adding a test for the letters() method. RED
test/test_phrase.py

from pytest import skip

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

def test_mixed_case_palindrome():
assert Phrase("RaceCar").ispalindrome()

8.3 Red 213

def test_palindrome_with_punctuation():
assert Phrase("Madam, I'm Adam.").ispalindrome()

def test_letters():
assert Phrase("Madam, I'm Adam.").letters() == "MadamImAdam"

Meanwhile, although we aren’t yet ready to define a working letters()method,
we can add a stub: a method that doesn’t work, but at least exists. For simplicity, we’ll
simply return nothing (using the special pass keyword), as shown in Listing 8.28.

Listing 8.28: A stub for the letters() method. RED
src/palindrome/phrase.py

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Return content for palindrome testing."""
return self.content.lower()

def letters(self):
"""Return the letters in the content."""
pass

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

The new test for letters() is RED as expected (which also shows that the pass
in Listing 8.28 just returns None):

214 Chapter 8: Testing and Test-Driven Development

Listing 8.29: RED

(venv) $ pytest
============================= test session starts ==============================
collected 5 items

tests/test_phrase.py ...FF [100%]

=================================== FAILURES ===================================
_______________________ test_palindrome_with_punctuation _______________________

def test_palindrome_with_punctuation():
> assert Phrase("Madam, I'm Adam.").ispalindrome()
E assert False

tests/test_phrase.py:14: AssertionError
_________________________________ test_letters _________________________________

def test_letters():
> assert Phrase("Madam, I'm Adam.").letters() == "MadamImAdam"
E assert None == 'MadamImAdam'
tests/test_phrase.py:17: AssertionError
=========================== short test summary info ============================
FAILED tests/test_phrase.py::test_palindrome_with_punctuation - assert False
FAILED tests/test_phrase.py::test_letters - assert None == 'MadamImAdam'
========================= 2 failed, 3 passed in 0.01s ==========================

With our two RED tests capturing the desired behavior, we’re now ready to move
on to the application code and try getting it to GREEN.

8.3.1 Exercise

1. Confirm that commenting out the letters() stub in Listing 8.28 yields a failing
state rather than an error state. (This behavior is relatively unusual, with many
other languages distinguishing between a non-working method and one that’s
missing altogether. In Python, though, the result is the same failing state in either
case.)

8.4 Green
Now that we have RED tests to capture the enhanced behavior of our palindrome
detector, it’s time to make them GREEN. Part of the philosophy of TDD is to get them

8.4 Green 215

passing without worrying too much at first about the quality of the implementation.
Once the test suite is GREEN, we can polish it up without introducing regressions
(Box 8.1).

The main challenge is implementing letters(), which returns a string of the
letters (but not any other characters) making up the content of the Phrase. In other
words, we need to select the characters that match a certain pattern. This sounds like
a job for regular expressions (Section 4.3).

At times like these, using an online regex matcher with a regex reference like the
one shown in Figure 4.5 is an excellent idea. Indeed, sometimes they make things a
little too easy, such as when the reference has the exact regex you need (Figure 8.8).

Figure 8.8: The exact regex we need.

https://regex101.com/

216 Chapter 8: Testing and Test-Driven Development

Let’s test it in the console to make sure it satisfies our criteria (using the
re.search() method introduced in Section 4.3):7

$ source venv/bin/activate
(venv) $ python3
>>> import re
>>> re.search(r"[a-zA-Z]", "M")
<re.Match object; span=(0, 1), match='M'>
>>> bool(re.search(r"[a-zA-Z]", "M"))
True
>>> bool(re.search(r"[a-zA-Z]", "d"))
True
>>> bool(re.search(r"[a-zA-Z]", ","))
False

Lookin’ good!
We’re now in a position to build up an array of characters that matches upper- or

lowercase letters. The most straightforward way to do this is with the for loop method
we first saw in Section 2.6. We’ll start with an array for the letters, and then iterate
through the content string, pushing each character onto the array (Section 3.4.3) if
it matches the letter regex:

Works but not Pythonic
the_letters = []
for character in self.content:

if re.search(r"[a-zA-Z]", character):
the_letters.append(character)

At this point, the_letters is an array of letters, which can be joined to form a
string of the letters in the original string:

"".join(the_letters)

Putting everything together gives the letters() method in Listing 8.30 (with a
highlight added to indicate the beginning of the new method).

7. Note that this won’t work for non-ASCII characters. If you need to match words containing such char-
acters, the Google search python unicode letter regular expression might be helpful. Thanks to reader Paul
Gemperle for pointing out this issue.

https://en.wikipedia.org/wiki/ASCII
https://www.google.com/search?q=python+unicode+letter+regular+expression

8.4 Green 217

Listing 8.30: A working letters() method (but with full suite still RED).
src/palindrome/phrase.py

import re

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Return content for palindrome testing."""
return self.content.lower()

def letters(self):
"""Return the letters in the content."""
the_letters = []
for character in self.content:

if re.search(r"[a-zA-Z]", character):
the_letters.append(character)

return "".join(the_letters)

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

Although the full test suite is still RED, our letters() test should now be GREEN,
as indicated by the number of failing tests changing from 2 to 1:

Listing 8.31: RED

(venv) $ pytest
============================= test session starts ==============================
platform darwin -- Python 3.10.6, pytest-7.1.3, pluggy-1.0.0
rootdir: /Users/mhartl/repos/python_package_tutorial
collected 5 items

tests/test_phrase.py ...F. [100%]

=================================== FAILURES ===================================

218 Chapter 8: Testing and Test-Driven Development

_______________________ test_palindrome_with_punctuation _______________________

def test_palindrome_with_punctuation():
> assert Phrase("Madam, I'm Adam.").ispalindrome()
E assert False

tests/test_phrase.py:14: AssertionError
=========================== short test summary info ============================
FAILED tests/test_phrase.py::test_palindrome_with_punctuation - assert False
========================= 1 failed, 4 passed in 0.01s ==========================

We can get the final RED test to pass by replacing self.content with self.
letters() in the processed_content()method. The result appears in Listing 8.32.

Listing 8.32: A working ispalindrome() method. GREEN
src/palindrome/phrase.py

import re

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Return content for palindrome testing."""
return self.letters().lower()

def letters(self):
"""Return the letters in the content."""
the_letters = []
for character in self.content:

if re.search(r"[a-zA-Z]", character):
the_letters.append(character)

return "".join(the_letters)

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

8.4 Green 219

Figure 8.9: Our detector finally understands Adam’s palindromic nature.

The result of Listing 8.32 is a GREEN test suite (Figure 8.98):

Listing 8.33: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 5 items

tests/test_phrase.py [100%]

============================== 5 passed in 0.00s ===============================

It may not be the prettiest code in the world, but this GREEN test suite means our code
is working!

8. Image courtesy of Album/Alamy Stock Photo.

220 Chapter 8: Testing and Test-Driven Development

8.4.1 Exercise

1. Using the same code shown in Listing 8.16, import the Phrase class into the
Python REPL and confirm directly that ispalindrome() can successfully detect
palindromes of the form “Madam, I’m Adam.”

8.5 Refactor
Although the code in Listing 8.32 is now working, as evidenced by our GREEN test
suite, it relies on a rather cumbersome for loop that appends to a list rather than
creating it all at once. In this section, we’ll refactor our code, which is the process of
changing the form of code without changing its function.

By running our test suite after any significant changes, we’ll catch any regressions
quickly, thereby giving us confidence that the final form of the refactored code is still
correct. Throughout this section, I suggest making changes incrementally and running
the test suite after each change to confirm that the suite is still GREEN.

Per Chapter 6, a more Pythonic way of creating a list of the sort in Listing 8.32
is to use a list comprehension. In particular, the loop in Listing 8.32 bears a strong
resemblance to the imperative_singles() function from Listing 6.4:

states = ["Kansas", "Nebraska", "North Dakota", "South Dakota"]
.
.
.
singles: Imperative version
def imperative_singles(states):

singles = []
for state in states:

if len(state.split()) == 1:
singles.append(state)

return singles

As we saw in Listing 6.5, this can be replaced using a list comprehension with a
condition:

singles: Functional version
def functional_singles(states):

return [state for state in states if len(state.split()) == 1]

8.5 Refactor 221

Let’s drop into the REPL to see how to do the same thing in the present case:

>>> content = "Madam, I'm Adam."
>>> [c for c in content]

['M', 'a', 'd', 'a', 'm', ',', ' ', 'I', "'", 'm', ' ', 'A', 'd', 'a', 'm', '.']

>>> [c for c in content if re.search(r"[a-zA-Z]", c)]
['M', 'a', 'd', 'a', 'm', 'I', 'm', 'A', 'd', 'a', 'm']
>>> "".join([c for c in content if re.search(r"[a-zA-Z]", c)])
'MadamImAdam'

We see here how combining a list comprehension with a condition and a join()
lets us replicate the current functionality of letters(). In fact, inside the argu-
ment to join() we can omit the square brackets and use a generator comprehension
(Section 6.4) instead:

>>> "".join(c for c in content if re.search(r"[a-zA-Z]", c))
'MadamImAdam'

This leads to the updated method shown in Listing 8.34. As is so often the case
with comprehension solutions, we have been able to condense the imperative solution
down to a single line.

Listing 8.34: Refactoring letters() down to a single line. GREEN
src/palindrome/phrase.py

import re

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Return content for palindrome testing."""
return self.letters().lower()

def letters(self):
"""Return the letters in the content."""

222 Chapter 8: Testing and Test-Driven Development

return "".join(c for c in self.content if re.search(r"[a-zA-Z]", c))

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

As noted in Chapter 6, functional programs are harder to build up incrementally,
which is one reason why it’s so nice to have a test suite to check that our changes had
their intended effect (that is, no effect at all):

Listing 8.35: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 5 items

tests/test_phrase.py [100%]

============================== 5 passed in 0.01s ===============================

Huzzah! Our test suite still passes, so our new one-line letters() method works.
This is a major improvement, but in fact there’s one more refactoring that repre-

sents a great example of the power of Python. Recall from Section 4.3 that regular
expressions have a findall() method that lets us select regex-matching characters
directly from a string:

>>> re.findall(r"[a-zA-Z]", content)
['M', 'a', 'd', 'a', 'm', 'I', 'm', 'A', 'd', 'a', 'm']
>>> "".join(re.findall(r"[a-zA-Z]", content))
'MadamImAdam'

By using findall() with the same regex we’ve been using throughout this section
and then joining on the empty string, we can simplify the application code even
further by eliminating the list comprehension, as shown in Listing 8.36.

https://en.wiktionary.org/wiki/huzzah

8.5 Refactor 223

Listing 8.36: Using re.findall. GREEN
src/palindrome/phrase.py

import re

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = content

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

def processed_content(self):
"""Return content for palindrome testing."""
return self.letters().lower()

def letters(self):
"""Return the letters in the content."""
return "".join(re.findall(r"[a-zA-Z]", self.content))

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

One more run of the test suite confirms that everything is still copacetic
(Figure 8.109):

Listing 8.37: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 5 items

tests/test_phrase.py [100%]

============================== 5 passed in 0.01s ===============================

9. Image courtesy of Album/Alamy Stock Photo.

https://en.wiktionary.org/wiki/copacetic#English

224 Chapter 8: Testing and Test-Driven Development

Figure 8.10: Still a palindrome after all our work.

8.5.1 Publishing the Python Package

As a final step, and in line with our philosophy of shipping (Box 1.5), in this final
section we’ll publish our palindrome package to the Python Package Index, also
known as PyPI.

Unusually among programming languages, Python actually has a dedicated test
package index called TestPyPI, which means we can publish (and use) our test package
without uploading to a real package index. Before proceeding, you’ll need to register
an account at TestPyPI and verify your email address.

Once you’ve set up your account, you’ll be ready to build and publish your pack-
age. To do this, we’ll be using the build and twine packages, which you should
install at this time:

(venv) $ pip install build==0.8.0
(venv) $ pip install twine==4.0.1

https://packaging.python.org/en/latest/guides/using-testpypi/
https://packaging.python.org/en/latest/guides/using-testpypi/
https://test.pypi.org/account/register/
https://test.pypi.org/account/register/

8.5 Refactor 225

The first step is to build the package as follows:

(venv) $ python3 -m build

This uses the information in pyproject.toml (Listing 8.3) to create a dist (“distri-
bution”) directory with files based on the name and version number of your package.
For example, on my system the dist directory looks like this:

(venv) $ ls dist
palindrome_mhartl-0.0.1.tar.gz
palindrome_mhartl-0.0.1-py3-none-any.whl

These are a tarball and wheel file, respectively, but the truth is that you don’t need to
know anything about these files specifically; all you need to know is that the build
step is necessary to publish a package to TestPyPI. (Being comfortable with ignoring
these sorts of details is a good sign of technical sophistication.)

Actually publishing the package involves using the twine command, which looks
like this (and is just copied from the TestPyPI documentation):10

(venv) $ twine upload --repository testpypi dist/*

(For future uploads, you may need to remove older versions of your package using rm
because TestPyPI doesn’t let you reuse filenames.)

At this point, your package is published and you can test it by installing it on your
local system. Because we already have an editable and testable version of the package
in our main venv (Listing 8.18), it’s a good idea to spin up a new venv in a temp
directory:

$ cd
$ mkdir -p tmp/test_palindrome
$ cd tmp/test_palindrome
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $

10. At this point, you will be prompted either for a username and password or for an API key. For the latter,
see the TestPyPI page on tokens for more information.

https://en.wikipedia.org/wiki/Tarball
https://realpython.com/python-wheels/
https://packaging.python.org/en/latest/guides/using-testpypi/
https://test.pypi.org/help/#file-name-reuse
https://test.pypi.org/manage/account/token/

226 Chapter 8: Testing and Test-Driven Development

Now you can install your package by using the --index-url option to tell pip to
use the test index instead of the real one:

(venv) $ pip install <package> --index-url https://test.pypi.org/simple/

For example, I can install my version of the test package, which is called
palindrome_mhartl, as follows:11

(venv) $ pip install palindrome_mhartl --index-url https://test.pypi.org/simple/

To test the installation, you can load the package in the REPL:

(venv) $ python3
>>> from palindrome_mhartl.phrase import Phrase
>>> Phrase("Madam, I'm Adam.").ispalindrome()
True

It works! (If it doesn’t work for you—which is a real possibility since so many things
can go wrong—the only recourse is to use your technical sophistication to resolve the
discrepancy.)

For a general Python package, you can continue adding features and making new
releases. All you need to do is increment the version number in pyproject.toml
to reflect the changes you’ve made. For more guidance on how to increment the
versions, I suggest learning a bit about the rules of so-called semantic versioning, or
semver (Box 8.2).

Box 8.2: Semver

You might have noticed in this section that we’ve used the version number 0.1.0 for
our new package. The leading zero indicates that our package is at an early stage,
often called “beta” (or even “alpha” for very early-stage projects).

11. The _mhartl part comes from the name setting in pyproject.toml, which for me is palindrome_-
mhartl. If you install my version of the package, you may notice that the version number is higher than
0.0.1, which is due to the aforementioned issue regarding package-name reuse. Because I’ve made quite a
few changes in the course of developing this tutorial, I’ve incremented the version number (version in
pyproject.toml) several times.

https://github.com/mhartl/python_package_tutorial/blob/main/pyproject.toml
https://test.pypi.org/help/#file-name-reuse
https://github.com/mhartl/python_package_tutorial/blob/main/pyproject.toml

8.5 Refactor 227

We can indicate updates by incrementing the middle number in the version,
e.g., from 0.1.0 to 0.2.0, 0.3.0, etc. Bugfixes are represented by incrementing the
rightmost number, as in 0.2.1, 0.2.2, etc., and a mature version (suitable for use by
others, and which may not be backward-compatible with prior versions) is indicated
by version 1.0.0.

After reaching version 1.0.0, further changes follow this same general pattern:
1.0.1 would represent minor changes (a “patch release”), 1.1.0 would represent
new (but backward-compatible) features (a “minor release”), and 2.0.0 would
represent major or backward-incompatible changes (a “major release”).

These numbering conventions are known as semantic versioning, or semver for
short. For more information, see semver.org.

Finally, if you ever go on to develop a package that isn’t just a test like the one
in this chapter, you can publish it to the real Python Package Index (PyPI). Although
there is ample PyPI documentation, there is little doubt in such a case that you will
also have ample opportunity to apply your technical sophistication.

8.5.2 Exercises

1. Let’s generalize our palindrome detector by adding the capability to detect integer
palindromes like 12321. By filling in FILL_IN in Listing 8.38, write tests for
integer non-palindromes and palindromes. Get both tests to GREEN using the code
in Listing 8.39, which adds a call to str to ensure the content is a string and
includes \d in the regex to match digits as well as letters. (Note that we have
updated the name of the letters() method accordingly.)

2. Bump the version number in pyproject.toml, commit and push your changes,
build your package with build, and upload it with twine. In your temp directory,
upgrade your package using the command in Listing 8.40 and confirm in the
REPL that integer-palindrome detection is working. Note: The backslash \ in
Listing 8.40 is a continuation character and should be typed literally, but the right
angle bracket > should be added by your shell program automatically and should
not be typed.

https://semver.org/
https://pypi.org/
https://packaging.python.org/en/latest/tutorials/installing-packages/

228 Chapter 8: Testing and Test-Driven Development

Listing 8.38: Testing integer palindromes. RED
tests/test_phrase.py

from pytest import skip

from palindrome_mhartl.phrase import Phrase

def test_non_palindrome():
assert not Phrase("apple").ispalindrome()

def test_literal_palindrome():
assert Phrase("racecar").ispalindrome()

def test_mixed_case_palindrome():
assert Phrase("RaceCar").ispalindrome()

def test_palindrome_with_punctuation():
assert Phrase("Madam, I'm Adam.").ispalindrome()

def test_letters_and_digits():
assert Phrase("Madam, I'm Adam.").letters_and_digits() == "MadamImAdam"

def test_integer_non_palindrome():
FILL_IN Phrase(12345).ispalindrome()

def test_integer_palindrome():
FILL_IN Phrase(12321).ispalindrome()

Listing 8.39: Adding detection of integer palindromes. GREEN
src/palindrome/phrase.py

import re

class Phrase:
"""A class to represent phrases."""

def __init__(self, content):
self.content = str(content)

def ispalindrome(self):
"""Return True for a palindrome, False otherwise."""
return self.processed_content() == reverse(self.processed_content())

8.5 Refactor 229

def processed_content(self):
"""Return content for palindrome testing."""
return self.letters_and_digits().lower()

def letters_and_digits(self):
"""Return the letters and digits in the content."""
return "".join(re.findall(r"[a-zA-Z]̣", self.content))

def reverse(string):
"""Reverse a string."""
return "".join(reversed(string))

Listing 8.40: Upgrading the test package.

(venv) $ pip install --upgrade your-package \
> --index-url https://test.pypi.org/simple/

This page intentionally left blank

CHAPTER 9
Shell Scripts

In this chapter, we’ll build on the foundation laid in Section 1.4 and write three
shell scripts of increasing sophistication. In the first two programs (Section 9.1 and
Section 9.2), we’ll take the Python package developed in Chapter 8 and put it to
work detecting palindromes drawn from two different sources: a file, and the Web. In
the process, we’ll learn how to read and write from files with Python, and also how to
read from a live Web URL. Finally, in Section 9.3, we’ll write a real-life utility program
adapted from one I once wrote for myself. It includes an introduction to manipulation
of the Document Object Model (or DOM) in a context outside a web browser.1

9.1 Reading from Files
Our first task is to read and process the contents of a file. The example is simple by
design, but it demonstrates the necessary principles, and gives you the background
needed to read more advanced documentation.

We’ll start by using curl to download a file of simple phrases (note that this should
be in the python_tutorial directory we used prior to Chapter 8, not the palindrome
package directory):

$ cd ~/repos/python_tutorial/
$ curl -OL https://cdn.learnenough.com/phrases.txt

1. The Document Object Model was introduced (https://www.learnenough.com/css-and-layout-tutorial/
introduction#sec-start_stylin) in Learn Enough CSS & Layout to Be Dangerous (https://www.
learnenough.com/css-and-layout) and is explored (https://www.learnenough.com/javascript-tutorial/
dom_manipulation#cha-dom_manipulation) in more depth in Learn Enough JavaScript to Be Dangerous
(https://www.learnenough.com/javascript).

231

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://www.learnenough.com/r/learn_enough_css/introduction/start_stylin#sec-start_stylin
https://www.learnenough.com/css-and-layout-tutorial/introduction#sec-start_stylin
https://www.learnenough.com/css-and-layout-tutorial/introduction#sec-start_stylin
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/r/learn_enough_javascript/dom_manipulation#cha-dom_manipulation
https://www.learnenough.com/javascript-tutorial/dom_manipulation#cha-dom_manipulation
https://www.learnenough.com/javascript-tutorial/dom_manipulation#cha-dom_manipulation
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript

232 Chapter 9: Shell Scripts

As you can confirm by running less phrases.txt at the command line, this
file contains a large number of phrases—some of which (surprise!) happen to be
palindromes.

Our specific task is to write a palindrome detector that iterates through each line
in this file and prints out any phrases that are palindromes (while ignoring others). To
do this, we’ll need to open the file and read its contents. We’ll then use the package
developed in Chapter 8 to determine which phrases are palindromes.

Python handles file operations natively through the open() function, which we
can use to create an open file, read the file contents with read(), and then close it
with close(), as shown in Listing 9.1.2

Listing 9.1: Opening a file in the REPL.

$ source venv/bin/activate
(venv) $ python3
>>> file = open("phrases.txt") # Not fully Pythonic
>>> text = file.read()
>>> file.close()

This reads the contents of phrases.txt and puts it in the text variable.
We can confirm that the assignment worked using the splitlines() method

introduced in Section 3.1 (Listing 3.2):

>>> len(text)
1373
>>> text.splitlines()[0] # Split on newlines and extract the 1st phrase.
'A butt tuba'

The second command here splits the text on the newline character \n and selects the
zeroth element, revealing the enigmatic first line of the file, “A butt tuba”.

As noted in Listing 9.1, opening a file as shown isn’t fully Pythonic. The reason is
that we have to remember to close the file every time we open one, which can cause
unpredictable behavior if we forget. We can avoid such issues by using the special with
keyword, together with as and the desired filename:

2. See the article “Reading and Writing Files in Python” (https://realpython.com/read-write-files-python/)
for more on this useful subject.

https://twitter.com/oatmeal/status/562818892121513984?lang=en
https://stackoverflow.com/questions/7395542/is-explicitly-closing-files-important
https://realpython.com/read-write-files-python/
https://realpython.com/read-write-files-python/

9.1 Reading from Files 233

>>> with open("phrases.txt") as file: # Pythonic
... text = file.read()
...
>>> len(text)
1373

This code arranges to close the file automatically at the end of the with statement,
and the result is the same as before.

Let’s take the ideas from the Python interpreter and put them in a script to detect
the palindromes in phrases.txt:

(venv) $ touch palindrome_file
(venv) $ chmod +x palindrome_file

We’ll then put in the necessary shebang line (Section 1.4) and require the palindrome
package, as shown in Listing 9.2. You should use your package if possible, but you can
use palindrome-mhartl if you didn’t publish your own in Section 8.5.1:

(venv) $ pip install palindrome_mhartl --index-url https://test.pypi.org/simple/

Listing 9.2: Including the shebang line and package.
palindrome_file

#!/usr/bin/env python3
from palindrome_mhartl.phrase import Phrase

print("hello, world!")

The final line in Listing 9.2 is a habit I have of always making sure a script is in a
working state before writing any more code:

(venv) $./palindrome_file
hello, world!

In earlier versions of this tutorial, this command actually failed, which led me toward
changes that got it to work straightaway. This is the great thing about “hello, world!”—
the code is so simple that, if it fails, you know something else must have gone wrong.

https://twitter.com/mhartl/status/998638994949734400

234 Chapter 9: Shell Scripts

The script to read and detect palindromes from phrases.txt is fairly straight-
forward: We open the file, split the contents on newlines, and iterate through the
resulting array, printing any line that’s a palindrome. The result, which at this stage
you should aspire to read fairly easily, appears in Listing 9.3.

Listing 9.3: Reading and processing the contents of a file.
palindrome_file

#!/usr/bin/env python3
from palindrome_mhartl.phrase import Phrase

with open("phrases.txt") as file:
text = file.read()
for line in text.splitlines(): # Arguably not Pythonic

if Phrase(line).ispalindrome():
print(f"palindrome detected: {line}")

Running the script at the command line confirms that there are quite a few
palindromes in the file:

(venv) $./palindrome_file
.
.
.
palindrome detected: Dennis sinned.
palindrome detected: Dennis and Edna sinned.
palindrome detected: Dennis, Nell, Edna, Leon, Nedra, Anita, Rolf, Nora,
Alice, Carol, Leo, Jane, Reed, Dena, Dale, Basil, Rae, Penny, Lana, Dave,
Denny, Lena, Ida, Bernadette, Ben, Ray, Lila, Nina, Jo, Ira, Mara, Sara,
Mario, Jan, Ina, Lily, Arne, Bette, Dan, Reba, Diane, Lynn, Ed, Eva, Dana,
Lynne, Pearl, Isabel, Ada, Ned, Dee, Rena, Joel, Lora, Cecil, Aaron, Flora,
Tina, Arden, Noel, and Ellen sinned.
palindrome detected: Go hang a salami, I'm a lasagna hog.
palindrome detected: level
palindrome detected: Madam, I'm Adam.
palindrome detected: No "x" in "Nixon"
palindrome detected: No devil lived on
palindrome detected: Race fast, safe car
palindrome detected: racecar
palindrome detected: radar
palindrome detected: Was it a bar or a bat I saw?
palindrome detected: Was it a car or a cat I saw?

9.1 Reading from Files 235

Figure 9.1: Dennis, Nell, Edna, Leon, Nedra, and many others sinned.

palindrome detected: Was it a cat I saw?
palindrome detected: Yo, banana boy!
palindrome detected:

Among others, we see a rather elaborate expansion on the simple palindrome “Dennis
sinned” (Figure 9.13)!

This is a great start, but in fact files have a readlines() method that reads all
the lines by default, without needing the call to splitlines(). Applying this to
Listing 9.3 gives Listing 9.4.

Listing 9.4: Switching to readlines().
palindrome_file

#!/usr/bin/env python3
from palindrome_mhartl.phrase import Phrase

3. Image courtesy of Historical Images Archive/Alamy Stock Photo.

https://en.wikipedia.org/wiki/Sinners_in_the_Hands_of_an_Angry_God

236 Chapter 9: Shell Scripts

with open("phrases.txt") as file:
for line in file.readlines(): # Pythonic

if Phrase(line).ispalindrome():
print(f"palindrome detected: {line}")

You should confirm at the command line that the result is almost the same:

(venv) $./palindrome_file
.
.
.
palindrome detected: Was it a bar or a bat I saw?

palindrome detected: Was it a car or a cat I saw?

palindrome detected: Was it a cat I saw?

palindrome detected: Yo, banana boy!

There are now extra newlines between the palindrome lines, which is due to each
element in open(...).readlines() actually including the newline.

In order to replicate the output from Listing 9.3, we can apply the common and
useful technique of stripping each string, which simply removes any whitespace at the
beginning or end, as we can see in the interpreter:

>>> greeting = " hello, world! \n"
>>> greeting.strip()
'hello, world!'

Applying this technique to the code in Listing 9.4 yields Listing 9.5.4 (The version
with readlines() is probably the most Pythonic solution, but it comes at the cost of
a call to strip(), so the splitlines() version in Listing 9.3 is defensible as well.)

Listing 9.5: Removing a newline with strip().
palindrome_file

#!/usr/bin/env python3
from palindrome_mhartl.phrase import Phrase

4. Using the end="" argument to print() (Section 2.3) would work as well.

9.1 Reading from Files 237

with open("phrases.txt") as file:
for line in file.readlines():

if Phrase(line).ispalindrome():
print(f"palindrome detected: {line.strip()}")

At this point, the output of palindrome_file should be just the palindrome lines,
with no extra newlines and no blank palindrome at the end:

(venv) $./palindrome_file
.
.
.
palindrome detected: Was it a bar or a bat I saw?
palindrome detected: Was it a car or a cat I saw?
palindrome detected: Was it a cat I saw?
palindrome detected: Yo, banana boy!

Finally, let’s look at how to write files in Python. It could hardly be simpler; the
template looks like this:

file.write(content_string)

We can build up a content string consisting of palindromes by capturing the output of
readlines() in a separate variable (called lines) and then using a list comprehension
with a condition (Section 6.2):

with open("phrases.txt") as file:
lines = file.readlines()
for line in lines:

if Phrase(line).ispalindrome():
print(f"palindrome detected: {line.strip()}")

palindromes = [line for line in lines if Phrase(line).ispalindrome()]

Joining the palindromes list on the empty string and writing the resulting string to
a palindromes_file.txt file is then just two lines total, as seen in Listing 9.6.

Listing 9.6: Writing out the palindromes.
palindrome_file

#!/usr/bin/env python3
from palindrome_mhartl.phrase import Phrase

238 Chapter 9: Shell Scripts

with open("phrases.txt") as file:
lines = file.readlines()
for line in lines:

if Phrase(line).ispalindrome():
print(f"palindrome detected: {line.strip()}")

palindromes = [line for line in lines if Phrase(line).ispalindrome()]
with open("palindromes_file.txt", "w") as file:

file.write("".join(palindromes))

Running the script then writes out the file as a side effect:

(venv) $./palindrome_file
.
.
.
palindrome detected: Madam, I'm Adam.
palindrome detected: No "x" in "Nixon"
palindrome detected: No devil lived on
palindrome detected: Race fast, safe car
palindrome detected: racecar
palindrome detected: radar
palindrome detected: Was it a bar or a bat I saw?
palindrome detected: Was it a car or a cat I saw?
palindrome detected: Was it a cat I saw?
palindrome detected: Yo, banana boy!
(venv) $ tail palindromes_file.txt

Madam, I'm Adam.
No "x" in "Nixon"
No devil lived on
Race fast, safe car
racecar
radar
Was it a bar or a bat I saw?
Was it a car or a cat I saw?
Was it a cat I saw?
Yo, banana boy!

9.1.1 Exercises

1. You may have noticed some duplication in Listing 9.6: We first detect all palin-
dromes, writing them out one at a time, and then find a list of all palindromes
again (using a list comprehension). Show that we can eliminate this duplication

9.1 Reading from Files 239

by replacing the whole file with the more compact code shown in Listing 9.7.
(Because the palindrome content itself already ends with a newline, Listing 9.7
calls print() with the end="" option mentioned in Section 2.3 to prevent a
duplicate newline.)

2. One common pattern in Python shell scripts is to put the main steps in a sep-
arate function (often called main()) and then call the function only when the
file itself is called as a shell script. (See this video (https://www.youtube.com/
watch?v=g_wlZ9IhbTs) for more.) Using the special syntax introduced in Sec-
tion 7.1, show that the shell script in Listing 9.7 can be converted to Listing 9.8.
Does it give the same result when executed at the command line?

3. Some Python programmers even prefer to put the content of the script in a dif-
ferent function and then have main() call that function, as seen in Listing 9.9.
Show that this code still produces the same output as before.

Listing 9.7: Writing out palindromes the unduplicated way.
palindrome_file

#!/usr/bin/env python3
from palindrome_mhartl.phrase import Phrase

with open("phrases.txt") as file:
palindromes = [line for line in file.readlines()

if Phrase(line).ispalindrome()]

palindrome_content = "".join(palindromes)
print(palindrome_content, end="")

with open("palindromes_file.txt", "w") as file:
file.write(palindrome_content)

Listing 9.8: Calling main() only at the command line.
palindrome_file

#!/usr/bin/env python3
from palindrome_mhartl.phrase import Phrase

def main():

https://www.youtube.com/watch?v=g_wlZ9IhbTs
https://www.youtube.com/watch?v=g_wlZ9IhbTs
https://www.youtube.com/watch?v=g_wlZ9IhbTs

240 Chapter 9: Shell Scripts

with open("phrases.txt") as file:
palindromes = [line for line in file.readlines()

if Phrase(line).ispalindrome()]

palindrome_content = "".join(palindromes)
print(palindrome_content, end="")

with open("palindromes_file.txt", "w") as file:
file.write(palindrome_content)

if __name__ == "__main__":
main()

Listing 9.9: Adding another layer between the script and main().
palindrome_file

#!/usr/bin/env python3
from palindrome_mhartl.phrase import Phrase

def main():
detect_palindromes()

def detect_palindromes():
with open("phrases.txt") as file:

palindromes = [line for line in file.readlines()
if Phrase(line).ispalindrome()]

palindrome_content = "".join(palindromes)
print(palindrome_content, end="")

with open("palindromes_file.txt", "w") as file:
file.write(palindrome_content)

if __name__ == "__main__":
main()

9.2 Reading from URLs
In this section, we’ll write a script whose effect is identical to the one in Section 9.1,
except that it reads the phrases.txt file directly from its public URL. By itself, the
program doesn’t do anything fancy, but realize what a miracle this is: The ideas aren’t

9.2 Reading from URLs 241

specific to the URL we’re hitting, which means that after this section you’ll have the
power to write programs to access and process practically any site on the Web. (This
practice, sometimes called “web scraping”, should be done with due consideration
and caution.)

The main trick is to use the Requests package, which we can install using
pip:5

(venv) $ pip install requests==2.28.1

As noted in the documentation, Requests includes a get() method that can just,
well, get a URI (also called a URL; the difference rarely matters):

>>> import requests
>>> url = "https://cdn.learnenough.com/phrases.txt"
>>> response = requests.get(url)
>>> response.text
'A butt tuba\nA bad penny always turns up.\n...Yo, banana boy!\n'

We see here that the response object has an attribute called text that includes the
text returned by requests.get(), which we can combine with the splitlines()
method from Listing 9.3 to extract the lines.6

We can create our script as in Section 9.1:

$ touch palindrome_url
$ chmod +x palindrome_url

The implementation then broadly parallels the code in Listing 9.3, just without the
call to with, as shown in Listing 9.10.

5. Older Python code often uses the urllib.request module from the urllib package, but this isn’t as
user-friendly as Requests, and indeed the urllib.request documentation itself explicitly recommends
Requests (“The Requests package is recommended for a higher-level HTTP client interface.”).

6. There is also an iter_lines() method that returns an iterator that iterates over the lines, which at first
glance effectively replicates the readlines() solution in Listing 9.5. As it turns out, though, the result-
ing elements are returned as raw bytes and have to be decoded before they can be used. As a result, the
splitlines() solution is actually a little simpler in this case.

https://en.wikipedia.org/wiki/Web_scraping
http://www.storybench.org/to-scrape-or-not-to-scrape-the-technical-and-ethical-challenges-of-collecting-data-off-the-web/
http://www.storybench.org/to-scrape-or-not-to-scrape-the-technical-and-ethical-challenges-of-collecting-data-off-the-web/
https://requests.readthedocs.io/en/latest/
https://requests.readthedocs.io/en/latest/user/quickstart/
https://danielmiessler.com/study/url-uri/
https://docs.python.org/3/library/urllib.request.html#module-urllib.request
https://en.wikipedia.org/wiki/Byte
https://docs.python.org/3/library/stdtypes.html#bytes.decode

242 Chapter 9: Shell Scripts

Listing 9.10: Reading from a URL.
palindrome_url

#!/usr/bin/env python3
import requests

from palindrome_mhartl.phrase import Phrase

URL = "https://cdn.learnenough.com/phrases.txt"

for line in requests.get(URL).text.splitlines():
if Phrase(line).ispalindrome():

print(f"palindrome detected: {line}")

At this point, we’re ready to try the script out at the command line:

$./palindrome_url
.
.
.
palindrome detected: Madam, I'm Adam.
palindrome detected: No "x" in "Nixon"
palindrome detected: No devil lived on
palindrome detected: Race fast, safe car
palindrome detected: racecar
palindrome detected: radar
palindrome detected: Was it a bar or a bat I saw?
palindrome detected: Was it a car or a cat I saw?
palindrome detected: Was it a cat I saw?
palindrome detected: Yo, banana boy!

Amazing! The result is almost exactly as we saw in Section 9.1, but this time, we got
the data right off the live Web.

There’s actually one little detail left, which is that the em dash in “A man, a
plan, a canal—Panama!” didn’t quite come out right (Figure 9.2). This is a hint of
a character encoding issue, and a little investigation shows that requests.get()
can also download using a content attribute that can be decoded to include char-
acters like the em dash we need. Specifically, we can indicate that the character
encoding is UTF-8 using the decode() method, as shown in Listing 9.11. (We’ll
meet UTF-8 again in Chapter 10, where we’ll include it as a standard element on
the HTML web page; it is also covered in Learn Enough HTML to Be Dangerous
(https://www.learnenough.com/html).)

https://en.wikipedia.org/wiki/Dash#Em_dash
https://en.wikipedia.org/wiki/UTF-8
https://www.learnenough.com/html
https://www.learnenough.com/html

9.2 Reading from URLs 243

Figure 9.2: The wrong character.

Listing 9.11: Decoding the content.
palindrome_url

#!/usr/bin/env python3
import requests

from palindrome_mhartl.phrase import Phrase

URL = "https://cdn.learnenough.com/phrases.txt"

for line in requests.get(URL).content.decode("utf-8").splitlines():
if Phrase(line).ispalindrome():

print(f"palindrome detected: {line}")

244 Chapter 9: Shell Scripts

The result is the em dash we are looking for:

$./palindrome_url
.
.
.
palindrome detected: A man, a plan, a canal--Panama!
.
.
.

By the way, if you actually visit the URL cdn.learnenough.com/phrases.txt, you’ll
find that in fact it forwards (using a 301 redirect) to a page on Amazon’s Simple Storage
Service (S3), as seen in Figure 9.3. Luckily, the requests.get() method we used in
Listing 9.10 automatically follows such redirects, so the script worked as written, but

Figure 9.3: Visiting the phrase URL.

https://cdn.learnenough.com/phrases.txt
https://en.wikipedia.org/wiki/HTTP_301

9.3 DOM Manipulation at the Command Line 245

this behavior is not universal among URL libraries. Depending on the exact library
you use, you might have to manually configure the web requester to follow redirects.

9.2.1 Exercises

1. In analogy with Listing 9.6, add code to Listing 9.10 that writes out a file
called palindromes_url.txt. Confirm using the diff utility (https://www.
learnenough.com/command-line-tutorial/manipulating_files#sec-redirecting_
and_appending) that the output is identical to the palindromes_file.txt file
from Section 9.1.

2. Modify Listing 9.10 to use the more compact programming style seen in
Listing 9.7 (including the step to write out the file).

9.3 DOM Manipulation at the Command Line
In this final section, we’re going to put the URL-reading tricks we learned in Sec-
tion 9.2 to good use by writing a version of an actual utility script I once wrote for
myself. To begin, I’ll explain the context in which the script arose, and the problem
it solves.

In recent years, there has been an explosion in the resources available for learning
foreign languages, including things like Duolingo, Google Translate, and native OS
support for multilingual text-to-speech (TTS). A few years ago, I decided to take
advantage of this opportunity to brush up on my high-school/college Spanish.

One of the resources I found myself turning to was Wikipedia, with its huge
number of articles in languages other than English. In particular, I discovered how
useful it was to copy text from Spanish-language Wikipedia (Figure 9.4) and drop
it into Google Translate (Figure 9.5). At that point, I could use the text-to-speech
from either Google Translate (the red square in Figure 9.5) or macOS to hear the
words spoken in Spanish, while following along with either the native language or
the translation. Es muy útil.
After a while, I noticed two consistent sources of friction:

1. Copying a large number of paragraphs by hand was cumbersome.

2. Hand-copying text often selected things that I didn’t want, particularly reference
numbers, which the TTS system duly pronounced, resulting in random numbers

https://www.learnenough.com/r/learn_enough_command_line/manipulating_files/redirecting_and_appending#sec-redirecting_and_appending
https://www.learnenough.com/command-line-tutorial/manipulating_files#sec-redirecting_and_appending
https://www.learnenough.com/command-line-tutorial/manipulating_files#sec-redirecting_and_appending
https://www.learnenough.com/command-line-tutorial/manipulating_files#sec-redirecting_and_appending
https://www.duolingo.com/
https://translate.google.com/
https://translate.google.com/#auto/en/Es%20muy%20%C3%BAtil

246 Chapter 9: Shell Scripts

Figure 9.4: Un artículo sobre Python.

being spoken (e.g., “entre otros.2[dos] Se trata de un lenguaje” = “among others.2
It is treated as a language”. ¿Qué pasó?).

Friction like this has inspired many a utility script, and thus was born wikp
(“Wikipedia paragraphs”), a program to download a Wikipedia article’s HTML
source, extract its paragraphs, and eliminate its reference numbers, dumping all the
results to the screen.

The original wikp program was written in Ruby; what appears here is a slightly
simplified version. Let’s think about how it will work.

We already know from Listing 9.10 how to download the source of a URL. The
remaining tasks are then to:

1. Take an arbitrary URL argument at the command line.

2. Manipulate the downloaded HTML using the DOM (Figure 9.6).

https://translate.google.com/#auto/en/Un%20art%C3%ADculo%20sobre%20Python
https://translate.google.com/#auto/en/%C2%BFQu%C3%A9%20pas%C3%B3%3F

9.3 DOM Manipulation at the Command Line 247

Figure 9.5: An article about Python dropped into Google Translate.

3. Remove the references.

4. Collect and print the paragraphs.

Let’s get started by creating the initial script:

$ touch wikp
$ chmod +x wikp

Now we’re ready to get going on the main program. For each task above, I’ll include
the kind of Google search you might use to figure out how to do it.

There are several options for processing HTML in Python; one of the most pow-
erful and highly regarded ones goes by the rather whimsical name Beautiful Soup
(a reference to a song from Chapter 9 of Alice’s Adventures in Wonderland)7 that can

7. What this song has to do with HTML processing is anybody’s guess.

https://www.gutenberg.org/files/11/11-h/11-h.htm#chap09
https://standardebooks.org/ebooks/lewis-carroll/alices-adventures-in-wonderland/john-tenniel

248 Chapter 9: Shell Scripts

Figure 9.6: The Document Object Model (DOM).

manipulate the DOM (python dom manipulation). We’ll use version 4, which is
compatible with Python 3:

(venv) $ pip install beautifulsoup4==4.11.1

The Beautiful Soup package itself is available via the abbreviated name bs4.
Our principal task is sometimes known as “HTML parsing”, and Beautiful Soup

comes equipped with a powerful HTML parser. The official Beautiful Soup website
has a bunch of useful tutorials; for our purposes, the most important method looks
like Listing 9.12.

Listing 9.12: Parsing some HTML.

>>> from bs4 import BeautifulSoup
>>> html = '<p>lorem¹</p><p>ipsum</p>'
>>> doc = BeautifulSoup(html)

https://www.google.com/search?q=python+dom+manipulation
https://developer.mozilla.org/en-US/docs/Glossary/Parse
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

9.3 DOM Manipulation at the Command Line 249

The resulting doc variable is a Beautiful Soup document, in this case with two
paragraphs, one of which contains a sup (superscript) tag with CSS class reference.

Beautiful Soup documents can be manipulated in any number of ways. My
favorite method for selecting elements is find_all, which lets us pull out HTML
tags (beautiful soup select html tag) using an intuitive syntax. For example:

>>> doc.find_all("p")
[<p>lorem¹</p>, <p>ipsum</p>]

This operation is so common that it’s the default when we pass an argument directly
to a document object:

>>> doc("p")
[<p>lorem¹</p>, <p>ipsum</p>]
>>> len(doc("p"))
2
>>> doc("p")[0].text
'lorem1'

We see from the final line that we can get the text of a particular result using the
text property, which in this case includes the reference number 1. Meanwhile, we
can grab the elements (in this case, only one) with a "reference" class using the
class_ option:8

>>> doc("sup", class_="reference")
[¹]
>>> len(doc("sup", class_="reference"))
1

Perhaps you can see where we’re going with this. We’re now in a position to parse
an HTML document and select all the paragraphs and all the references (assuming, of
course, they have class reference). All we need now is a way to remove the references
from the document. As it happens, this is not hard at all using the decompose()
method (beautiful soup remove element), as seen in Listing 9.13.

8. The extra underscore in class_ is included because class (no underscore) is reserved for creating Python
classes (Chapter 7). By the way, doc.select(".reference") selects all the elements (not just sup tags)
with class "reference" using much the same “dot” notation used by CSS itself.

https://www.google.com/search?q=beautiful+soup+select+html+tag
https://www.google.com/search?q=beautiful+soup+remove+element

250 Chapter 9: Shell Scripts

Listing 9.13: Removing DOM elements.

>>> for reference in doc("sup", class_="reference"):
... reference.decompose()
...
>>> doc
<html><body><p>lorem</p><p>ipsum</p></body></html>

Then, we can collect all the paragraph content using doc("p") and print each
paragraph (Listing 9.14).

Listing 9.14: Printing paragraph content.

>>> for paragraph_tag in doc("p"):
... print(paragraph_tag.text)
...
lorem
ipsum

We’re now ready to put together the script itself. We’ll start by taking in the URL
as a command-line argument using the sys (system) library (python script command
line argument), as seen in Listing 9.15. Note that we’ve included a print line as a
temporary way to make sure the argument is being accepted properly. We’ve also used
a lowercase name (url) since, unlike in Section 9.2, it is now a variable and not a
constant. (Either URL or url would work; the choice of case is just a convention.)

Listing 9.15: Accepting a command-line argument.
wikp

#!/usr/bin/env python3
import sys

import requests
from bs4 import BeautifulSoup

Return the paragraphs from a Wikipedia link, stripped of reference numbers.
Especially useful for text-to-speech (both native and foreign).

Get URL from the command line.
url = sys.argv[1]
print(url)

https://www.google.com/search?q=python+script+command+line+argument
https://www.google.com/search?q=python+script+command+line+argument

9.3 DOM Manipulation at the Command Line 251

We can confirm that Listing 9.15 works as advertised:

$./wikp https://es.wikipedia.org/wiki/Python
https://es.wikipedia.org/wiki/Python

Next, we need to open the URL and read its contents, which we learned in
Section 9.2 (Listing 9.11) can be done using the following code:

requests.get(url).content.decode("utf-8")

Feeding the result of this into BeautifulSoup() then gives Listing 9.16. Note that
we’ve explicitly specified the parser to be for HTML, which is the default but can
give rise to warning messages if omitted.

Listing 9.16: Parsing the live URL with Beautiful Soup.
wikp

#!/usr/bin/env python3
import sys

import requests
from bs4 import BeautifulSoup

Return the paragraphs from a Wikipedia link, stripped of reference numbers.
Especially useful for text-to-speech (both native and foreign).

Get URL from the command line.
url = sys.argv[1]
Create Beautiful Soup document from live URL.
content = requests.get(url).content.decode("utf-8")
doc = BeautifulSoup(content, features="html.parser")

Now all we need to do is apply the reference removal and paragraph col-
lection code from Listing 9.13 and Listing 9.14. As hinted above, Wikipedia
identifies its references with the .reference class, which we can confirm using
a web inspector (https://www.learnenough.com/css-and-layout-tutorial/templates_
and_frontmatter#sec-pages-folders) (Figure 9.7). This suggests the reference removal
code shown in Listing 9.17.

https://www.learnenough.com/css-and-layout-tutorial/templates_and_frontmatter#sec-pages-folders
https://www.learnenough.com/css-and-layout-tutorial/templates_and_frontmatter#sec-pages-folders
https://www.learnenough.com/css-and-layout-tutorial/templates_and_frontmatter#sec-pages-folders

252 Chapter 9: Shell Scripts

Figure 9.7: Viewing a reference in the web inspector.

Listing 9.17: Removing the references.
wikp

#!/usr/bin/env python3
import sys

import requests
from bs4 import BeautifulSoup

Return the paragraphs from a Wikipedia link, stripped of reference numbers.
Especially useful for text-to-speech (both native and foreign).

Get URL from the command line.
url = sys.argv[1]
Create Beautiful Soup document from live URL.
content = requests.get(url).content.decode("utf-8")
doc = BeautifulSoup(content, features="html.parser")
Remove references.
for reference in doc("sup", class_="reference"):

reference.decompose()

Now all that’s left is to extract the paragraph content and print it out (Listing 9.18).

9.3 DOM Manipulation at the Command Line 253

Listing 9.18: Printing the content.
wikp

#!/usr/bin/env python3
import sys

import requests
from bs4 import BeautifulSoup

Return the paragraphs from a Wikipedia link, stripped of reference numbers.
Especially useful for text-to-speech (both native and foreign).

Get URL from the command line.
url = sys.argv[1]
Create Beautiful Soup document from live URL.
content = requests.get(url).content.decode("utf-8")
doc = BeautifulSoup(content, features="html.parser")
Remove references.
for reference in doc("sup", class_="reference"):

reference.decompose()
Print paragraphs.
for paragraph_tag in doc("p"):

print(paragraph_tag.text)

Let’s see how things went:

$./wikp https://es.wikipedia.org/wiki/Python
Python es un lenguaje de alto nivel de programación interpretado cuya
filosofía hace hincapié en la legibilidad de su código, se utiliza para
desarrollar aplicaciones de todo tipo, ejemplos: Instagram, Netflix, Spotify,
Panda 3D, entre otros. Se trata de un lenguaje de programación multiparadigma,
ya que soporta parcialmente la orientación a objetos, programación imperativa
y, en menor medida[?`cuál?], programación funcional. Es un lenguaje
interpretado, dinámico y multiplataforma.
.
.
.
Existen diversas implementaciones del lenguaje:

A lo largo de su historia, Python ha presentado una serie de incidencias, de
las cuales las más importantes han sido las siguientes:

Success! By scrolling up in our terminal, we can now select all the text and drop it into
Google Translate or a text editor of our choice. On macOS, we can do even better
by piping (https://www.learnenough.com/command-line-tutorial/inspecting_files

https://www.learnenough.com/r/learn_enough_command_line/inspecting_files/making_heads_and_tails#sec-wordcount_and_pipes
https://www.learnenough.com/command-line-tutorial/inspecting_files#sec-wordcount_and_pipes

254 Chapter 9: Shell Scripts

#sec-wordcount_and_pipes) the results to pbcopy, which automatically copies the
results to the macOS pasteboard (also called the “clipboard”):

$./wikp https://es.wikipedia.org/wiki/Python | pbcopy

At this point, pasting into Google Translate (or anywhere else) will paste the full text.
Consider how remarkable an accomplishment this is. The script in Listing 9.18 is

a little tricky—and to get such a thing working completely on your own might involve
quite a bit of Googling and more than a few print statements as you go along—but it’s
really only six lines of code: not exactly rocket science. And yet, it’s genuinely useful,
something that (if you’re active in foreign-language learning) you might well use all
the time. Moreover, the basic skills involved—including not just the programming,
but also the technical sophistication (<cough>Googling</cough>)—unlock a huge
number of potential applications.

9.3.1 Exercises

1. By moving the file or changing your system’s configuration, add the wikp script to
your environment’s PATH. (You may find the steps (https://www.learnenough.
com/text-editor-tutorial/advanced_text_editing#sec-writing_an_executable_
script) in Learn Enough Text Editor to Be Dangerous (https://www.learnenough.
com/text-editor) helpful.) Confirm that you can run wikpwithout prepending ./
to the command name. Note: If you have a conflicting wikp program from follow-
ing Learn Enough JavaScript to Be Dangerous or Learn Enough Ruby to Be Dangerous
(https://www.learnenough.com/ruby), I suggest replacing it—thus demonstrat-
ing the principle that the file’s name is the user interface, and the implementation
can change language without affecting users.

2. What happens if you run wikp with no argument? Add code to your script to
detect the absence of a command-line argument and output an appropriate usage
statement. Hint: After printing out the usage statement, you will have to exit,
which you can learn how to do with the search python how to exit script.

3. The “pipe to pbcopy” trick mentioned in the text works only on macOS, but any
Unix-compatible system can redirect the output to a file. What’s the command to
redirect the output of wikp to a file called article.txt? (You could then open
this file, select all, and copy the contents, which has the same basic result as piping
to pbcopy.)

https://www.learnenough.com/command-line-tutorial/inspecting_files#sec-wordcount_and_pipes
https://www.youtube.com/watch?v=THNPmhBl-8I
https://www.learnenough.com/r/learn_enough_text_editor/advanced_text_editing/writing_an_executable_script#sec-writing_an_executable_script
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#sec-writing_an_executable_script
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#sec-writing_an_executable_script
https://www.learnenough.com/text-editor-tutorial/advanced_text_editing#sec-writing_an_executable_script
https://www.learnenough.com/text-editor
https://www.learnenough.com/text-editor
https://www.learnenough.com/text-editor
https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://www.google.com/search?q=python+how+to+exit+script
https://www.learnenough.com/r/learn_enough_command_line/manipulating_files/redirecting_and_appending#sec-redirecting_and_appending

CHAPTER 10
A Live Web Application

This chapter develops a dynamic web application in Python using the same Flask
framework introduced in Section 1.5 and applied further in Section 5.2. Although
simple, Flask is not a toy—it’s a production-ready web framework used by compa-
nies like Netflix, Lyft, and reddit. Flask also serves as excellent lightweight preparation
for a more complex framework like Django. By the end of this chapter, you’ll basi-
cally understand how web apps work, including layouts (Section 10.3), templates
(Section 10.4), testing, and deployment.1

Our example web app will put the custom Python package developed in Chapter 8
to good use through the development of a web-based palindrome detector. Along the
way, we’ll learn how to create dynamic content using Python templates.

Detecting palindromes from the Web requires using a back-end web application
to handle form submission, a task at which Flask excels. Our palindrome app will also
feature two other pages—Home and About—which will give us an opportunity to
learn how to use a Flask-based site layout. As part of this, we’ll apply and extend the
work in Chapter 8 to write automated tests for our app.

Finally, as in Section 1.5, we will also deploy our full palindrome app to the live
Web. We’ll end with pointers to further resources for Python, Flask, and other topics
like JavaScript and Django.

1. The main additional subject to learn is how to store and retrieve information using a database, which
represents a new technology but doesn’t involve any fundamentally new principles. You can use databases
both with Flask and with a fuller-featured framework like Django.

255

https://stackshare.io/flask
https://stackshare.io/flask
https://netflix.com/
https://www.lyft.com/
https://www.reddit.com/
https://flask.palletsprojects.com/en/2.2.x/tutorial/database/
https://www.djangoproject.com/

256 Chapter 10: A Live Web Application

10.1 Setup
Our first step is to set up our app as a proof-of-concept and deploy it to production.
We’ll start by making a directory for it:

$ cd ~/repos # cd ~/environments/repos on the cloud IDE
$ mkdir palindrome_app
$ cd palindrome_app/

Next, we’ll configure our system for Flask development and make a subdirectory
for the palindrome detector itself:

$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install --upgrade pip
(venv) $ pip install Flask==2.2.2
(venv) $ mkdir palindrome_detector
(venv) $ touch palindrome_detector/__init__.py
(venv) $ touch setup.py
(venv) $ touch MANIFEST.in

This directory structure broadly parallels the official Flask tutorial, and allows for more
sophisticated design practices (such as templates and testing) than the “hello, world”
app from Section 1.5 (which was just a single file in a directory used for other things
as well).

As part of the app setup, we also need to fill a couple of setup files. Note in
particular that, as of this writing, the Flask documentation includes setup.py and
MANIFEST.in files (Listing 10.1 and Listing 10.2) rather than following the “best
practice” of consolidating configuration settings in pyproject.toml (as we did in
Chapter 8); practical experience shows that deviating from official documentation,
especially when deploying applications, is most unwise, but beware that Flask’s own
convention may have changed since this writing. Also, don’t worry if you don’t under-
stand it, because neither do I; as with reading the documentation, selective ignorance
is definitely part of technical sophistication (Box 1.2).

https://flask.palletsprojects.com/en/2.2.x/tutorial/factory/
https://flask.palletsprojects.com/en/2.2.x/tutorial/install/

10.1 Setup 257

Listing 10.1: A setup file.
setup.py

from setuptools import find_packages, setup

setup(
name='palindrome_detector',
version='1.0.0',
packages=find_packages(),

include_package_data=True,
zip_safe=False,

install_requires=[
'flask',

],
)

Listing 10.2: A manifest file.
MANIFEST.in

graft palindrome_detector/static
graft palindrome_detector/templates
global-exclude *.pyc

To get started with the app itself, let’s write “hello, world!”, as shown in
Listing 10.3.2 Most of Listing 10.3 is Flask boilerplate code, again drawn largely
from the official documentation, so don’t worry about the details. Incidentally, the
@app.route("/") syntax right before the function definition is called a decorator,
which has many uses in Python in addition to defining Flask routes.

Listing 10.3: Writing “hello, world!” in Flask.

import os

from flask import Flask

def create_app(test_config=None):

2. The os package includes utilities for dealing with the underlying operating system (OS).

https://en.wikipedia.org/wiki/Boilerplate_code
https://flask.palletsprojects.com/en/2.2.x/tutorial/factory/
https://en.wikipedia.org/wiki/Decorator_pattern
https://realpython.com/primer-on-python-decorators/

258 Chapter 10: A Live Web Application

"""Create and configure the app."""
app = Flask(__name__, instance_relative_config=True)

if test_config is None:
Load the instance config, if it exists, when not testing.
app.config.from_pyfile("config.py", silent=True)

else:
Load the test config if passed in.
app.config.from_mapping(test_config)

Ensure the instance folder exists.
try:

os.makedirs(app.instance_path)
except OSError:

pass

@app.route("/")
def index():

return "hello, world!"

return app

app = create_app()

Then run the app using the flask command (Listing 10.4).

Listing 10.4: Running the Flask app.

(venv) $ flask --app palindrome_detector --debug run
* Running on http://127.0.0.1:5000/

The result of visiting 127.0.0.1:5000/ appears in Figure 10.1.
Finally, following our practice to deploy early and often, we’ll put our proj-

ect under version control with Git in preparation for deploying to Fly.io. As in
Section 1.5.1, we need a .gitignore file to tell Git which files and directories to
ignore (Listing 10.5).

http://127.0.0.1:5000/

10.1 Setup 259

Figure 10.1: Our initial app.

Listing 10.5: Ignoring certain files and directories.
.gitignore

venv/

*.pyc
__pycache__/

instance/

.pytest_cache/

.coverage
htmlcov/

dist/
build/
*.egg-info/

.DS_Store

260 Chapter 10: A Live Web Application

Next, we’ll initialize the repository:

(venv) $ git init
(venv) $ git add -A
(venv) $ git commit -m "Initialize repository"

I suggest setting up a new repository at GitHub at this time as well.
Also as in Section 1.5.1, we’ll install the Gunicorn server:

(venv) $ pip install gunicorn==20.1.0

Then we’ll create requirements.txt for the sake of Fly.io (Listing 10.6).

Listing 10.6: Specifying the requirements for our app.
requirements.txt

click==8.1.3
Flask==2.2.2
gunicorn==20.1.0
itsdangerous==2.1.2
Jinja2==3.1.2
MarkupSafe==2.1.1
Werkzeug==2.2.2

Now log in (Listing 10.7) and “launch” the app to create the production configu-
ration (Listing 10.8). Edit the generated Procfile to use the name of the palindrome
app (Listing 10.9).

Listing 10.7: Signing in to Fly.io.

(venv) $ flyctl auth login --interactive

Listing 10.8: “Launching” the app (which is just local configuration).

(venv) $ flyctl launch

Listing 10.9: Procfile

web: gunicorn palindrome_detector:app

https://github.com/new

10.1 Setup 261

Figure 10.2: Deleting an app at Fly.io.

At this point, we’re nearly ready to deploy to production. The only issue is that
you’re likely to have an app already defined from Section 1.5.1, and as of this writing
Fly.io allows only one app when using its free tier. As a result, you will probably have
to delete the old app, which you can find on your Fly.io dashboard (Figure 10.2):
Click app name > Settings > Delete app. (You can reuse the builder, though, so there
is no need to delete that as well.)

I recommend you commit the configuration changes to Git (and continue making
commits and pushes throughout this chapter):

(venv) $ git add -A
(venv) $ git commit -m "Add configuration"

We’re now ready for the actual deployment:

(venv) $ flyctl deploy
(venv) $ flyctl open # won't work on the cloud IDE, so use displayed URL

The result is a working app in production, as seen in Figure 10.3. Although for brevity
I’ll omit further deployments until Section 10.5.1, I recommend deploying regu-
larly as you work through the chapter to turn up any production issues as quickly as
possible.

https://fly.io/dashboard

262 Chapter 10: A Live Web Application

Figure 10.3: Our initial app in production.

10.1.1 Exercise

1. There’s a nice trick for installing all of an app’s requirements from a generated
requirements.txt file using pip -r. Confirm that the sequence shown in
Listing 10.10 results in a restored and working app.

Listing 10.10: Tearing down and rebuilding the app environment.

(venv) $ deactivate
$ rm -rf venv/
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install -r requirements.txt
(venv) $ flask --app palindrome_detector --debug run
* Running on http://127.0.0.1:5000/

10.2 Site Pages 263

10.2 Site Pages
Now that we’ve taken care of all the overhead involved in setting up and deploying the
palindrome app, we’re in a position to make rapid progress toward our final application.
We’ll start by making three pages for our site: Home, About, and Palindrome Detector.
In contrast to our previous Flask apps, which have operated by simply returning strings
in response to GET requests, for our full app we’ll use a more powerful technique
known as templates. Initially, these templates will consist of static HTML, but we’ll
add code to eliminate duplication in Section 10.3 and then add dynamic content
starting in Section 10.4.

In preparation for filling in the site pages, let’s create the (currently empty)
template files at the command line, which should be located in a directory called
templates inside the palindrome_detector app directory:

(venv) $ mkdir palindrome_detector/templates
(venv) $ cd palindrome_detector/templates
(venv) $ touch index.html about.html palindrome.html
(venv) $ cd -

(As noted (https://www.learnenough.com/command-line-tutorial/directories#sec-
navigating_directories) in Learn Enough Command Line to Be Dangerous (https://www.
learnenough.com/command-line), the cd - command changes to the previous direc-
tory, whichever it was; in this case, it’s palindrome_app, i.e., the base directory for
our web application.)

Initially, these templates will actually just be static HTML, but we’ll see starting
in Section 10.4 how to use them to generate HTML dynamically. The way to render
a template inside a Flask app is with the render_template function. For example, to
render the index page on the root URL /, we can write

@app.route("/")
def index():

return render_template("index.html")

This code causes Flask to look for index.html in the templates directory.
Because the code to render all three templates is basically the same, we’ll add

them all at the same time, as shown in Listing 10.11. Note that we’ve added an extra
statement to import render_template from the flask package in addition to the
Flask class itself.

https://flask.palletsprojects.com/en/2.2.x/tutorial/templates/
https://www.learnenough.com/command-line-tutorial/directories#sec-navigating_directories
https://www.learnenough.com/command-line-tutorial/directories#sec-navigating_directories
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line

264 Chapter 10: A Live Web Application

Listing 10.11: Rendering three templates.
palindrome_app/palindrome_detector/__init__.py

import os

from flask import Flask, render_template

def create_app(test_config=None):
"""Create and configure the app."""
app = Flask(__name__, instance_relative_config=True)
.
.
.

@app.route("/")
def index():

return render_template("index.html")

@app.route("/about")
def about():

return render_template("about.html")

@app.route("/palindrome")
def palindrome():

return render_template("palindrome.html")

return app

app = create_app()

The file in Listing 10.11 is in effect a controller, which coordinates between dif-
ferent parts of the application, defines the URLs (or routes) supported by the app,
responds to requests, etc. The templates, meanwhile, are sometimes called views,
which determine the HTML that actually gets returned to the browser. Together,
the views and controllers are two-thirds of the Model-View-Controller architecture
(https://www.railstutorial.org/book/beginning#sec-mvc) for developing web appli-
cations, also known as MVC.

The next step is to fill the three template files with HTML; this is straightfor-
ward but tedious, so I suggest you copy and paste from Listing 10.12, Listing 10.13,
and Listing 10.14. In case you’re not reading this online, note that you can find the
source for these and all other listings at the reference site mentioned briefly in Chap-
ter 1: https://github.com/learnenough/learn_enough_python_code_listings. By the
way, the indentation of the material inside the body tags is at the wrong depth, but
we’ll see in Section 10.3 why this is. Also note that we use two spaces for indentation,

https://www.railstutorial.org/book/beginning#sec-mvc
https://www.railstutorial.org/book/beginning#sec-mvc
https://github.com/learnenough/learn_enough_python_code_listings

10.2 Site Pages 265

which is common in HTML markup, rather than the four spaces traditionally used in
Python code.

It’s worth noting that the hyperlink reference (href) URLs are hard-coded, like
this:

<link rel="stylesheet" type="text/css" href="/static/stylesheets/main.css">

This is fine for small applications like the one in this chapter, but for a more pow-
erful (but also more complex) approach, see the Flask documentation on url_for
(https://flask.palletsprojects.com/en/2.2.x/api/#flask.Flask.url_for) and this help-
ful Stack Overflow comment (https://stackoverflow.com/questions/7478366/create-
dynamic-urls-in-flask-with-url-for/35936261#35936261) on the subject.

Listing 10.12: The initial Home (index) view.
palindrome_detector/templates/index.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Learn Enough Python Sample App</title>
<link rel="stylesheet" type="text/css" href="/static/stylesheets/main.css">
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,400"

rel="stylesheet">
</head>
<body>

<div class="container">
<div class="content">

<h1>Sample Flask App</h1>

<p>
This is the sample Flask app for
Learn Enough Python
to Be Dangerous. Learn more on the About page.

</p>

<p>
Click the Sator
Square below to run the custom Palindrome
Detector.

</p>

https://flask.palletsprojects.com/en/2.2.x/api/#flask.Flask.url_for
https://flask.palletsprojects.com/en/2.2.x/api/#flask.Flask.url_for
https://stackoverflow.com/questions/7478366/create-dynamic-urls-in-flask-with-url-for/35936261#35936261
https://stackoverflow.com/questions/7478366/create-dynamic-urls-in-flask-with-url-for/35936261#35936261
https://stackoverflow.com/questions/7478366/create-dynamic-urls-in-flask-with-url-for/35936261#35936261

266 Chapter 10: A Live Web Application

</div>

</div>
</body>

</html>

Listing 10.13: The initial About template.
palindrome_detector/templates/about.html

<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8">
<title>Learn Enough Python Sample App</title>
<link rel="stylesheet" type="text/css" href="/static/stylesheets/main.css">
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,400"

rel="stylesheet">
</head>
<body>

<div class="container">

<div class="content">

<h1>About</h1>

<p>
This site is the final application in
Learn Enough Python
to Be Dangerous
by Michael Hartl,
a tutorial introduction to the
Python programming language that
is part of
LearnEnough.com.

</p>
</div>

</div>
</body>

</html>

10.2 Site Pages 267

Listing 10.14: The initial Palindrome Detector template.
palindrome_detector/templates/palindrome.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Learn Enough Python Sample App</title>
<link rel="stylesheet" type="text/css" href="/static/stylesheets/main.css">
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,400"

rel="stylesheet">
</head>
<body>

<div class="container">
<div class="content">

<h1>Palindrome Detector</h1>

<p>This will be the palindrome detector.</p>

</div>
</div>

</body>
</html>

Visiting 127.0.0.1:5000 causes Flask to serve up the default (index) page, as shown
in Figure 10.4. To get to the About page, we can type 127.0.0.1:5000/about into the
browser address bar, as seen in Figure 10.5.

Figure 10.4 and Figure 10.5 show that the pages are basically working, but List-
ing 10.12 and subsequent listings include both images and a CSS file, which aren’t
currently present on the local system. We can change this situation by download-
ing the needed files from the Learn Enough CDN and putting them in the static
directory, which is a standard choice for such static assets.

The way to do this is to use curl to fetch a tarball, which is similar to a ZIP file
and is common on Unix-compatible systems:

(venv) $ curl -OL https://cdn.learnenough.com/le_python_palindrome_static.tar.gz

http://127.0.0.1:5000/
http://127.0.0.1:5000/about
https://en.wikipedia.org/wiki/Tar_(computing)
https://en.wikipedia.org/wiki/Zip_(file_format)

268 Chapter 10: A Live Web Application

Figure 10.4: The initial Home page.

This kind of file is created by tar, or “tape archive”, whose name is an old-school
throwback to the time when external tapes were routinely used for large backups.
Meanwhile, the gz extension refers to the important gzip method for compressing
files.

The way to unzip the file is to use tar zxvf, which stands for “tape archive gzip
extract verbose f ile” (as noted briefly in Section 8.5.2, the backslash \ is a continuation
character and should be typed literally, but the right angle bracket > should be added
by your shell program automatically and should not be typed):3

(venv) $ tar zxvf le_python_palindrome_static.tar.gz \
> --directory palindrome_detector/

3. I created this tarball using the command tar zcf <filename>.tar.gz, where c stands for create.

https://en.wikipedia.org/wiki/Gzip

10.2 Site Pages 269

Figure 10.5: The initial About page.

x static/
x static/static/images/
x static/static/stylesheets/
x static/static/stylesheets/main.css
x static/static/images/sator_square.jpg
x static/static/images/logo_b.png
(venv) $ rm -f le_python_palindrome_static.tar.gz

With experience, you may prefer to omit the v flag, but I suggest using verbose output
initially so that you can see what’s going on during the extraction process. By the way,
note that tar flags are just letters by themselves, with no preceding hyphens as in most
other Unix commands. On many systems, you can in fact use hyphens, as in tar -z
-x -v -f <filename>, but for reasons unknown to me the usual convention with
tar is to omit them.

270 Chapter 10: A Live Web Application

Figure 10.6: A nicer-looking About page.

As seen from the verbose output above, unzipping the file has created a static
directory:

(venv) $ ls palindrome_detector/static
images stylesheets

Refreshing the About page confirms that the logo image and CSS are now work-
ing (Figure 10.6). The improvement on the Home page is even more dramatic, as
seen in Figure 10.7.

10.2.1 Exercises

1. Visit the /palindrome URL and confirm that the CSS and images are working.

2. Make a commit and deploy the changes.

10.3 Layouts 271

Figure 10.7: A much-improved Home page.

10.3 Layouts
At this point, our app is looking pretty good, but there are two significant blemishes:
The HTML code for the three pages is highly repetitive, and navigating by hand from
page to page is rather cumbersome. We’ll fix the first blemish in this section, and the
second in Section 10.4. (And of course our app doesn’t yet detect palindromes, which
is the subject of Section 10.5.)

If you followed Learn Enough CSS & Layout to Be Dangerous (https://www.
learnenough.com/css-and-layout), you’ll know that the Layout in the title referred to
page layout generally—using Cascading Style Sheets to move elements around on the
page, align them properly, etc.—but we also saw (https://www.learnenough.com/css-
and-layout-tutorial/struct-layout#cha-struct-layout) that doing this properly requires
defining layout templates that capture common patterns and eliminate duplication.

https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/r/learn_enough_css/struct-layout#cha-struct-layout
https://www.learnenough.com/r/learn_enough_css/struct-layout#cha-struct-layout

272 Chapter 10: A Live Web Application

In the present case, each of our site’s pages has the same basic structure, as shown
in Listing 10.15.

Listing 10.15: The HTML structure of our site’s pages.

<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8">
<title>Learn Enough Python Sample App</title>
<link rel="stylesheet" type="text/css" href="/static/stylesheets/main.css">
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,400"

rel="stylesheet">
</head>
<body>

<div class="container">

<div class="content">
<!-- page-specific content -->

</div>
</div>

</body>
</html>

Everything except the page-specific content (indicated by the highlighted HTML
comment) is the same on each page. In Learn Enough CSS & Layout to Be Dangerous, we
eliminated this duplication using Jekyll templates (https://www.learnenough.
com/css-and-layout-tutorial/struct-layout#sec-jekyll-templates); in this tutorial,
we’ll use the Jinja templating engine instead, which is the default template system for
Flask.

Right now, our site is currently working, in the sense that each page has the proper
content at this stage of development. We’re about to make a change that involves
moving around and deleting a bunch of HTML, and we’d like to do this without
breaking the site. Does that sound like something we’ve seen before?

It does indeed. This is exactly the kind of problem we faced in Chapter 8 when we
developed and then refactored the palindrome package. In that case, we wrote auto-
mated tests to catch any regressions, and in this case we’re going to do the same.
(I started making websites long before automated testing of web applications was
possible, much less the norm, and believe me, automated tests are a huge improvement
over testing web apps by hand.)

https://www.learnenough.com/css-and-layout
https://www.learnenough.com/r/learn_enough_css/struct-layout/jekyll-templates#sec-jekyll-templates
https://www.learnenough.com/r/learn_enough_css/struct-layout/jekyll-templates#sec-jekyll-templates
https://jinja.palletsprojects.com/en/3.0.x/
https://flask.palletsprojects.com/en/2.2.x/templating/

10.3 Layouts 273

To get started, we’ll add pytest as we did in Section 8.1:

(venv) $ pip install pytest==7.1.3

(By design, our tests will be as simple as possible; for more sophisticated tests, see the
pytest-flask project (https://pytest-flask.readthedocs.io/en/latest/index.html).)

In order to get our tests to work, we have to install our app locally as an editable
Python package. Without the installation, you’ll probably get an error that looks like
this:

E ModuleNotFoundError: No module named 'palindrome_detector'

To prevent this, run the same command as in Listing 8.18, shown again in List-
ing 10.16.

Listing 10.16: Installing the app as an editable package.

$ pip install -e .

We’ll put the tests themselves in a tests directory, with one test file to start:

(venv) $ mkdir tests
(venv) $ touch tests/test_site_pages.py

We’ll add a second test file in Section 10.5.1.
Our key tool in writing tests for our web app is the client object, which has

a get() method that issues a GET request to a URL, thereby simulating visiting the
corresponding page in a web browser. The result of such a request is a response
object, which has a variety of useful attributes, including status_code (indicating
the HTTP response code returned by the request) and text (which contains the text
of the HTML returned by our application). We can define such a client object in
the standard configuration file conftest.py:

(venv) $ touch tests/conftest.py

The code itself appears in Listing 10.17. (As with the rest of the configuration code
in this chapter, Listing 10.17 is simply adapted from the Flask documentation.)

https://pytest-flask.readthedocs.io/en/latest/index.html
https://pytest-flask.readthedocs.io/en/latest/index.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

274 Chapter 10: A Live Web Application

Listing 10.17: Creating the client object.
tests/conftest.py

import pytest

from palindrome_detector import create_app

@pytest.fixture
def app():

return create_app()

@pytest.fixture
def client(app):

return app.test_client()

We’ll start with super-basic tests making sure that the app serves up something, as
indicated by the response code 200 (OK), which we can do like this:

def test_index(client):
response = client.get("/")
assert response.status_code == 200

Here we use the get() method in the test to issue a GET request to the root URL /,
verifying using the assert function introduced in Chapter 8 that the code is correct.

Applying the above discussion to the About and Palindrome Detector pages as
well, we arrive at our initial test suite, shown in Listing 10.18.

Listing 10.18: Our initial test suite. GREEN

tests/test_site_pages.py

def test_index(client):
response = client.get("/")
assert response.status_code == 200

def test_about(client):
response = client.get("/about")
assert response.status_code == 200

def test_palindrome(client):
response = client.get("/palindrome")
assert response.status_code == 200

10.3 Layouts 275

Because the tests in Listing 10.18 are for code that’s already working, the test suite
should be GREEN:

Listing 10.19: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 3 items

tests/test_site_pages.py ... [100%]

============================== 3 passed in 0.01s ===============================

The tests in Listing 10.18 are a fine start, but they really only check if the pages
are there at all. It would be nice to have a slightly more stringent test of the HTML
content, though not too stringent—we don’t want our tests to make it hard to make
changes in the future. As a middle ground, we’ll check that each page in the site has
a title tag and an h1 tag somewhere in the document.

Although more sophisticated techniques are certainly possible,4 we’ll take the sim-
plest approach that works and apply the in operator introduced in Section 2.5 to
the response.text attribute. For example, to check for a <title> tag, we can use
this:5

assert "<title>" in response.text

Adding such code for both title and h1 tags to the test for each page in our site
yields the updated test suite shown in Listing 10.20.

Listing 10.20: Adding assertions for the presence of some HTML tags. GREEN

tests/test_site_pages.py

def test_index(client):
response = client.get("/")
assert response.status_code == 200

4. For example, we could use the Beautiful Soup package from Section 9.3 to parse the HTML and make a
doc object for use in the tests.

5. This assertion would still pass even if <title> appeared in a random spot on the page and not as a true
title, but this is unlikely enough that the current technique is fine to demonstrate the main principles. As
noted, a more sophisticated approach using a proper HTML parser is also possible and would be a good idea
to use for more advanced applications.

276 Chapter 10: A Live Web Application

assert "<title>" in response.text
assert "<h1>" in response.text

def test_about(client):
response = client.get("/about")
assert response.status_code == 200
assert "<title>" in response.text
assert "<h1>" in response.text

def test_palindrome(client):
response = client.get("/palindrome")
assert response.status_code == 200
assert "<title>" in response.text
assert "<h1>" in response.text

By the way, some programmers adopt the convention of only ever having one asser-
tion per test, whereas in Listing 10.20 we have two. In my experience, the overhead
associated with setting up the right state (e.g., duplicating the calls to get()) makes
this convention inconvenient, and I’ve never run into any trouble from including
multiple assertions in a test.

The tests in Listing 10.20 should now be GREEN as required:

Listing 10.21: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 3 items

tests/test_site_pages.py ... [100%]

============================== 3 passed in 0.01s ===============================

At this point, we’re ready to use a Jinja template to eliminate duplication. Our
first step is to define a layout template for the repeated code:

(venv) $ touch palindrome_detector/templates/layout.html

The contents of layout.html are the common HTML structure identified in List-
ing 10.15 combined with the special block function supplied by the Jinja template
system. This involves replacing the HTML comment

10.3 Layouts 277

<!-- page-specific content -->

in Listing 10.15 with the Jinja code

{% block content %}{% endblock %}

The {% ... %} syntax is used by Jinja to indicate code inside an HTML document.6

This particular code inserts the text in a variable called content (which we’ll define
for each page in just a moment). The resulting template appears as in Listing 10.22.

Listing 10.22: A layout with shared HTML structure.
palindrome_detector/templates/layout.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Learn Enough Python Sample App</title>
<link rel="stylesheet" type="text/css" href="/static/stylesheets/main.css">
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,400"

rel="stylesheet">
</head>
<body>

<div class="container">
<div class="content">

{% block content %}{% endblock %}
</div>

</div>
</body>

</html>

At this point, we can remove the shared material from our pages, leaving only
the core content, as shown in Listing 10.23, Listing 10.24, and Listing 10.25. (This is
why the body content wasn’t fully indented in Listing 10.12 and the other templates

6. This syntax is commonly used among template languages. For example, the same syntax is used by the
Liquid template language used in Learn Enough CSS & Layout to Be Dangerous in combination with the Jekyll
static site generator.

https://shopify.github.io/liquid/
https://www.learnenough.com/css-and-layout

278 Chapter 10: A Live Web Application

in Section 10.2.) Listing 10.23 and subsequent listings use the Jinja function extends
to tell the system to use the template layout.html, and then {% block content
%} defines the content to be inserted in Listing 10.22.

Listing 10.23: The core Home (index) view.
palindrome_detector/templates/index.html

{% extends "layout.html" %}

{% block content %}
<h1>Sample Flask App</h1>

<p>
This is the sample Flask app for
Learn Enough Python
to Be Dangerous. Learn more on the About page.

</p>

<p>
Click the Sator
Square below to run the custom Palindrome
Detector.

</p>

{% endblock %}

Listing 10.24: The core About view.
palindrome_detector/templates/about.html

{% extends "layout.html" %}

{% block content %}
<h1>About</h1>

<p>
This site is the final application in
Learn Enough Python
to Be Dangerous
by Michael Hartl,
a tutorial introduction to the
Python programming language that

10.3 Layouts 279

is part of
LearnEnough.com.

</p>
{% endblock %}

Listing 10.25: The core Palindrome Detector view.
palindrome_detector/templates/palindrome.html

{% extends "layout.html" %}

{% block content %}
<h1>Palindrome Detector</h1>

<p>This will be the palindrome detector.</p>
{% endblock %}

Assuming we did everything right in the steps above, our tests should still be
GREEN:

Listing 10.26: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 3 items

tests/test_site_pages.py ... [100%]

============================== 3 passed in 0.01s ===============================

A quick check in the browser confirms that things are working as expected (Fig-
ure 10.8).

But of course many things could have gone wrong in the refactoring we just did,
and our test suite would have caught the problem immediately. Moreover, it would
catch errors even on pages we didn’t happen to check; for example, Figure 10.8 shows
the index page, but how do we know the About page is working as well? The answer
is that we don’t, and the test suite saves us the trouble of checking every page in the
site. As you might guess, this practice becomes increasingly valuable as the complexity
of a site grows.

280 Chapter 10: A Live Web Application

Figure 10.8: Our Home page, now created using a layout.

10.3.1 Exercises

1. As you can confirm by running the source of any page through an HTML valida-
tor, the current pages are valid HTML, but there’s a warning with a suggestion to
add a lang (language) attribute to the html tag. Add the attribute lang="en" (for
“English”) to the html tag in Listing 10.22 and confirm using a web inspector
that it appears correctly on all three pages.

2. Make a commit and deploy the changes.

10.4 Template Engine
Now that we’ve defined a proper layout, in this section we’ll use the Jinja template
language (first seen in Listing 10.22) to add a couple of nice refinements to our site:
variable titles and navigation. Variable titles are HTML title tag contents that vary from

https://validator.w3.org/
https://validator.w3.org/

10.4 Template Engine 281

page to page, giving each page a nice polish of customization. Navigation, meanwhile,
saves us the hassle of having to type each subpage in by hand—certainly not the kind
of user experience we’re trying to create.

10.4.1 Variable Titles

Our variable titles will combine a base title, which is the same on each page, with a
piece that varies based on the page’s name. In particular, for our Home, About, and
Palindrome Detector pages, we want the titles to look something like this:

<title>Learn Enough Python Sample App | Home</title>

<title>Learn Enough Python Sample App | About</title>

<title>Learn Enough Python Sample App | Palindrome Detector</title>

Our strategy has three steps:

1. Write GREEN tests for the current page title.

2. Write RED tests for the variable titles.

3. Get to GREEN by adding the variable component of the title.

Note that Steps 2 & 3 constitute test-driven development. And indeed writing the
tests for the variable title is easier than getting them to pass, which is one of the cases
for TDD described in Box 8.1.

To get started with Step 1, we’ll modify the title assertions defined in List-
ing 10.20 to include the current base title. For convenience in the next step, we’ll
define a base_title variable and use interpolation to form the title using

base_title = "Learn Enough Python Sample App"
title = f"<title>{base_title}</title>"

and then assert that the title appears in the response text. The result for all three site
pages appears in Listing 10.27.

282 Chapter 10: A Live Web Application

Listing 10.27: Adding assertions for the base title content. GREEN

tests/test_site_pages.py

def test_index(client):
response = client.get("/")
assert response.status_code == 200
base_title = "Learn Enough Python Sample App"
title = f"<title>{base_title}</title>"
assert title in response.text
assert "<h1>" in response.text

def test_about(client):
response = client.get("/about")
assert response.status_code == 200
base_title = "Learn Enough Python Sample App"
title = f"<title>{base_title}</title>"
assert title in response.text
assert "<h1>" in response.text

def test_palindrome(client):
response = client.get("/palindrome")
assert response.status_code == 200
base_title = "Learn Enough Python Sample App"
title = f"<title>{base_title}</title>"
assert title in response.text
assert "<h1>" in response.text

Note that there is a lot of repetition in Listing 10.27. Some of this repetition will
disappear when we add the variable component to the titles; eliminating the rest of
the repetition is left as an exercise (Section 10.4.3).

As required for tests of working code, the test suite is currently GREEN:

Listing 10.28: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 3 items

tests/test_site_pages.py ... [100%]

============================== 3 passed in 0.01s ===============================

Now we’re ready for Step 2. All we need to do is add the vertical bar | and the
page-specific titles, as shown in Listing 10.29.

10.4 Template Engine 283

Listing 10.29: Adding assertions for the variable title content. RED
tests/test_site_pages.py

def test_index(client):
response = client.get("/")
assert response.status_code == 200
base_title = "Learn Enough Python Sample App"
title = f"<title>{base_title} | Home</title>"
assert title in response.text
assert "<h1>" in response.text

def test_about(client):
response = client.get("/about")
assert response.status_code == 200
base_title = "Learn Enough Python Sample App"
title = f"<title>{base_title} | About</title>"
assert title in response.text
assert "<h1>" in response.text

def test_palindrome(client):
response = client.get("/palindrome")
assert response.status_code == 200
base_title = "Learn Enough Python Sample App"
title = f"<title>{base_title} | Palindrome Detector</title>"
assert title in response.text
assert "<h1>" in response.text

Because we haven’t updated the application code, the tests are now RED:

Listing 10.30: RED

(venv) $ pytest
============================= test session starts ==============================
collected 3 items

tests/test_site_pages.py FFF [100%]

=================================== FAILURES ===================================
__________________________________ test_index __________________________________
.
.
.
=========================== short test summary info ============================
FAILED tests/test_site_pages.py::test_index - assert '<title>Learn Enough Pyt...
FAILED tests/test_site_pages.py::test_about - assert '<title>Learn Enough Pyt...
FAILED tests/test_site_pages.py::test_palindrome - assert '<title>Learn Enoug...
============================== 3 failed in 0.03s ===============================

284 Chapter 10: A Live Web Application

Now for Step 3. The trick is to pass a different page_title option from each
of our app’s functions and then render the result on the page layout. The way Jinja
templates work is that we can pass a keyword argument (Section 5.1.2) to the template
using

render_template("index.html", page_title="Home")

and automatically get access to a variable called page_title in the template (in this
case, with the value "Home"). The result for our desired variable titles appears in
Listing 10.31.

Listing 10.31: Adding page_title variables to each page. GREEN

palindrome_app/palindrome_detector/__init__.py

import os

from flask import Flask, render_template

def create_app(test_config=None):
"""Create and configure the app."""
app = Flask(__name__, instance_relative_config=True)

if test_config is None:
Load the instance config, if it exists, when not testing.
app.config.from_pyfile("config.py", silent=True)

else:
Load the test config if passed in.
app.config.from_mapping(test_config)

Ensure the instance folder exists.
try:

os.makedirs(app.instance_path)
except OSError:

pass

@app.route("/")
def index():

return render_template("index.html", page_title="Home")

@app.route("/about")
def about():

return render_template("about.html", page_title="About")

10.4 Template Engine 285

@app.route("/palindrome")
def palindrome():

return render_template("palindrome.html",
page_title="Palindrome Detector")

return app

app = create_app()

Once we have a variable inside a template using the code in Listing 10.31, we can
insert it using the special syntax {{ ... }} used by Jinja templates:7

{{ page_title }}

This tells Jinja to insert the contents of page_title into the HTML template at that
location. In particular, this means we can add the variable component of the title using
the code shown in Listing 10.32.

Listing 10.32: Adding a variable component to the title. RED
palindrome_detector/templates/layout.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Learn Enough Python Sample App | {{ page_title }}</title>
.
.
.

When page_title is "Home", the layout title will become

<title>Learn Enough Python Sample App | Home</title>

and so on for the other variable titles.
Because the variable title in Listing 10.31 matches the ones in the test from

Listing 10.29, our test suite should be GREEN:

7. As with {% ... }%, the {{ ... }} syntax is commonly used in other templating systems as well, such
as Liquid and Mustache.

https://shopify.github.io/liquid/
https://mustache.github.io/

286 Chapter 10: A Live Web Application

Figure 10.9: Confirming the correct variable titles in the browser.

Listing 10.33: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 3 items

tests/test_site_pages.py ... [100%]

============================== 3 passed in 0.01s ===============================

Success! We’ve managed to add variable titles to our application using TDD and we’ve
confirmed that they’re working without even touching a browser.

Of course, it’s probably a good idea to double-check in the browser anyway, just
to make sure (Figure 10.9).

10.4 Template Engine 287

10.4.2 Site Navigation

Now that we have a proper layout file, adding navigation to every page is easy. The
nav code appears in Listing 10.34, with the result shown in Figure 10.10.

Listing 10.34: Adding site navigation.
palindrome_detector/templates/layout.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Learn Enough Python Sample App | {{ page_title }}</title>
<link rel="stylesheet" type="text/css" href="/static/stylesheets/main.css">
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,400"

rel="stylesheet">
</head>
<body>

<div class="container">
<header class="header">

<nav>
<ul class="header-nav">

Home
Is It a Palindrome?
About

</nav>

</header>
<div class="content">

{% block content %}{% endblock %}
</div>

</div>
</body>

</html>

As a final flourish, we’ll factor the navigation from Listing 10.34 into a separate
template, sometimes called a partial template (or partial for short) because it represents
only a partial page. This will lead to a nicely clean and tidy layout page.

Because this involves refactoring the site, we’ll add a simple test (per Box 8.1) to
catch any regressions. Because the navigation appears on the site layout, we can use

288 Chapter 10: A Live Web Application

Figure 10.10: The site navigation.

any page to test for its presence, and for convenience we’ll use the index page. As
shown in Listing 10.35, all we need to do is assert the existence of a nav tag.

Listing 10.35: Testing the navigation. GREEN

tests/test_site_pages.py

def test_index(client):
response = client.get("/")
assert response.status_code == 200
base_title = "Learn Enough Python Sample App"
title = f"<title>{base_title} | Home</title>"
assert title in response.text
assert "<h1>" in response.text
assert "<nav>" in response.text

def test_about(client):
response = client.get("/about")

10.4 Template Engine 289

assert response.status_code == 200
base_title = "Learn Enough Python Sample App"
title = f"<title>{base_title} | About</title>"
assert title in response.text
assert "<h1>" in response.text

def test_palindrome(client):
response = client.get("/palindrome")
assert response.status_code == 200
base_title = "Learn Enough Python Sample App"
title = f"<title>{base_title} | Palindrome Detector</title>"
assert title in response.text
assert "<h1>" in response.text

Because the nav was already added, the tests should be GREEN:

Listing 10.36: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 3 items

tests/test_site_pages.py ... [100%]

============================== 3 passed in 0.01s ===============================

It’s a good practice to watch the tests change to RED to make sure we’re testing the
right thing, so we’ll start by cutting the navigation (Listing 10.37) and pasting it into
a separate file, which we’ll call navigation.html (Listing 10.38):

(venv) $ touch palindrome_detector/templates/navigation.html

Listing 10.37: Cutting the navigation. RED
palindrome_detector/templates/layout.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Learn Enough Python Sample App | {{ page_title }}</title>
<link rel="stylesheet" type="text/css" href="/static/stylesheets/main.css">
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,400"

290 Chapter 10: A Live Web Application

rel="stylesheet">
</head>
<body>

<div class="container">

<div class="content">
{% block content %}{% endblock %}

</div>
</div>

</body>
</html>

Listing 10.38: Adding a navigation partial template. RED
palindrome_detector/templates/navigation.html

<header class="header">
<nav>

<ul class="header-nav">
Home
Is It a Palindrome?
About

</nav>

</header>

You should confirm that the tests are now RED:

Listing 10.39: RED

(venv) $ pytest
============================= test session starts ==============================
collected 3 items

tests/test_site_pages.py F.. [100%]

=================================== FAILURES ===================================
__________________________________ test_index __________________________________
.
.
.
=========================== short test summary info ============================

10.4 Template Engine 291

FAILED tests/test_site_pages.py::test_index - assert '<nav>' in '<!DOCTYPE ht...
========================= 1 failed, 2 passed in 0.03s ==========================

To restore the navigation, we can use Jinja’s template language to include the
navigation partial:

{% include "navigation.html" %}

This code automatically looks for a file called navigation.html in the palin-
drome_detector/templates/ directory, evaluates the result, and inserts the return
value where it was called.

Putting this code into the layout gives Listing 10.40.

Listing 10.40: Evaluating the nav partial in the layout. GREEN

palindrome_detector/templates/layout.html

<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<title>Learn Enough Python Sample App | {{ page_title }}</title>
<link rel="stylesheet" type="text/css" href="/static/stylesheets/main.css">
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,400"

rel="stylesheet">
</head>
<body>

<div class="container">
{% include "navigation.html" %}
<div class="content">

{% block content %}{% endblock %}
</div>

</div>
</body>

</html>

With the code in Listing 10.40, our test suite is once again GREEN:

Listing 10.41: GREEN

(venv) $ pytest
============================= test session starts ==============================

292 Chapter 10: A Live Web Application

Figure 10.11: The navigation menu on the About page.

collected 3 items

tests/test_site_pages.py ... [100%]

============================== 3 passed in 0.01s ===============================

A quick click over to the About page confirms that the navigation is working
(Figure 10.11). Sweet!

10.4.3 Exercises

1. We can eliminate some duplication in Listing 10.29 by creating a function that
returns the base title, as shown in Listing 10.42. Confirm that this code still gives
a GREEN test suite.

2. Make a commit and deploy the changes.

10.5 Palindrome Detector 293

Listing 10.42: Adding a full_title method to eliminate some duplication. GREEN

tests/test_site_pages.py

def test_index(client):
response = client.get("/")
assert response.status_code == 200
assert full_title("Home") in response.text
assert "<h1>" in response.text
assert "<nav>" in response.text

def test_about(client):
response = client.get("/about")
assert response.status_code == 200
assert full_title("About") in response.text
assert "<h1>" in response.text

def test_palindrome(client):
response = client.get("/palindrome")
assert response.status_code == 200
assert full_title("Palindrome Detector") in response.text
assert "<h1>" in response.text

def full_title(variable_title):
"""Return the full title."""
base_title = "Learn Enough Python Sample App"
return f"<title>{base_title} | {variable_title}</title>"

10.5 Palindrome Detector
In this section, we’ll complete the sample Flask app by adding a working
palindrome detector. This will involve putting the Python package developed
in Chapter 8 to good use. And if you haven’t followed Learn Enough Ruby
to Be Dangerous (https://www.learnenough.com/ruby) yet, we’ll also see the
first truly working HTML form in the Learn Enough introductory sequence
(https://www.learnenough.com/courses).

Our first step is to add a palindrome package so that we can detect palindromes.
I recommend using the one you created and published in Chapter 8:

(venv) $ pip install palindrome_YOUR_USERNAME \
> --index-url https://test.pypi.org/simple/

https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://www.learnenough.com/courses
https://www.learnenough.com/courses

294 Chapter 10: A Live Web Application

If for any reason you didn’t complete that step, you can use mine instead:

(venv) $ pip install palindrome_mhartl --index-url https://test.pypi.org/simple/

At this point, we can include the palindrome package in our app (Listing 10.43).

Listing 10.43: Adding request and Phrase to the app.
palindrome_app/palindrome_detector/__init__.py

import os

from flask import Flask, render_template, request

from palindrome_mhartl.phrase import Phrase

.

.

.

Note that we’ve added request from the flask package, which we’ll be using in this
section to handle form submissions.

Since we’ll be deploying the app to production, we should also update the app
requirements to include the palindrome detector. The result for one version of my
particular detector is shown in Listing 1.15, though you are encouraged to use your
own. Also note that Listing 10.44 includes an extra line so that Fly.io knows to look
for packages at the Test Python Package Index as well as the regular index.

Listing 10.44: Adding a Test Python Package Index lookup URL.
requirements.txt

--extra-index-url https://testpypi.python.org/pypi
palindrome_mhartl==0.0.12

click==8.1.3
Flask==2.2.2
.
.
.

With that prep work done, we’re now ready to add a form to our Palindrome
Detector page, which is currently just a placeholder (Figure 10.12). The form consists

10.5 Palindrome Detector 295

Figure 10.12: The current state of the palindrome page.

of three principal parts: a form tag to define the form, a textarea for entering a
phrase, and a button for submitting the phrase to the server.

Let’s work inside out. The button has two attributes—a CSS class for styling and
a type indicating that it’s designed to submit information:

<button class="form-submit" type="submit">Is it a palindrome?</button>

The textarea has three attributes—a name attribute, which as we’ll see in a moment
passes important information back to the server, along with rows and cols to define
the size of the textarea box:

<textarea name="phrase" rows="10" cols="60"></textarea>

296 Chapter 10: A Live Web Application

The textarea tag’s content is the default text displayed in the browser, which in this
case is just blank.

Finally, the form tag itself has three attributes—a CSS id, which isn’t used here
but is conventional to include; an action, which specifies the action to take when
submitting the form; and a method indicating the HTTP request method to use (in
this case, POST):

<form id="palindrome_tester" action="/check" method="post">

Putting the above discussion together (and adding a br tag to add a line break)
yields the form shown in Listing 10.45. Our updated Palindrome Detector page
appears in Figure 10.13.

Listing 10.45: Adding a form to the palindrome page.
palindrome_detector/templates/palindrome.html

{% extends "layout.html" %}

{% block content %}
<h1>Palindrome Detector</h1>

<form id="palindrome_tester" action="/check" method="post">
<textarea name="phrase" rows="10" cols="60"></textarea>

<button class="form-submit" type="submit">Is it a palindrome?</button>

</form>
{% endblock %}

The form in Listing 10.45 is, apart from cosmetic details, identical
to the analogous form (https://www.learnenough.com/javascript-tutorial/dom_
manipulation#code-form_tag) developed in Learn Enough JavaScript to Be Dangerous
(https://www.learnenough.com/javascript):

<form id="palindromeTester">
<textarea name="phrase" rows="10" cols="30"></textarea>

<button type="submit">Is it a palindrome?</button>

</form>

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://www.learnenough.com/r/learn_enough_javascript/dom_manipulation/form_handling#code-form_tag
https://www.learnenough.com/r/learn_enough_javascript/dom_manipulation/form_handling#code-form_tag
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript

10.5 Palindrome Detector 297

Figure 10.13: The new palindrome form.

In that case, though, we “cheated” by using a JavaScript event listener to inter-
cept (https://www.learnenough.com/javascript-tutorial/dom_manipulation#code-
form_event_target) the submit request from the form, and no information ever got
sent from the client (browser) to the server. (It’s important to understand that, when
developing web applications on a local computer, the client and server are the same
physical machine, but in general they are different.)

This time, we won’t cheat: The request will really go all the way to the server,
which means we’ll have to handle the POST request on the back-end. By default,
a Flask function responds to GET requests, but we can arrange to respond to POST

requests instead using the method keyword argument with value equal to a tuple of
the methods to respond to. Because there’s only one method in this case (namely,
POST), we have to use the trailing-comma syntax mentioned in Section 3.6 for a tuple
of one element:

https://www.learnenough.com/r/learn_enough_javascript/dom_manipulation/form_handling#code-form_event_target
https://www.learnenough.com/r/learn_enough_javascript/dom_manipulation/form_handling#code-form_event_target
https://www.learnenough.com/r/learn_enough_javascript/dom_manipulation/form_handling#code-form_event_target

298 Chapter 10: A Live Web Application

@app.route("/check", methods=("POST",))
def check():

Do something to handle the submission

Here the name of the URL path, /check, matches the value of the action parameter
in the form (Listing 10.45).

It turns out that the request include in Listing 10.43 has a form attribute that
contains useful information, so let’s return it as shown in Listing 10.46 and then
submit the form to see what happens (Figure 10.14).

Listing 10.46: Investigating the effects of a form submission.
palindrome_app/palindrome_detector/__init__.py

import os

from flask import Flask, render_template, request

from palindrome_mhartl.phrase import Phrase

def create_app(test_config=None):
.
.
.
@app.route("/")
def index():

return render_template("index.html", page_title="Home")

@app.route("/about")
def about():

return render_template("about.html", page_title="About")

@app.route("/palindrome")
def palindrome():

return render_template("palindrome.html",
page_title="Palindrome Detector")

@app.route("/check", methods=("POST",))
def check():

return request.form

return app

app = create_app()

10.5 Palindrome Detector 299

Figure 10.14: The result of submitting a form.

As seen in Figure 10.14, request.form is a dictionary (Section 4.4), with key
"phrase" and value "Madam, I’m Adam.":

{
"phrase": "Madam, I'm Adam."

}

This dictionary is created automatically by Flask according to the key–value pairs in
the form (Listing 10.45). In this case, we have only one such pair, with key given by
the name attribute of the textarea ("phrase") and value given by the string entered
by the user. This means that we can use the code

phrase = request.form["phrase"]

to extract the value of the phrase.

300 Chapter 10: A Live Web Application

Now that we know about the existence and contents of request.form, we can
use ispalindrome() to detect palindromes as in previous chapters. In plain Python,
this would look something like Listing 10.47.

Listing 10.47: What our palindrome results might look like in plain Python.

if Phrase(phrase).ispalindrome():
print(f'"{phrase}" is a palindrome!"

else:
print(f'"{phrase}" isn\'t a palindrome."

We can do the same basic thing in our web application using the Jinja template
language, only using {{ ... }} instead of interpolation and surrounding any other
code in {% ... %} tags, as shown schematically in Listing 10.48.

Listing 10.48: Schematic code for the palindrome result.

{% if Phrase(phrase).ispalindrome() %}
"{{ phrase }}" is a palindrome!

{% else %}
"{{ phrase }}" isn't a palindrome.

{% endif %}

Let’s create a template file called result.html to display our results:

(venv) $ touch palindrome_detector/templates/result.html

The template code itself is an expanded version of Listing 10.48 with a few more
HTML tags for a better appearance, as shown in Listing 10.49.

Listing 10.49: Displaying the palindrome result with Jinja.
palindrome_detector/templates/result.html

{% extends "layout.html" %}

{% block content %}
<h1>Palindrome Result</h1>

{% if Phrase(phrase).ispalindrome() %}
<div class="result result-success">

10.5 Palindrome Detector 301

<p>"{{ phrase }}" is a palindrome!</p>
</div>

{% else %}
<div class="result result-fail">
<p>"{{ phrase }}" isn't a palindrome.</p>

</div>
{% endif %}

{% endblock %}

All that’s left now is handling the submission, putting the value of request.form
in phrase, and rendering the result. We can create a phrase variable in the template
using the same keyword trick we used in Listing 10.31 to create page_title, and we
can pass the Phrase class the same way as well. Using render_template as usual to
render the template result.html gives the code shown in Listing 10.50.

Listing 10.50: Handling a palindrome form submission.
palindrome_app/palindrome_detector/__init__.py

import os

from flask import Flask, render_template, request

from palindrome_mhartl.phrase import Phrase

def create_app(test_config=None):
"""Create and configure the app."""
app = Flask(__name__, instance_relative_config=True)

if test_config is None:
Load the instance config, if it exists, when not testing.
app.config.from_pyfile("config.py", silent=True)

else:
Load the test config if passed in.
app.config.from_mapping(test_config)

Ensure the instance folder exists.
try:

os.makedirs(app.instance_path)
except OSError:

pass

@app.route("/")
def index():

return render_template("index.html", page_title="Home")

302 Chapter 10: A Live Web Application

@app.route("/about")
def about():

return render_template("about.html", page_title="About")

@app.route("/palindrome")
def palindrome():

return render_template("palindrome.html",
page_title="Palindrome Detector")

@app.route("/check", methods=("POST",))
def check():

return render_template("result.html",
Phrase=Phrase,
phrase=request.form["phrase"])

return app

app = create_app()

The code in Listing 10.49 is the most straightforward translation of the Python code
from Listing 10.47, but it involves passing a full Phrase class to the template in List-
ing 10.50. Many developers prefer to pass only variables to templates, and we’ll refactor
the code to use this convention in Section 10.5.1.

At this point, our palindrome detector should be working! The result of submit-
ting a non-palindrome is shown in Figure 10.15.

Now let’s see if our detector can correctly identify one of the most ancient palin-
dromes, the so-called Sator Square first found in the ruins of Pompeii (Figure 10.168).
(Authorities differ on the exact meaning of the Latin words in the square, but the
likeliest translation is “The sower [farmer] Arepo holds the wheels with effort.”)

Entering the text “SATOR AREPO TENET OPERA ROTAS” (Figure 10.17)
and submitting it leads to the result shown in Figure 10.18. It works!

10.5.1 Form Tests

Our application is now working, but note that testing a second palindrome requires
clicking on “IS IT A PALINDROME?” It would be more convenient if we included
the same submission form on the result page as well.

8. Image courtesy of CPA Media Pte Ltd/Alamy Stock Photo.

https://en.wikipedia.org/wiki/Sator_Square
https://en.wikipedia.org/wiki/Pompeii

10.5 Palindrome Detector 303

Figure 10.15: The result for a non-palindrome.

To do this, we’ll first add a simple test for the presence of a form tag on the
palindrome page. Because the tests we’ll be adding are specific to that page, we’ll
create a new test file to contain them:

(venv) $ touch tests/test_palindrome.py

The test itself is closely analogous to the h1 and title test in Listing 10.20, as shown in
Listing 10.51. Note that we’ve defined a form_tag() helper function in anticipation
of testing for the form on the result page as well (compare with the full_title()
helper in Listing 10.42).

304 Chapter 10: A Live Web Application

Figure 10.16: A Latin palindrome from the lost city of Pompeii.

Figure 10.17: A Latin palindrome?

10.5 Palindrome Detector 305

Figure 10.18: A Latin palindrome!

Listing 10.51: Testing for the presence of a form tag. GREEN

tests/test_palindrome.py

def test_palindrome_page(client):
response = client.get("/palindrome")
assert form_tag() in response.text

def form_tag():
return '<form id="palindrome_tester" action="/check" method="post">'

Now we’ll add tests for the existing form submission for both non-palindromes
and palindromes. Just as get() in tests issues a GET request, post() in tests issues a
POST request. The first argument of post() is the URL, and the second is the data
hash (which gives rise to the contents of response.form):

client.post("/check", data={"phrase": "Not a palindrome"})

To test the response, we’ll verify that the text in the page’s paragraph tag includes
the right result. Taking the ideas above and applying them to both non-palindromes
and palindromes gives the tests shown in Listing 10.52.

306 Chapter 10: A Live Web Application

Listing 10.52: Adding tests for form submission. GREEN

tests/test_palindrome.py

def test_palindrome_page(client):
response = client.get("/palindrome")
assert form_tag() in response.text

def test_non_palindrome_submission(client):
phrase = "Not a palindrome."
response = client.post("/check", data={"phrase": phrase})
assert f'<p>"{phrase}" isn\'t a palindrome.</p>' in response.text

def test_palindrome_submission(client):
phrase = "Sator Arepo tenet opera rotas."
response = client.post("/check", data={"phrase": phrase})
assert f'<p>"{phrase}" is a palindrome!</p>' in response.text

def form_tag():
return '<form id="palindrome_tester" action="/check" method="post">'

(Be careful when using sample phrases that contain non-alphanumeric characters like
quotes or apostrophes; by default, Jinja escapes these out in ways that make them
very difficult to test, which is why Listing 10.52 uses the Sator Square palindrome
instead of, say, Madam, I'm Adam. To see what the escaped HTML looks like in the
latter case, you can temporarily set phrase to Madam, I'm Adam and then include
print(response.text) in the test to output the result.)

Because we were testing existing functionality, the tests in Listing 10.52 should
already be GREEN:

Listing 10.53: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 6 items

tests/test_palindrome.py ... [50%]
tests/test_site_pages.py ... [100%]

============================== 6 passed in 0.03s ===============================

As a capstone to our development, we’ll now add a form on the result page using
the RED, GREEN, refactor cycle that is a hallmark of TDD. Since there is only one

10.5 Palindrome Detector 307

result template, it doesn’t matter if we test the palindrome or non-palindrome page,
so we’ll choose the latter without loss of generality. All we need to do is add a form
test identical to the one in Listing 10.51, as shown in Listing 10.54.

Listing 10.54: Adding a test for a form on the result page. RED
tests/test_palindrome.py

def test_palindrome_page(client):
response = client.get("/palindrome")
assert form_tag() in response.text

def test_non_palindrome_submission(client):
phrase = "Not a palindrome."
response = client.post("/check", data={"phrase": phrase})
assert f'<p>"{phrase}" isn\'t a palindrome.</p>' in response.text
assert form_tag() in response.text

def test_palindrome_submission(client):
phrase = "Sator Arepo tenet opera rotas."
response = client.post("/check", data={"phrase": phrase})
assert f'<p>"{phrase}" is a palindrome!</p>' in response.text

def form_tag():
return '<form id="palindrome_tester" action="/check" method="post">'

As required, the test suite is now RED:

Listing 10.55: RED

(venv) $ pytest
============================= test session starts ==============================
collected 6 items

tests/test_palindrome.py .FF [50%]
tests/test_site_pages.py ... [100%]

=================================== FAILURES ===================================
________________________ test_non_palindrome_submission ________________________
.
.
.
=========================== short test summary info ============================
FAILED tests/test_palindrome.py::test_non_palindrome_submission - assert '<fo...
FAILED tests/test_palindrome.py::test_palindrome_submission - assert '<form i...
========================= 2 failed, 4 passed in 0.04s ==========================

308 Chapter 10: A Live Web Application

We can get the tests to GREEN again by copying the form from palindrome.html
and pasting it into result.html, as shown in Listing 10.56.

Listing 10.56: Adding a form to the result page. GREEN

palindrome_detector/templates/result.html

{% extends "layout.html" %}

{% block content %}
<h1>Palindrome Result</h1>

{% if Phrase(phrase).ispalindrome() %}
<div class="result result-success">

<p>"{{ phrase }}" is a palindrome!</p>
</div>

{% else %}
<div class="result result-fail">

<p>"{{ phrase }}" isn't a palindrome.</p>
</div>

{% endif %}

<form id="palindrome_tester" action="/check" method="post">
<textarea name="phrase" rows="10" cols="60"></textarea>

<button class="form-submit" type="submit">Is it a palindrome?</button>

</form>
{% endblock %}

This gets our tests to GREEN:

Listing 10.57: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 6 items

tests/test_palindrome.py ... [50%]
tests/test_site_pages.py ... [100%]

============================== 6 passed in 0.03s ===============================

That copy-and-paste should have set your programmer Spidey-sense tingling,
though: It’s repetition! Pasting in content is a clear violation of the Don’t Repeat

https://en.wiktionary.org/wiki/Spidey-sense

10.5 Palindrome Detector 309

Yourself (DRY) principle. Happily, we saw how to eliminate such duplication in the
case of the site navigation by refactoring the code to use a partial (Listing 10.40),
which we can apply to this case as well. As with the nav, we’ll first create a separate
file for the form HTML:

(venv) $ touch palindrome_detector/templates/palindrome_form.html

Then we can fill it with the form (Listing 10.58), while replacing the form with a Jinja
template include on the result page (Listing 10.59) and on the main palindrome page
itself (Listing 10.60).

Listing 10.58: A partial for the palindrome form. GREEN

palindrome_detector/templates/palindrome_form.html

<form id="palindrome_tester" action="/check" method="post">
<textarea name="phrase" rows="10" cols="60"></textarea>

<button class="form-submit" type="submit">Is it a palindrome?</button>

</form>

Listing 10.59: Rendering the form template on the result page. GREEN

palindrome_detector/templates/result.html

{% extends "layout.html" %}

{% block content %}
<h1>Palindrome Result</h1>

{% if Phrase(phrase).ispalindrome() %}
<div class="result result-success">
<p>"{{ phrase }}" is a palindrome!</p>

</div>
{% else %}

<div class="result result-fail">
<p>"{{ phrase }}" isn't a palindrome.</p>

</div>
{% endif %}

<h2>Try another one!</h2>

{% include "palindrome_form.html" %}
{% endblock %}

310 Chapter 10: A Live Web Application

Listing 10.60: Rendering the form template on the main palindrome page. GREEN

palindrome_detector/templates/palindrome.html

{% extends "layout.html" %}

{% block content %}
<h1>Palindrome Detector</h1>

{% include "palindrome_form.html" %}
{% endblock %}

As a final refactoring, we’ll adopt the convention of only passing variables (rather
than, say, classes) to Jinja templates, as discussed immediately after Listing 10.50. To
do this, we’ll define an is_palindrome variable as follows:

phrase = request.form["phrase"]
is_palindrome = Phrase(phrase).ispalindrome()

We’ll then pass these variables to the template, where we’ll use this simplified if
statement:

{% if is_palindrome %}

The results appear in Listing 10.61 and Listing 10.62.

Listing 10.61: Passing only a variable to the template. GREEN

palindrome_app/palindrome_detector/__init__.py

import os

from flask import Flask, render_template, request

from palindrome_mhartl.phrase import Phrase

def create_app(test_config=None):
"""Create and configure the app."""
app = Flask(__name__, instance_relative_config=True)

if test_config is None:
Load the instance config, if it exists, when not testing.
app.config.from_pyfile("config.py", silent=True)

else:
Load the test config if passed in.

10.5 Palindrome Detector 311

app.config.from_mapping(test_config)

Ensure the instance folder exists.
try:

os.makedirs(app.instance_path)
except OSError:

pass

@app.route("/")
def index():

return render_template("index.html", page_title="Home")

@app.route("/about")
def about():

return render_template("about.html", page_title="About")

@app.route("/palindrome")
def palindrome():

return render_template("palindrome.html",
page_title="Palindrome Detector")

@app.route("/check", methods=("POST",))
def check():

phrase = request.form["phrase"]
is_palindrome = Phrase(phrase).ispalindrome()
return render_template("result.html",

phrase=phrase,
is_palindrome=is_palindrome)

return app

app = create_app()

Listing 10.62: Using a boolean variable in the template. GREEN

palindrome_detector/templates/result.html

{% extends "layout.html" %}

{% block content %}
<h1>Palindrome Result</h1>

{% if is_palindrome %}
<div class="result result-success">
<p>"{{ phrase }}" is a palindrome!</p>

</div>
{% else %}

<div class="result result-fail">
<p>"{{ phrase }}" isn't a palindrome.</p>

</div>

312 Chapter 10: A Live Web Application

{% endif %}

<h2>Try another one!</h2>

{% include "palindrome_form.html" %}
{% endblock %}

As required for a refactoring, the tests are still GREEN:

Listing 10.63: GREEN

(venv) $ pytest
============================= test session starts ==============================
collected 6 items

tests/test_palindrome.py ... [50%]
tests/test_site_pages.py ... [100%]

============================== 6 passed in 0.03s ===============================

Submitting the Sator Square palindrome shows that the form on the result page is
rendering properly, as shown in Figure 10.19.

Filling the textarea with one of my favorite looooong palindromes (Figure 10.20)
gives the result shown in Figure 10.21.9

And with that—“A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps,
snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a
camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal—
Panama!”—we’re done with our palindrome detector web application. Whew!

The only thing left is to commit and deploy:

(venv) $ git add -A
(venv) $ git commit -am "Finish working palindrome detector"
(venv) $ flyctl deploy

The result is a palindrome application working in production (Figure 10.22)!10

9. The amazingly long palindrome in Figure 10.20 was created in 1983 by pioneering computer scientist
Guy Steele with the aid of a custom program.

10. To learn how to host a Fly.io site using a custom domain, see the article on custom domains with Fly
(https://fly.io/docs/app-guides/custom-domains-with-fly/).

https://en.wikipedia.org/wiki/Guy_L._Steele_Jr.
https://fly.io/docs/app-guides/custom-domains-with-fly/
https://fly.io/docs/app-guides/custom-domains-with-fly/

10.5 Palindrome Detector 313

Figure 10.19: The form on the result page.

10.5.2 Exercises

1. Confirm by submitting an empty textarea that the palindrome detector currently
returns True for the empty string, which is a flaw in the palindrome package
itself. What happens if you submit a bunch of spaces?

2. In the palindrome package, write tests asserting that the empty string and a string
of spaces aren’t palindromes (RED). Then write the application code necessary to
get the tests to GREEN. (It’s worth noting that the processed_content() method
already filters out spaces, so in the application code you need only consider the
case of the empty string, whose boolean value is False (Section 2.4.2).) Bump

314 Chapter 10: A Live Web Application

Figure 10.20: Entering a long string in the form’s textarea field.

the version number and publish your package as in Section 8.5.1. (You can refer
to my version (https://github.com/mhartl/python_package_tutorial) if you’d like
some help.)

3. Upgrade the test package in your web app directory using Listing 10.64 as a tem-
plate and confirm that it’s working by submitting empty and blank phrases in the
browser. (Recall that you should type the continuation character \ in Listing 10.64
but not the right angle bracket > since the latter will be inserted automatically by
your shell program.)

4. Make a commit and deploy the changes. Confirm the correct behavior in the live
app.

https://github.com/mhartl/python_package_tutorial

10.5 Palindrome Detector 315

Figure 10.21: That long string is a palindrome!

Listing 10.64: Upgrading the test package.

(venv) $ pip install --upgrade palindrome_YOUR_USERNAME_HERE \
> --index-url https://test.pypi.org/simple/

316 Chapter 10: A Live Web Application

Figure 10.22: Our palindrome detector working on the live Web.

10.6 Conclusion
Congratulations! You now know enough Python to be dangerous.

There is one more challenge, should you choose to accept it: Chapter 11 on data
science. This chapter is a bit specialized, and strictly speaking it can be considered
optional. It introduces some valuable techniques, though, and reinforces other parts
of the book, so I recommend giving it a try.

For more about Python (and programming generally), I recommend these fine
resources:

• Replit’s 100 days of code: This is a guided introduction to Python programming
using Replit’s amazing collaborative browser-based IDE.

https://replit.com/learn/100-days-of-python
https://replit.com/

10.6 Conclusion 317

• Practical Python Programming by Dave Beazley: I’ve long been a huge fan of
Beazely’s Python Essential Reference and highly recommend his (free) online course.

• Learn Python the Hard Way by Zed Shaw: This exercise- and syntax-
heavy approach is an excellent complement to the breadth-first, narrative
approach taken in this tutorial. Fun fact: Zed Shaw’s “Learn Code the Hard
Way” brand was a direct inspiration for “Learn Enough to Be Dangerous”
(https://www.learnenough.com/).

• Python Crash Course and Automate the Boring Stuff with Python from No Starch
Press: Both of these books are good follow-ons to Learn Enough Python to Be
Dangerous; the former (by Eric Matthes) has more detailed coverage of Python
syntax while the latter (by Al Sweigart) includes a great many applications of
Python programming to everyday computer tasks.

• Captain Code by Ben Forta and Shmuel Forta: Although this book is principally
aimed at children, many adult readers have reported enjoying it as well.

• Finally, for people who want the most solid foundation possible in technical
sophistication, Learn Enough All Access (https://www.learnenough.com/all-
access) is a subscription service that has special online versions of all the Learn
Enough books and over 40 hours of streaming video tutorials, including Learn
Enough Python to Be Dangerous, Learn Enough Ruby to Be Dangerous, and the full
Ruby on Rails Tutorial (https://www.railstutorial.org/). We hope you’ll check it
out!

The material in this chapter is also excellent preparation for learning more about
Flask, for which the Flask documentation is a good resource, and for learning web
development with Django. If you’d like to go the Django route, the Django docu-
mentation is an excellent place to start. If you end up wanting to learn more about
web development generally, I also recommend following Learn Enough JavaScript to
Be Dangerous since JavaScript is the only language that can be executed inside web
browsers. In addition, Learn Enough Python to Be Dangerous is excellent preparation for
Learn Enough Ruby to Be Dangerous, which (like Learn Enough JavaScript to Be Danger-
ous) broadly follows the same outline as this tutorial, and is also great preparation for
the Ruby on Rails Tutorial.

https://dabeaz-course.github.io/practical-python/Notes/Contents.html
https://www.dabeaz.com/per.html
https://dabeaz-course.github.io/practical-python/Notes/Contents.html
https://learnpythonthehardway.org/python3/
https://shop.learncodethehardway.org/
https://shop.learncodethehardway.org/
https://www.learnenough.com/
https://www.learnenough.com/
https://nostarch.com/python-crash-course-3rd-edition
https://nostarch.com/automatestuff2
https://nostarch.com/
https://nostarch.com/
https://www.informit.com/store/captain-code-unleash-your-coding-superpower-with-python-9780137653577
https://www.learnenough.com/society
https://www.learnenough.com/society
https://www.learnenough.com/ruby
https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access
https://www.learnenough.com/all-access
https://flask.palletsprojects.com/
https://www.djangoproject.com/
https://docs.djangoproject.com/
https://docs.djangoproject.com/
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.railstutorial.org/

This page intentionally left blank

CHAPTER 11
Data Science

Data science is a rapidly developing field that combines tools from computation and
statistics to create insights and draw conclusions from data. That description may sound
a little vague, and indeed there is no universally accepted definition of the field; for
example, some people think “data science” is just a fancy term for “statistics”, while
others hold that statistics is the least important part of data science.

Luckily, there is broad agreement that Python is an excellent tool for data science,
whatever it is exactly.1 There is also a general consensus about which specific Python
tools are most useful for the subject. The purpose of this chapter is to introduce some
of those tools and use them to investigate some aspects of data science for which
Python is especially well-suited.

These subjects include Jupyter notebooks for interactive calculations (Sec-
tion 11.1), NumPy for numerical computations (Section 11.2), Matplotlib for data
visualization (Section 11.3), pandas for data analysis (Section 11.4, Section 11.5, and
Section 11.6), and scikit-learn for machine learning (Section 11.7).2 Almost all other
Python data-science tools (such as PySpark, Databricks, and others) also build on the
libraries in this chapter.

Data science is far too big to cover in so small a space, but this chapter will give
you a great foundation for learning more about the subject. Section 11.8 includes

1. Python’s main open-source rival in this space is R, which was originally developed by statisticians. Python
has the advantage of being a general-purpose programming language as well, which is part of why many data
scientists have come to prefer it. Nevertheless, R is undeniably powerful, and there are many resources for
learning data science that actually cover both Python and R at the same time. I recommend using one of
those resources if for any reason it is important for you to know R.

2. All of these resources are open-source software.

319

https://www.statisticsviews.com/article/nate-silver-what-i-need-from-statisticians/
https://statmodeling.stat.columbia.edu/2013/11/14/statistics-least-important-part-data-science/
https://spark.apache.org/docs/latest/api/python/
https://docs.databricks.com/languages/python.html
https://en.wikipedia.org/wiki/R_(programming_language)

320 Chapter 11: Data Science

some suggestions and further resources if you decide you’d like to pursue data science
further.

11.1 Data Science Setup
The first step is setting up our environment for doing data-science investigations. Here
is an overview of some of the most important tools for Python data science:

• IPython and Jupyter: Packages that provide the computational environment in
which many Python-using data scientists work.

• NumPy: A library that makes a variety of mathematical and statistical operations
easier; it is also the basis for many features of the pandas library.

• Matplotlib: A visualization library that makes it quick and easy to generate graphs
and charts from our data.

• pandas: A Python library created specifically to facilitate working with data. This
is the bread and butter of a lot of Python data-science work.

• scikit-learn: Probably the most popular library for machine learning in Python.

Because the use of IPython and Jupyter is technically optional, we’ll start by
installing the packages that will be needed no matter what your environment looks
like. For convenience, I suggest creating a new directory and setting up a fresh virtual
environment, as shown in Listing 11.1.

Listing 11.1: Setting up a data-science environment.

$ cd ~/repos
$ mkdir python_data_science
$ cd python_data_science/
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $

I also recommend putting your project under version control with Git and setting up
a remote repository at GitHub or another repository host of your choice. If you go
this route, you can use the .gitignore file shown in Listing 11.2, which includes an
extra line for ignoring unneeded Jupyter changes.

11.1 Data Science Setup 321

Listing 11.2: A .gitignore file for Python data science.
.gitignore

venv/

*.pyc
__pycache__/

instance/

.pytest_cache/

.coverage
htmlcov/

dist/
build/
*.egg-info/

.ipynb_checkpoints

.DS_Store

At this point, we’re ready to install the necessary packages. As with the rest of this
tutorial, we’ll install exact versions for maximum future compatibility, but feel free to
try the latest versions by leaving off the ==<version number> part. Just be prepared
for unpredictable results. The full set of necessary packages is shown in Listing 11.3.

Listing 11.3: Installing packages for Python data science.

(venv) $ pip install numpy==1.23.3
(venv) $ pip install matplotlib==3.6.1
(venv) $ pip install pandas==1.5.0
(venv) $ pip install scikit-learn==1.1.2

We saw as early as Section 1.3 that many Python developers prefer the Conda
system for managing packages. If anything, this is even more the case among Python
data scientists. But as also noted in Section 1.3, Conda makes more extensive changes
to the environment and is (at least in my experience) harder to reverse or tear down
if you need to reset the system. As you gain experience with using Python on your
system, I suggest taking another look at Conda to see if it meets your needs.

https://docs.conda.io/en/latest/

322 Chapter 11: Data Science

Figure 11.1: A working Jupyter notebook.

As noted in the introduction, I also highly recommend using Jupyter (pronounced
“Jupiter”, like the planet or Roman god),3 which provides a notebook interface to a
version of Python, typically a powerful variant known as IPython (Interactive Python).
Notebooks consist of cells where you can type and execute code, seeing the results
interactively (much like the REPL), which is especially convenient for visualizing
plots. (Also like the REPL, Jupyter notebooks are often a good first step toward self-
contained Python programs like the ones discussed in previous chapters.) After a while,
your notebook might look something like Figure 11.1.

I suggest installing and using Jupyter via JupyterLab, which conveniently wraps
multiple Jupyter notebooks and is also the interface recommended by the Jupyter
project itself:

3. The name is a reference to the three main languages supported by the notebook interface: Julia, Python,
and R.

https://julialang.org/
https://www.r-project.org/

11.1 Data Science Setup 323

(venv) $ pip install jupyterlab==3.4.8

JupyterLab can be started using the following command:4

(venv) $ jupyter-lab

The result of this is a Jupyter server running on the local system, typically at the address
http://localhost:8889/lab (though details may differ). On my system, the jupyter-
lab command automatically spawns a new browser window, with a directory tree and
an interface for creating a new notebook (Figure 11.2).

Figure 11.2: A directory tree and interface for creating a new notebook.

4. It is unclear why the library and package are JupyterLab and jupyterlab (no hyphen) while the command-
line command is jupyter-lab (with a hyphen), but that’s the way it is.

324 Chapter 11: Data Science

Figure 11.3: The “classic” Jupyter interface.

You may also sometimes encounter the “classic” Jupyter interface, which comes
from installing the jupyter package by itself and running jupyter notebook at the
command line (Figure 11.3).

Each Jupyter notebook runs inside an ordinary web browser and consists of cells
of Python code that can be executed using the graphical user interface or (more
conveniently) the keyboard shortcut Shift-Return.5 On my system, Jupyter launches
in whatever directory I happen to run the jupyter-lab command in, though this
behavior may be system-dependent.

By the way, Jupyter doesn’t autoreload modules by default, which can be annoying.
The following code can be used to change this default behavior:

%load_ext autoreload
%autoreload 2

5. Users of Mathematica, from which Jupyter draws heavy inspiration, will find this notebook interface
especially familiar.

11.1 Data Science Setup 325

Throughout the rest of this chapter, we’ll mainly be using examples from the
Python prompt because I don’t want to assume you’ve installed Jupyter.6 That being
said, I strongly recommend installing and learning Jupyter at some point since it is a
standard tool in Python data analysis and scientific computing. In particular, Jupyter
can be used on the cloud IDE recommended in Learn Enough Dev Environment to Be
Dangerous (https://www.learnenough.com/dev-environment) by following the steps
in Box 11.1. Another option is CoCalc, a commercial service that supports Jupyter
notebooks by default.

Box 11.1: Running Jupyter on the cloud IDE

Perhaps surprisingly, it’s possible to get Jupyter notebooks to work on the cloud
IDE recommended in Learn Enough Dev Environment to Be Dangerous. (At least, it
was surprising to me.) The first step is to generate a configuration file as follows
(be sure to run this and all commands in the jupyter_data_science directory
created in Listing 11.1 and inside a virtual environment):

$ jupyter notebook --generate-config

This command generates a file in the .jupyter hidden directory under the home
directory:

~/.jupyter/jupyter_notebook_config.py

Using a text editor such as nano, vim, or c9 (the last one can be installed via npm
install --location=global c9), include the following lines at the bottom of
jupyter_notebook_config.py:

c.NotebookApp.allow_origin = "*"
c.NotebookApp.ip = "0.0.0.0"
c.NotebookApp.allow_remote_access = True

At this point, you should be ready to run

$ jupyter-lab --port $PORT --ip $IP --no-browser

at the command line.

6. Because the notebook interface is so instructive when used interactively, the videos that accompany this
book do make use of Jupyter (or, more specifically, JupyterLab).

https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
https://cocalc.com
https://www.learnenough.com/dev-environment

326 Chapter 11: Data Science

To view the notebook, use the menu item Preview > Preview Running Appli-
cation. You might have to click the Pop Out Into New Window icon in the upper
right of the window pane. You will probably be prompted for a token, which can
be found in the output of the jupyter-lab command and should look something
like this:

http://127.0.0.1:8080/?token=c33a7633b81ad52fc81

Copy and paste the unique token for your application (i.e., everything after token=)
to get access to the page. The result should be a Jupyter notebook running on the
cloud IDE (Figure 11.4).

Figure 11.4: A Jupyter notebook on the cloud IDE.

11.2 Numerical Computations with NumPy 327

11.2 Numerical Computations with NumPy
Although Python has a reputation for being a “slow language”, in fact Python is
written in C, one of the fastest languages in existence. The occasional slowness of
Python is mostly a consequence of the things that also make it dynamic, which often
involves layers of abstraction above the underlying C code. The NumPy library makes
the underlying speed directly available to numerical computations by rewriting the
most time-intensive parts directly in C.

NumPy (pronounced “NUM-pie”, for “Numerical Python”) was originally part
of the large and powerful SciPy (“SIE-pie”) library for scientific computing in Python
but was factored out as a separate library because of its broad applicability. Indeed, data
science is a great example: The core Python data-science library, pandas (Section 11.4),
doesn’t need SciPy but relies heavily on NumPy for numerical computations. As a
result, although a complete mastery of NumPy isn’t necessary for data science, it’s
important to at least know the basics.

Once NumPy has been installed (Listing 11.3), it can be included in a program,
in the REPL, or in a Jupyter notebook as usual using import. The near-universal
convention in data science and closely related communities is to import numpy as np
for convenience:

>>> import numpy as np

(Most of the examples in this chapter include the REPL prompt >>>, but if you use
Jupyter notebooks no prompt will be present, as seen in, e.g., Figure 11.1.)

11.2.1 Arrays

The combination SciPy + NumPy + Matplotlib (Section 11.3) represents an open-
source alternative to the proprietary MATLAB system. Like MATLAB, NumPy is
array-based, with the core data structure being an ndarray (short for “n-dimensional
array”):

>>> np.array([1, 2, 3])
array([1, 2, 3])

https://www.reddit.com/r/ProgrammerHumor/comments/w1upl0/c_talking_to_python/
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/MATLAB

328 Chapter 11: Data Science

NumPy ndarrays share many properties with regular Python lists (Chapter 3):

>>> a = np.array([1, 3, 2])
>>> len(a)
>>> a.sort()
>>> a
array([1, 2, 3])

In analogy with the list range() function (first seen in Listing 2.24), we can create
array ranges using arange():

>>> r = range(17)
>>> r
range(0, 17)
>>> list(r)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
>>> a = np.arange(17)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])

These similarities raise the question of why we can’t just use lists when doing data
science with Python. The answer is that computations with arrays are much faster
than the corresponding operations with lists. Because NumPy itself is array-based,
such computations can also typically be expressed much more compactly, without the
need for loops or even comprehensions.

In particular, NumPy arrays support vectorized operations, whereby we can (say)
multiply every element in an array by a particular number all at once. For exam-
ple, to create a list multiplying each element in a range by 3, we could use a list
comprehension (Section 6.1) as follows:

>>> [3 * i for i in r]
[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48]

With a NumPy ndarray, we can just multiply by 3 directly:

>>> 3 * a
array([0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48])

Here NumPy automatically threads the multiplication over the array elements (essen-
tially equivalent to “scalar multiplication” on vectors). We can also apply an operation
like squaring in a similar manner:

https://en.wikipedia.org/wiki/Scalar_multiplication

11.2 Numerical Computations with NumPy 329

>>> a**2
array([0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169,
196, 225, 256])

Here each element of a has been squared without the need for a loop or comprehen-
sion.

As indicated above, this is not just for convenience, either; it’s a lot faster as well.
We can see this by using the timeit library to call the same code repeatedly and then
time the result:

>>> import timeit
>>> t1 = timeit.timeit("[i**2 for i in range(50)]")
>>> t2 = timeit.timeit("import numpy as np; np.arange(50)**2")
>>> t1, t2, t1/t2
(9.171871625003405, 0.5006397919496521, 18.320300887960165)

Although exact results will vary, the result shown here indicates nearly a factor of 20
increase in speed for the vectorized version, which NumPy accomplishes by pushing
the main loops into optimized C code. (Note: In a Jupyter notebook, we can use
IPython to perform an even better comparison using the special %%timeit operation
(Figure 11.5).)

Figure 11.5: Using NumPy and timeit in a Jupyter notebook.

330 Chapter 11: Data Science

11.2.2 Multidimensional Arrays

NumPy also includes support for multidimensional arrays:

>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> a
array([[1, 2, 3],

[4, 5, 6]])

NumPy arrays have an attribute called shape that returns the number of rows and
columns:

>>> a.shape
(2, 3)

Here (2, 3) corresponds to the 2 rows ([1, 2, 3] and [4, 5, 6]) and the 3
columns ([1, 4], [2, 5], and [3, 6]). You can think of this as a 2 × 3 matrix.

In analogy with list slicing (Section 3.3), NumPy supports array slicing for ndarrays
of all dimensions. The colon notation introduced in Section 3.3 is especially useful
for selecting full rows or columns by using a single colon by itself:

>>> a[0, :] # first row
array([1, 2, 3])
>>> a[:, 0] # first column
array([1, 4])

By combining colons with number ranges, we can slice out a subarray:

>>> A = a[0:2, 0:2]
>>> A
array([[1, 2],

[4, 5]])

As with list slicing, you can omit the beginning or end of the range and get the same
result:

>>> A = a[:2, :2]
>>> A
array([[1, 2],

[4, 5]])

11.2 Numerical Computations with NumPy 331

NumPy includes lots of support for common numerical operations such as linear
algebra, in this case using super-optimized and battle-tested packages like BLAS and
LAPACK. These routines are mostly written in C and Fortran, but we don’t have to
know those languages because they are wrapped by Python via the linalg library.7

Let’s take a look at a quick example of NumPy’s linear algebra support. The sub-
array A that we just defined is a square matrix (the same number of rows and columns),
which means that we can try calculating its matrix inverse. The inverse of an invert-
ible matrix, written as A−1 (“A inverse”), satisfies the relations AA−1 = A−1A = I ,
where I is the n × n identity matrix (1s on the diagonal, 0s everywhere else). Matrix
inversion is available in NumPy via linalg.inv():

>>> Ainv = np.linalg.inv(A) # inverse of a matrix
>>> Ainv
array([[-1.66666667, 0.66666667],

[1.33333333, -0.33333333]])

We can try adding and multiplying the matrices using + and *, respectively:

>>> A + Ainv
array([[-0.66666667, 2.66666667],

[5.33333333, 4.66666667]])
>>> A * Ainv
array([[-1.66666667, 1.33333333],

[5.33333333, -1.66666667]])

Although the array sum A + Ainv has no particular mathematical significance in
this context, we see that the elements have been added in accordance with NumPy
vectorized operations (Section 11.2.1). Similarly, the array product A * Ainv has
also been calculated term by term. This is a possible source of confusion because in
some systems (notably MATLAB) the * operator performs matrix multiplication in this
context, yielding the expected result AA−1 = I . In NumPy, the most convenient
way to perform matrix multiplication is with the @ operator:8

>>> A @ Ainv
array([[1., 0.],

[0., 1.]])

7. Although I did end up doing a lot of C programming in graduate school anyway, I was able to achieve
my childhood dream of never having to learn Fortran.

8. The matmul() function works as well; with numpy imported as np, this would appear as np.matmul(A,
Ainv) and is equivalent to A @ Ainv.

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Matrix_multiplication

332 Chapter 11: Data Science

The result is the 2 × 2 identity matrix as expected. (Note that some elements may be
close to but not exactly zero due to numerical roundoff error; see Section 11.2.3 for
more information.)

One especially useful method for manipulating matrix objects is reshape(),
which allows us to change (say) a one-dimensional array into a two-dimensional array.
The argument to reshape() is a tuple (Section 3.6) with the target dimensions:

>>> a = np.arange(16)
>>> a.reshape((2, 8))
>>> a
array([[0, 1, 2, 3, 4, 5, 6, 7],

[8, 9, 10, 11, 12, 13, 14, 15]])
>>> b = a.reshape((4, 4))
>>> b
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15]])

Using reshape() is often much more convenient than building up the corresponding
arrays by hand. Note that reshape() doesn’t mutate the array, so we need to make
an assignment if we want a name for the reshaped version.

The reshape() function supports using -1 as one of the arguments, which has
an effect described in the documentation:

One shape dimension can be -1. In this case, the value is inferred from the length of the array
and remaining dimensions.

For example, we can use the argument (-1, 2) with an array of 16 elements to get
an 8 × 2 matrix, where the 8 comes from dividing 16 by 2:

>>> a.reshape((-1, 2))
array([[0, 1],

[2, 3],
[4, 5],
[6, 7],
[8, 9],
[10, 11],
[12, 13],
[14, 15]])

https://numpy.org/doc/stable/reference/generated/numpy.reshape.html

11.2 Numerical Computations with NumPy 333

In effect, the -1 is a placeholder that says “use the dimensionality needed to make the
total number of elements correct.”

Among other things, this -1 technique can be used to convert a multidimensional
array to an array of arrays of one element, which can be accomplished using the argu-
ment (-1, 1) (Listing 11.4). This format is common as an input to machine-learning
algorithms (Section 11.7).

Listing 11.4: Creating an array of one-dimensional arrays.

>>> a.reshape((-1, 1))
array([[0],

[1],
[2],
[3],
[4],
[5],
[6],
[7],
[8],
[9],
[10],
[11],
[12],
[13],
[14],
[15]])

11.2.3 Constants, Functions, and Linear Spacing

Like the math library discussed in Section 4.1, NumPy comes equipped with
mathematical constants, such as Euler’s number e:

>>> import math
>>> math.e
2.718281828459045
>>> np.e
2.718281828459045
>>> math.e == np.e
True

334 Chapter 11: Data Science

NumPy also defines pi but unfortunately doesn’t have tau as of this writing:

>>> np.pi
3.141592653589793
>>> np.tau
Traceback (most recent call last):

raise AttributeError("module {!r} has no attribute "
AttributeError: module 'numpy' has no attribute 'tau'

We can still use the one in math, though:

>>> math.tau
6.283185307179586
>>> math.tau == 2 * np.pi
True

Also like math, NumPy has operations like trigonometric functions and loga-
rithms (see below for an explanation of the strange result of np.sin(math.tau)):

>>> np.cos(math.tau)
1.0
>>> np.sin(math.tau)
-2.4492935982947064e-16
>>> np.log(np.e)
1.0
>>> np.log10(np.e)
0.4342944819032518

Note that, again as with math, and like most programming languages, NumPy uses
log() to denote the natural logarithm and log10() for base-ten logs.

At this point, you may wonder what the point is of including definitions in
NumPy that duplicate those in math. For constants like e and π it’s mainly for com-
pleteness, but with the functions there’s actually a meaningful difference: Unlike math
functions, NumPy’s functions can be threaded over arrays using the same vectorized
operations we first saw in Section 11.2.1.

Consider, for example, one period of cos x, with angles ranging from 0 to τ

(Listing 11.5).9

9. I prefer to use cosine instead of sine as the canonical example because it’s more intuitive from the perspective
of simple harmonic motion, which is one of the most important examples of sinusoidal functions. Because
the cosine function starts at 1, it corresponds naturally to an oscillator moved some distance from equilibrium
and released from rest. In contrast, using sine involves giving a kick or flick to such an oscillator so that it
starts with a nonzero velocity at equilibrium, which is a much less common way of initiating such motion.

11.2 Numerical Computations with NumPy 335

Listing 11.5: Angles corresponding to simple fractions of a period of cos x.

>>> np.arange(5)
array([0, 1, 2, 3, 4])
>>> angles = math.tau * np.arange(5) / 4
>>> angles
array([0. , 1.57079633, 3.14159265, 4.71238898, 6.28318531])

Note that the values of the angles array in Listing 11.5 are simply the numerical
equivalents of 0, τ/4, τ/2, 3τ/4, and τ . Applying cos() to these angles doesn’t work
for the math version of cosine but does for the NumPy version (Listing 11.6).

Listing 11.6: Applying cos() to an array of angles.

>>> math.cos(angles)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: only size-1 arrays can be converted to Python scalars
>>> a = np.cos(angles)
>>> a
array([1.0000000e+00, 6.1232340e-17, -1.0000000e+00, -1.8369702e-16,

1.0000000e+00])

Note that, due to floating-point roundoff errors, the zeros of cos x in Listing 11.6
appear as tiny numbers rather than as 0 (though such behavior is often system-
dependent, so your exact results may differ). We can get rid of these using NumPy’s
isclose() function, which returns True if a number is “close” to the given number
(essentially, within the margin of error of the system’s floating-point arithmetic):

>>> np.isclose(0.01, 0)
False
>>> np.isclose(10**(-16), 0)
True
>>> np.isclose(a, 0)
array([False, True, False, True, False])

We can actually pass this array of boolean values to the original array itself and set the
elements corresponding to True exactly to 0 (Listing 11.7).

336 Chapter 11: Data Science

Listing 11.7: Using isclose() to zero out values close to 0.

>>> a[np.isclose(a, 0)]
array([6.1232340e-17, -1.8369702e-16])
>>> a[np.isclose(a, 0)] = 0
>>> a
array([1., 0., -1., 0., 1.])

In Listing 11.5, we divided the arange(5) by 4 when generating the angles,
but for technical reasons (related to numerical roundoff error) the preferred way to
make such sequences is with linspace() (“linearly space(d)”). The most common
arguments to the linspace() function are the beginning, end, and total number of
points desired. For example, we can use linspace() to make an array of the four
quarters of a period (with 5 total points since we’re including 0):

>>> angles = np.linspace(0, math.tau, 5)
>>> angles
array([0. , 1.57079633, 3.14159265, 4.71238898, 6.28318531])
>>> a = np.cos(angles)
>>> a[np.isclose(a, 0)] = 0
>>> a
array([1., 0., -1., 0., 1.])

The linspace() function is often used to create an array with much finer spacing
using a larger number of points. For instance, we can get 100 points of cos x as follows:

>>> angles = np.linspace(0, math.tau, 100)
>>> angles
array([0. , 0.06346652, 0.12693304, 0.19039955, 0.25386607,

0.31733259, 0.38079911, 0.44426563, 0.50773215, 0.57119866,
0.63466518, 0.6981317 , 0.76159822, 0.82506474, 0.88853126,
0.95199777, 1.01546429, 1.07893081, 1.14239733, 1.20586385,
1.26933037, 1.33279688, 1.3962634 , 1.45972992, 1.52319644,
1.58666296, 1.65012947, 1.71359599, 1.77706251, 1.84052903,
1.90399555, 1.96746207, 2.03092858, 2.0943951 , 2.15786162,
2.22132814, 2.28479466, 2.34826118, 2.41172769, 2.47519421,
2.53866073, 2.60212725, 2.66559377, 2.72906028, 2.7925268 ,
2.85599332, 2.91945984, 2.98292636, 3.04639288, 3.10985939,
3.17332591, 3.23679243, 3.30025895, 3.36372547, 3.42719199,
3.4906585 , 3.55412502, 3.61759154, 3.68105806, 3.74452458,
3.8079911 , 3.87145761, 3.93492413, 3.99839065, 4.06185717,
4.12532369, 4.1887902 , 4.25225672, 4.31572324, 4.37918976,
4.44265628, 4.5061228 , 4.56958931, 4.63305583, 4.69652235,
4.75998887, 4.82345539, 4.88692191, 4.95038842, 5.01385494,

https://numpy.org/doc/stable/reference/generated/numpy.arange.html

11.2 Numerical Computations with NumPy 337

5.07732146, 5.14078798, 5.2042545 , 5.26772102, 5.33118753,
5.39465405, 5.45812057, 5.52158709, 5.58505361, 5.64852012,
5.71198664, 5.77545316, 5.83891968, 5.9023862 , 5.96585272,
6.02931923, 6.09278575, 6.15625227, 6.21971879, 6.28318531])

>>> np.cos(angles)
array([1. , 0.99798668, 0.99195481, 0.9819287 , 0.9679487 ,

0.95007112, 0.92836793, 0.90292654, 0.87384938, 0.84125353,
0.80527026, 0.76604444, 0.72373404, 0.67850941, 0.63055267,
0.58005691, 0.52722547, 0.47227107, 0.41541501, 0.35688622,
0.29692038, 0.23575894, 0.17364818, 0.1108382 , 0.04758192,

-0.01586596, -0.07924996, -0.14231484, -0.20480667, -0.26647381,
-0.32706796, -0.38634513, -0.44406661, -0.5 , -0.55392006,
-0.60560969, -0.65486073, -0.70147489, -0.74526445, -0.78605309,
-0.82367658, -0.85798341, -0.88883545, -0.91610846, -0.93969262,
-0.95949297, -0.97542979, -0.98743889, -0.99547192, -0.99949654,
-0.99949654, -0.99547192, -0.98743889, -0.97542979, -0.95949297,
-0.93969262, -0.91610846, -0.88883545, -0.85798341, -0.82367658,
-0.78605309, -0.74526445, -0.70147489, -0.65486073, -0.60560969,
-0.55392006, -0.5 , -0.44406661, -0.38634513, -0.32706796,
-0.26647381, -0.20480667, -0.14231484, -0.07924996, -0.01586596,
0.04758192, 0.1108382 , 0.17364818, 0.23575894, 0.29692038,
0.35688622, 0.41541501, 0.47227107, 0.52722547, 0.58005691,
0.63055267, 0.67850941, 0.72373404, 0.76604444, 0.80527026,
0.84125353, 0.87384938, 0.90292654, 0.92836793, 0.95007112,
0.9679487 , 0.9819287 , 0.99195481, 0.99798668, 1.])

It’s rather hard to visualize this many raw values, but they are the perfect input to a
plotting library like Matplotlib, which is the subject of Section 11.3.

11.2.4 Exercises

1. What happens if the dimensions in reshape() don’t match the array size (e.g.,
np.arange(16).reshape((4, 17)))?

2. Confirm that A = np.random.rand(5, 5) lets you define a 5 × 5 random
matrix.

3. Find the inverse Ainv of the 5 × 5 matrix in the previous exercise. (Calculating
the inverse of a 2 × 2 matrix as in Section 11.2.2 is fairly simple by hand, but the
task rapidly gets harder as the matrix size increases, in which case a computational
system like NumPy is indispensable.)

4. What is the matrix product I = A @ Ainv of the matrices in the previous
two exercises? Use the same isclose() trick from Listing 11.7 to zero out the
elements of I close to zero and confirm that the resulting matrix is indeed the
5 × 5 identity matrix.

338 Chapter 11: Data Science

11.3 Data Visualization with Matplotlib
Matplotlib is a powerful visualization tool for Python that can do an absurdly large
number of awesome things.10 In this section, we’ll start with a simple two-dimensional
plot based on the work we did in Section 11.2 and incrementally include additional
features, eventually reaching the figure shown in Figure 11.6. We’ll then cover a couple
of other important cases (scatter plots and histograms), which are important for data
analysis with pandas (Section 11.4). The exact mechanics of displaying Matplotlib plots
depends on the particular setup; refer to Box 11.2 to get the display of Matplotlib plots
working on your system.

Figure 11.6: A fancy plot showing off features of Matplotlib.

10. It’s worth noting that many Python data scientists also use seaborn, which is a data-visualization library
built on Matplotlib. Although learning seaborn is certainly not necessary to be dangerous, it would make a
natural follow-on to this section. The official seaborn tutorial would be a good place to start.

https://seaborn.pydata.org/
https://seaborn.pydata.org/tutorial.html

11.3 Data Visualization with Matplotlib 339

Box 11.2: Matplotlib mechanics

The exact mechanics of getting Matplotlib plots to display varies widely depending
on the exact details of your setup. The most explicit way to show plots, which
works on most systems from the REPL, is to use the show() method:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2, 2, 100)
>>> fig, ax = plt.subplots(1, 1)
>>> ax.plot(x, x*x)
>>> plt.show()

On many systems, this will spawn a window like Figure 11.7 with the result of the
plot.

In Jupyter notebooks, the environment can be configured to show Matplotlib
plots automatically (“inline”, i.e., right in the notebook) by executing this command
in a notebook cell:

%matplotlib inline

As far as I can tell, on some systems (including mine) this setting is on by default, with
plots appearing automatically when the corresponding Jupyter cells are evaluated
(Figure 11.8).

In an environment such as the cloud IDE, it’s possible to switch to a non-
graphical back-end, write out to a file, and then view the file in the browser. See
this Stack Overflow thread (https://bit.ly/cloud-plot) if you’d like to go this route,
but the recommended solution is to set up Jupyter on the cloud IDE as described
in Box 11.1. In that case, you can set up inline plot display as described above (if in
fact it’s not available automatically).

11.3.1 Plotting

We’ll start by reviewing the final example from Section 11.2, which defined a linearly
spaced array with 100 points from 0 to τ :

(venv) $ python3
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from math import tau
>>> x = np.linspace(0, tau, 100)

https://bit.ly/cloud-plot

340 Chapter 11: Data Science

Figure 11.7: A window spawned by a call to show().

Matplotlib has two key objects, Figure and Axes. Roughly speaking, Figure is a
container for the elements that make up the image and Axes is the data representing the
elements. Don’t worry too much about exactly what this means, though; in practice,
using Matplotlib often reduces to assigning figure and axes objects (conventionally
called fig and ax) to the result of calling the subplots() function:

>>> fig, ax = plt.subplots()

This somewhat obscure syntax comes right from the Matplotlib documentation.11

11. In this chapter, we use the so-called “object-oriented” interface to Matplotlib, which is generally
preferred by the Matplotlib project itself. There is a second interface, though, which is designed to
behave like the plotting features in MATLAB. See the article “Pyplot vs Object Oriented Interface”
(https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/) for more information.

https://matplotlib.org/stable/tutorials/introductory/lifecycle.html#getting-started
https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/
https://matplotlib.org/matplotblog/posts/pyplot-vs-object-oriented-interface/

11.3 Data Visualization with Matplotlib 341

Figure 11.8: A plot appearing automatically in a Jupyter notebook.

To make a plot of the cosine function, we can then call the ax object’s plot()
method with x (horizontal) values equal to our 100 linearly spaced points and y

(vertical) values given by calling np.cos on x:

>>> ax.plot(x, np.cos(x))
>>> plt.show()

As noted in Box 11.2, the step to view the plot will depend on your exact setup, so
we’ll use plt.show() as a shorthand for “whatever the corresponding command is
on your system.” (Note in particular that the fig object won’t generally be needed
unless you’re saving the figure to disk; ax is where most of the action is.) The result
in this case is the nice basic cosine plot shown in Figure 11.9.

For most of the remaining examples, I’ll be leaving off the >>> prompt so that you
can more easily copy and paste if you want. This is mainly because building up plots
can be a bit cumbersome since you have to rerun all the commands every time. One

342 Chapter 11: Data Science

Figure 11.9: A nice basic plot of the cosine function.

big advantage of Jupyter notebooks is that you can avoid this by building up the plot
incrementally in a single cell and then repeatedly execute the code using Shift-Return.

As a next step, let’s include ticks for the x- and y-axes (using set_xticks() and
set_yticks()) and add an overall grid (using plt.grid()):

fig, ax = plt.subplots()

ax.set_xticks([0, tau/4, tau/2, 3*tau/4, tau])
ax.set_yticks([-1, -1/2, 0, 1/2, 1])
plt.grid(True)

ax.plot(x, np.cos(x))
plt.show()

The resulting plot makes it easier to see the structure of cosine, with four congruent
pieces corresponding to each of the four quarters of the full period (Figure 11.10).

The tick labels in Figure 11.10 are their default decimal values, but it would be
more convenient to express them as fractions of the full period (i.e., τ) on the x-
axis and as fractions of ±1 on the y-axis. One great thing about Matplotlib is that it
supports the widely used LATEX syntax for mathematical typesetting, which typically

https://en.wikibooks.org/wiki/LaTeX/Mathematics

11.3 Data Visualization with Matplotlib 343

Figure 11.10: Adding ticks and a grid.

involves surrounding mathematical notation in dollar signs and indicating commands
with backslashes.12 For example, this paragraph contains the following LATEX code:13

The tick labels in Figure~\ref{fig:cosine_ticks} are their default decimal
values, but it would be more convenient to express them as fractions of the
full period (i.e., τ) on the x-axis and as fractions of ± 1 on the
y-axis.

Because LATEX commands generally contain pesky backslashes, which often have
strange behavior when placed inside strings, we’ll use raw strings (Section 2.2.2)
so that we won’t have to escape them out. The resulting tick labels, which use the
set_xticklabels() and set_yticklabels() methods, appear as follows:

12. The pronunciation of LATEX differs; my preferred pronunciation is lay-tech, with “tech” as in
“technology”. (I was gratified to discover that the text-to-speech program on macOS agrees.)

13. Using dollar signs ($...$ for inline math, $$...$$ for centered math) is properly associated with TEX,
the system underlying LATEX. Technically, the preferred LATEX syntax is \(...\) for inline math and \[...\]
for centered math. So far as I can tell, Jupyter notebooks support only the plain TEX syntax.

https://twitter.com/mhartl/status/1285637055230480384

344 Chapter 11: Data Science

Figure 11.11: Adding nice LATEX axis labels to the cosine plot.

fig, ax = plt.subplots()

ax.set_xticks([0, tau/4, tau/2, 3*tau/4, tau])
ax.set_yticks([-1, -1/2, 0, 1/2, 1])
plt.grid(True)

ax.set_xticklabels([r"0", r"$\tau/4$", r"$\tau/2$", r"$3\tau/4$", r"τ"])
ax.set_yticklabels([r"-1", r"$-1/2$", r"0", r"$1/2$", r"1"])

ax.plot(x, np.cos(x))
plt.show()

The result appears in Figure 11.11.
Next, let’s add sine as well, along with axis labels and a plot title:

fig, ax = plt.subplots()

ax.set_xticks([0, tau/4, tau/2, 3*tau/4, tau])
ax.set_yticks([-1, -1/2, 0, 1/2, 1])
plt.grid(True)

11.3 Data Visualization with Matplotlib 345

ax.set_xticklabels([r"0", r"$\tau/4$", r"$\tau/2$", r"$3\tau/4$", r"τ"])
ax.set_yticklabels([r"-1", r"$-1/2$", r"0", r"$1/2$", r"1"])

ax.set_xlabel(r"θ", fontsize=16)
ax.set_ylabel(r"$f(\theta)$", fontsize=16)
ax.set_title("One period of cosine and sine", fontsize=16)

ax.plot(x, np.cos(x))
ax.plot(x, np.sin(x))
plt.show()

Here we’ve used the Greek letter θ (theta) in the axis labels, which is a traditional
letter for angles. The result appears in Figure 11.12.

Note from Figure 11.12 that Matplotlib automatically uses a new color for addi-
tional plots on the same Axis object to help us tell them apart. We can further
distinguish cosine from sine by adding annotations, which can be accomplished with
the annotate() method. See if you can figure out from context what the arguments
xy, xytext, and arrowprops do:

Figure 11.12: Adding sine and some additional labels.

346 Chapter 11: Data Science

fig, ax = plt.subplots()

ax.set_xticks([0, tau/4, tau/2, 3*tau/4, tau])
ax.set_yticks([-1, -1/2, 0, 1/2, 1])
plt.grid(True)

ax.set_xticklabels([r"0", r"$\tau/4$", r"$\tau/2$", r"$3\tau/4$", r"τ"])
ax.set_yticklabels([r"-1", r"$-1/2$", r"0", r"$1/2$", r"1"])

ax.set_title("One period of cosine and sine", fontsize=16)
ax.set_xlabel(r"θ", fontsize=16)
ax.set_ylabel(r"$f(\theta)$", fontsize=16)

ax.annotate(r"$\cos\theta$", xy=(1.75, -0.3), xytext=(0.5, -0.75),
arrowprops="facecolor": "black", "width": 1, fontsize=16)

ax.annotate(r"$\sin\theta$", xy=(2.75, 0.5), xytext=(3.5, 0.75),
arrowprops="facecolor": "black", "width": 1, fontsize=16)

ax.plot(x, np.cos(x))
ax.plot(x, np.sin(x))
plt.show()

We see from Figure 11.13 that xy indicates the point to be annotated, xytext indi-
cates the location of the annotation text, and arrowprops determines the properties
of the annotation arrow.

Figure 11.13: Adding annotations.

11.3 Data Visualization with Matplotlib 347

Finally, let’s add custom colors and line styles, plus a higher resolution (in dots per
inch, or dpi). For convenience, the resulting code, shown in Listing 11.8, includes all
of the commands needed to create the full figure (Figure 11.14) from scratch.

Listing 11.8: The code for a fancy sinusoidal plot.

from math import tau

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, tau, 100)

fig, ax = plt.subplots()

ax.set_xticks([0, tau/4, tau/2, 3*tau/4, tau])
ax.set_yticks([-1, -1/2, 0, 1/2, 1])
plt.grid(True)

ax.set_xticklabels([r"0", r"$\tau/4$", r"$\tau/2$", r"$3\tau/4$", r"τ"])
ax.set_yticklabels([r"-1", r"$-1/2$", r"0", r"$1/2$", r"1"])

ax.set_title("One period of cosine and sine", fontsize=16)
ax.set_xlabel(r"θ", fontsize=16)
ax.set_ylabel(r"$f(\theta)$", fontsize=16)

ax.annotate(r"$\cos\theta$", xy=(1.75, -0.3), xytext=(0.5, -0.75),
arrowprops={"facecolor": "black", "width": 1}, fontsize=16)

ax.annotate(r"$\sin\theta$", xy=(2.75, 0.5), xytext=(3.5, 0.75),
arrowprops={"facecolor": "black", "width": 1}, fontsize=16)

fig.set_dpi(150)

ax.plot(x, np.cos(x), color="red", linestyle="dashed")
ax.plot(x, np.sin(x), color="blue", linestyle="dotted")
plt.show()

11.3.2 Scatter Plots

The plot in Section 11.3.1 introduced some of the key ideas of Matplotlib, and
from this point there are a million possible ways to go. In this section and the next,
we’ll focus on two kinds of visualizations especially important in data science: scatter

348 Chapter 11: Data Science

Figure 11.14: The final fancy plot of cosine and sine.

plots and histograms. Don’t worry if everything doesn’t sink in right away; we’ll have
ample opportunity to see further examples of both scatter plots and histograms in
Section 11.5, Section 11.6, and Section 11.7.

A scatter plot just plots a bunch of discrete function values against the corre-
sponding points, which is a great way to get an overall sense of what relationships the
function values might satisfy. Let’s take a look at a concrete example to see what this
means.

We’ll begin by generating some random points chosen from the standard normal
distribution,14 which is a normal distribution (or “bell curve”) with an average value
(mean) of 0 and a spread (standard deviation) of 1.15 We can obtain these values using

14. There’s nothing “abnormal” about other distributions; use of the word “normal” is in large part an
idiosyncrasy of history.

15. The functional form of the standard normal distribution is given by the probability density P(x) =
1√
τ

e
− 1

2 x2
, where 1/

√
τ = 1/

√
2π is a normalization factor to ensure that the total probability

https://en.wikipedia.org/wiki/Normal_distribution#Naming
https://en.wikipedia.org/wiki/Probability_density_function

11.3 Data Visualization with Matplotlib 349

NumPy’s random library, which includes a default random number generator called
default_rng() (Listing 11.9).

Listing 11.9: Generating random values using the standard normal distribution.

>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> n_pts = 50
>>> x = rng.standard_normal(n_pts)
>>> x
array([0.41256003, 0.67594205, 1.264653 , 1.16351491, -0.41594407,

-0.60157015, 0.84889823, -0.59984223, 0.24374326, 0.06055498,
-0.48512829, 1.02253594, -1.10982933, -0.40609179, 0.55076245,
0.13046238, 0.86712869, 0.06139358, -2.26538163, 1.45785923,

-0.56220574, -1.38775239, -2.39643977, -0.77498392, 1.16794796,
-0.6588802 , 1.66343434, 1.57475219, -0.03374501, -0.62757059,
-0.99378175, 0.69259747, -1.04555996, 0.62653116, -0.9042063 ,
-0.32565268, -0.99762804, -0.4270288 , 0.69940045, -0.46574267,
1.82225132, 0.23925201, -1.0443741 , -0.54779683, 1.17466477,

-2.54906663, -0.31495622, 0.25224765, -1.20869217, -1.02737145])

(You may see code like random.standard_normal(50) in tutorial examples online,
but this variant is now deprecated, and the technique shown in Listing 11.9 is the
current preferred method for generating random values with NumPy.)

With those x values in hand, let’s create a set of y values by adding a constant
multiple (the slope) of 5 times x plus another random factor:

>>> y = 5*x + rng.standard_normal(n_pts)

This broadly follows the pattern of the equation for a line, y = mx + b, only with
random values for x and b. Because the functional form of y is essentially linear, a
plot of y vs. x should look roughly like a line, which we can confirm with a scatter
plot as follows:

∫ ∞
−∞ P(x) dx is equal to 1. The density function for a general normal distribution with mean µ and standard

deviation σ is P(x; µ, σ) = 1
σ
√

τ
e
− 1

2
(

x−µ
σ

)2

; setting µ = 0 and σ = 1 then yields the standard normal.

350 Chapter 11: Data Science

Figure 11.15: A Matplotlib scatter plot.

>>> fig, ax = plt.subplots()
>>> ax.scatter(x, y)
>>> plt.show()

As seen in Figure 11.15, our guess was correct. (Because we didn’t fix a particular seed
value for the random number generator, your exact results will differ.)

11.3.3 Histograms

Finally, let’s apply some of the same ideas from Section 11.3.2 to visualize the
distribution of 1000 random values drawn from the standard normal distribution:

>>> values = rng.standard_normal(1000)

A common way to get a sense of what these values look like is to make a fixed
number of “bins” and plot how many values fit into each bin. The resulting plot is
known as a histogram, and can be generated automatically using Matplotlib’s hist()
method:

https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html
https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html

11.3 Data Visualization with Matplotlib 351

Figure 11.16: A histogram of normally distributed random values.

>>> fig, ax = plt.subplots()
>>> ax.hist(values)
>>> plt.show()

The result is a good approximation of a “bell curve”, as seen in Figure 11.16.
The default number of bins is 10, but we can investigate the result of different bin

sizes by passing a bins argument to hist(), say bins=20:

>>> fig, ax = plt.subplots()
>>> ax.hist(values, bins=20)
>>> plt.show()

In this case, the result is a finer-grained version of the distribution (Figure 11.17).
Because Matplotlib is a general system for plotting and data visualization, there’s

practically no end to the things you can do with it. Although we’ve now covered
the basics of what we’ll need for the rest of this tutorial, I encourage you to explore
further, and the Matplotlib documentation is a good place to start.

https://matplotlib.org/stable/index.html

352 Chapter 11: Data Science

Figure 11.17: A rebinned version of Figure 11.16.

11.3.4 Exercises

1. Add a title and axis labels to the plot shown in Figure 11.15.

2. Add titles to the histograms in Section 11.3.3.

3. One common plotting task is including multiple subplots in the same figure. Show
that the code in Listing 11.10 creates vertically stacked subplots, as shown in
Figure 11.18. (Here the suptitle() method produces a “supertitle” that sits
above both plots. See the Matplotlib documentation on subplots for other ways
to create multiple subplots.)

4. Add a plot of the function cos(x − τ/8) to the plot in Figure 11.14 with color
"orange" and linestyle "dashdot". Extra credit: Add an annotation as well. (The
extra-credit step is much easier in an interactive Jupyter notebook, especially when
finding the right coordinates for the annotation label and arrow.)

https://matplotlib.org/stable/gallery/subplots_axes_and_figures/subplots_demo.html

11.4 Introduction to Data Analysis with pandas 353

Listing 11.10: Stacking subplots.

>>> x = np.linspace(0, tau, 100)
>>> fig, (ax1, ax2) = plt.subplots(2)
>>> fig.suptitle(r"Vertically stacked plots of $\cos\theta$ and $\sin\theta$.")
>>> ax1.plot(x, np.cos(x))
>>> ax2.plot(x, np.sin(x))

Figure 11.18: Vertically stacked plots.

11.4 Introduction to Data Analysis with pandas
One of the most heavily used tools in Python data science is pandas, a powerful library
for analyzing data. In essence, pandas (from “panel data”) lets us perform many of
the same tasks as a spreadsheet or Structured Query Language (SQL), only with the

https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html

354 Chapter 11: Data Science

Figure 11.19: Pandas are famous for their love of bamboo and their remarkable aptitude
for data science.

power and flexibility of a full-strength, general-purpose programming language under
the hood (Figure 11.1916).

The pandas interface can take some getting used to, and there’s no substitute for
seeing lots of examples. Thus, this chapter covers three cases of increasing sophistica-
tion, starting with simplified handcrafted examples (Section 11.4.1) and then showing
more complex analysis techniques using two real-world datasets: Nobel Prizes (Sec-
tion 11.5) and survival rates from Titanic (Section 11.6). (The second of these datasets
will also serve as our main source of examples on machine learning in Section 11.7.)

In addition, there’s really no substitute for asking and answering questions for your-
self. In my experience, following tutorials such as this one can give you a great start,
and often yields easy-looking results like Figure 11.20. But the minute you deviate
even a millimeter from carefully chosen examples and try to answer something for
yourself, you end up with things that look like Figure 11.21.

16. Image courtesy of San Hoyano/Shutterstock.

https://en.wikipedia.org/wiki/Giant_panda

11.4 Introduction to Data Analysis with pandas 355

Figure 11.20: Making pandas look easy.

My best suggestion is to follow along at first to get your pandas bearings and then
launch into the investigations of your own questions. But if you feel inspired at any
point to venture out on your own, don’t let me stop you—just know what to expect
if you do.

11.4.1 Handcrafted Examples

The first steps to getting started are nearly always to import NumPy as np and pandas
as pd, along with matplotlib.pyplot as plt:

>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib.pyplot as plt

The core data structures of pandas are Series and DataFrame. The latter is more
important, but it’s built up from the former, so that’s where we’ll start.

356 Chapter 11: Data Science

Figure 11.21: The often hard reality.

Series
A Series is essentially a fancy array with elements of arbitrary types (much like a list),
each of which is called an axis. For example, the following command defines a Series
of numbers and strings, plus a special (and commonly encountered) value known as
NaN (“Not a Number”):

>>> pd.Series([1, 2, 3, "foo", np.nan, "bar"])
0 1
1 2
2 3
3 foo
4 NaN
5 bar
dtype: object
>>> pd.Series([1, 2, 3, "foo", np.nan, "bar"]).dropna()
0 1

https://en.wikipedia.org/wiki/NaN

11.4 Introduction to Data Analysis with pandas 357

1 2
2 3
3 foo
5 bar
dtype: object

The second command here shows how to clean the data a bit using the dropna()
method, which drops any “Not Available” values, such as None, NaN, or NaT (“Not a
Time”).

By default, Series axis labels are numbered just like array indices (in this case, 0–5).
The set of axes is known as the index of the Series:

>>> pd.Series([1, 2, 3, "foo", np.nan, "bar"]).index
RangeIndex(start=0, stop=6, step=1)

It’s also possible to define our own axis labels, which must have the same number
of elements as the Series:

>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> s = pd.Series(rng.standard_normal(5), index=["a", "b", "c", "d", "e"])
>>> s
a 0.770407
b -0.698040
c 1.977234
d -1.559065
e -0.713496
dtype: float64

Series act both like NumPy ndarrays and like regular Python dictionaries:

>>> s[0] # Acting like an ndarray
0.7704065892197263
>>> s[1:3] # Supports slicing
b -0.698040
c 1.977234
dtype: float64
>>> s["c"] # Access by axis label
1.977233512910388
>>> s.keys() # Keys are just the Series index.
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
>>> s.index
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data

358 Chapter 11: Data Science

Figure 11.22: A Series histogram.

Series come equipped with a wealth of methods, including plotting methods that
use Matplotlib (Section 11.3) under the hood. For example, here’s a histogram for a
Series with 1000 values generated with the standard normal distribution:

>>> s = pd.Series(rng.standard_normal(1000))
>>> s.hist()
>>> plt.show()

Apart from minor formatting differences, the result (Figure 11.22) is essentially
the same as the histogram we created directly in Section 11.3.3 (Figure 11.16).

DataFrame
The other main pandas object type, known as a DataFrame object, is the heart of
Python data analysis. A DataFrame can be thought of as a two-dimensional grid of
cells containing arbitrary data types—roughly equivalent to an Excel worksheet. In
this section, we’ll create a few simple DataFrames by hand just to get a sense of how
they work, but it’s worth bearing in mind that most real-world DataFrame objects are

https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_spreadsheets.html

11.4 Introduction to Data Analysis with pandas 359

created by importing data from files (or even from live URLs), a technique we’ll cover
starting in Section 11.5.

There are a large number of ways to initialize or build DataFrames appropriate
to a correspondingly large number of circumstances. For example, one option is to
initialize it with a Python dictionary, as shown in Listing 11.11.

Listing 11.11: Initializing a DataFrame with a dictionary.

>>> from math import tau
>>> from numpy.random import default_rng
>>> rng = default_rng()
>>> df = pd.DataFrame(
... {
... "Number": 1.0,
... "String": "foo",
... "Angles": np.linspace(0, tau, 5),
... "Random": pd.Series(rng.standard_normal(5)),
... "Timestamp": pd.Timestamp("20221020"),
... "Size": pd.Categorical(["tiny", "small", "mid", "big", "huge"])
... })
>>> df

Number String Angles Random Timestamp Size
0 1.0 foo 0.000000 -1.954002 2022-10-20 tiny
1 1.0 foo 1.570796 0.967171 2022-10-20 small
2 1.0 foo 3.141593 -1.149739 2022-10-20 mid
3 1.0 foo 4.712389 -0.084962 2022-10-20 big
4 1.0 foo 6.283185 0.310634 2022-10-20 huge

Here we’ve applied the linspace()method from Section 11.2.3 and two new pandas
methods, TimeStamp (just what it sounds like) and Categorical (which contains
values of a categorical variable). The result is a set of labeled rows and columns with a
heterogeneous set of data.

We can access a DataFrame column using the column name as a key:

>>> df["Size"]
0 tiny
1 small
2 mid
3 big
4 huge

https://pandas.pydata.org/docs/user_guide/dsintro.html#dataframe
https://pandas.pydata.org/docs/reference/api/pandas.concat.html
https://en.wikipedia.org/wiki/Categorical_variable

360 Chapter 11: Data Science

We can also calculate statistics, such as the mean value of the Random column:

>>> df["Random"].mean()
-0.3821796291792846

One useful pandas function for getting a general overview of numeric data is
describe():

>>> df.describe()
Number Angles Random

count 5.0 5.000000 5.000000
mean 1.0 3.141593 -0.382180
std 0.0 2.483647 1.167138
min 1.0 0.000000 -1.954002
25% 1.0 1.570796 -1.149739
50% 1.0 3.141593 -0.084962
75% 1.0 4.712389 0.310634
max 1.0 6.283185 0.96717

This automatically displays the total count, mean, standard deviation, minimum,
and maximum values, and the middle three quartiles (25%, 50%, and 75%) of each
numeric column. These values won’t always be meaningful—the standard deviation
of the linearly spaced angles, for example, doesn’t really tell us anything useful—but
describe() is often helpful as a first step in an analysis. We’ll see examples of two
other useful summary methods, head() and info(), starting in Section 11.5.

Another useful method is map(), which we can use to map categorical values to
numbers. Suppose, for example, that "Size" corresponds to drink sizes in ounces,
which we can represent as a sizes dictionary. Using map() on the "Size" column
then gives the desired result (Listing 11.12).

Listing 11.12: Using map() to modify values.

>>> sizes = {"tiny": 4, "small": 8, "mid": 12, "big": 16, "huge": 24}
>>> df["Size"].map(sizes)
0 4
1 8
2 12
3 16
4 24

https://en.wikipedia.org/wiki/Quartile

11.5 pandas Example: Nobel Laureates 361

This technique is especially valuable when applying machine-learning algorithms
(Section 11.7), which can’t typically handle categorical data but do just fine with
integers or floats.

11.4.2 Exercise

1. The info() method provides an overview of a DataFrame that is complementary
to describe(). What is the result of running df.info() on the DataFrame
defined in Listing 11.11?

11.5 pandas Example: Nobel Laureates
In Section 11.4, we got a glimpse of how to use pandas and what good it does us, but
doing anything interesting typically requires bigger datasets, which are cumbersome
to create by hand. Instead, the most common practice is to load data from external
files and then take the analysis from there. Accordingly, in this section and the next
(Section 11.6), we’ll read the initial data from what is probably the most common
input format, CSV files (for “comma-separated values”).

Our first step is to download a dataset on winners of the Nobel Prize, who are
typically known as laureates (a reference to the ancient practice of using wreaths from
a laurel tree to honor great accomplishments).17 We can do this by using the curl
command-line command in the same directory being used for the data analysis:18

(venv) $ curl -OL https://cdn.learnenough.com/laureates.csv

We can then read the data using pandas’ read_csv() function:

>>> nobel = pd.read_csv("laureates.csv")

The statistics for the numeric columns aren’t very meaningful, so describe() doesn’t
tell us much:

17. This section draws on the excellent pandas section from Python for Scientific Computing.

18. This data was originally downloaded directly from the official Nobel Prize website at
http://api.nobelprize.org/v1/laureate.csv. It has been uploaded to the Learn Enough CDN for maximum
compatibility in case the version at nobelprize.org changes or disappears.

https://en.wikipedia.org/wiki/Laureate
https://aaltoscicomp.github.io/python-for-scicomp/pandas/
https://aaltoscicomp.github.io/python-for-scicomp/

362 Chapter 11: Data Science

>>> nobel.describe()
id year share

count 975.000000 975.000000 975.000000
mean 496.221538 1972.471795 2.014359
std 290.594353 34.058064 0.943909
min 1.000000 1901.000000 1.000000
25% 244.500000 1948.500000 1.000000
50% 488.000000 1978.000000 2.000000
75% 746.500000 2001.000000 3.000000
max 1009.000000 2021.000000 4.000000

We can get something a little more useful with head() (Listing 11.13).

Listing 11.13: Looking at the head() of the Nobel Prize data.

>>> nobel.head()
id firstname ... city country

0 1 Wilhelm Conrad ... Munich Germany
1 2 Hendrik A. ... Leiden the Netherlands
2 3 Pieter ... Amsterdam the Netherlands
3 4 Henri ... Paris France
4 5 Pierre ... Paris France
[5 rows x 20 columns]

Here we’ve used the head() method to take a peek at the first few entries; in a Jupyter
notebook, you can scroll to see all of the columns, but in the terminal we see only a
few. We can get more useful info using info():

>>> nobel.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 975 entries, 0 to 974
Data columns (total 20 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 id 975 non-null int64
1 firstname 975 non-null object
2 surname 945 non-null object
3 born 974 non-null object
4 died 975 non-null object
5 bornCountry 946 non-null object
6 bornCountryCode 946 non-null object
7 bornCity 943 non-null object
8 diedCountry 640 non-null object
9 diedCountryCode 640 non-null object

11.5 pandas Example: Nobel Laureates 363

10 diedCity 634 non-null object
11 gender 975 non-null object
12 year 975 non-null int64
13 category 975 non-null object
14 overallMotivation 23 non-null object
15 share 975 non-null int64
16 motivation 975 non-null object
17 name 717 non-null object
18 city 712 non-null object
19 country 713 non-null object

dtypes: int64(3), object(17)
memory usage: 152.5+ KB

Here we see a complete list of the column names, together with the number of non-
null values for each one.

Locating Data
One of the most useful tasks in pandas is locating data that satisfies desired crite-
ria. For example, we can locate a Nobel laureate with a particular surname. As a
Caltech graduate, I am contractually obligated to use one of Caltech’s most beloved
figures, physicist Richard Feynman (pronounced “FINE-m en”). In addition to his
groundbreaking work in theoretical physics (especially quantum electrodynamics and
its associated Feynman diagrams), Feynman is known for The Feynman Lectures on
Physics, which covers the elementary physics curriculum (mechanics, thermal physics,
electrodynamics, etc.) in an unusually entertaining and insightful way.

Let’s use square brackets and a boolean criterion on the "surname" column to
find Feynman’s record in the laureates data:19

>>> nobel[nobel["surname"] == "Feynman"]
id firstname ... city country

86 86 Richard P. ... Pasadena CA USA

This array-style notation returns the full record, which allows us to determine the year
Feynman won his Nobel Prize. In a Jupyter notebook, you can probably just scroll to
the side and read it off (Figure 11.23), but in the REPL we can look directly at the
year attribute:

19. From here on out, unimportant output such as [1 rows x 20 columns] and Name: year, dtype:
int64 will generally be omitted for brevity.

https://en.wikipedia.org/wiki/Richard_Feynman
https://en.wikipedia.org/wiki/Quantum_electrodynamics
https://en.wikipedia.org/wiki/Feynman_diagram
https://www.feynmanlectures.caltech.edu/
https://www.feynmanlectures.caltech.edu/

364 Chapter 11: Data Science

Figure 11.23: Examining a pandas record in a Jupyter notebook.

>>> nobel[nobel["surname"] == "Feynman"].year
86 1965

This method also allows us to, e.g., assign it to a variable, which is potentially more
useful than inspecting it by eye.

By the way, the syntax

>>> nobel[nobel["surname"] == "Feynman"]

can be a little confusing since it might not be clear why we have to refer to nobel
twice. The answer is that the inner part of the syntax returns a Series (Section 11.4.1)
consisting of boolean values for every laureate, with True if the surname is equal to
"Feynman" and False otherwise:

>>> nobel["surname"] == "Feynman"
0 False
1 False
2 False
3 False
4 False

...
970 False
971 False
972 False
973 False
974 False

By using the correct index (i.e., 86), we can confirm that the value in that case is
True:

>>> (nobel["surname"] == "Feynman")[86]
True

11.5 pandas Example: Nobel Laureates 365

In this way, we arrange for

>>> nobel[nobel["surname"] == "Feynman"]

to select only the values of nobel where nobel["surname"] == "Feynman" is True.
This is similar to the isclose() trick shown in Listing 11.7, where we used an ndarray
of booleans to select the elements in a matrix close to 0 (and set them to exactly 0).

Another method for getting the year is by specifying the column along with the
boolean criterion, which we might try like this (only the most relevant line of output
is shown):

>>> nobel[nobel["surname"] == "Feynman", "year"]
pandas.errors.InvalidIndexError

This doesn’t work, but we can accomplish what we want using the loc (“location”)
attribute:20

>>> nobel.loc[nobel["surname"] == "Feynman", "year"]
86 1965

This returns just the overall id (in this case, 86) and the column of interest. The loc
attribute can be used in place of brackets in many places and is generally a more flexible
way to pull out data items of interest.

After I finished my Ph.D., I was recruited to work on a Feynman Lectures project
(https://www.michaelhartl.com/feynman-lectures/) by Kip Thorne, who was one of
my mentors at Caltech (Figure 11.2421). Kip went on to win a Nobel Prize himself,
so let’s figure out which year.

We could search by surname as we did with Feynman, but Kip insists on being
called “Kip”, so let’s search by first name instead:

>>> nobel.loc[nobel["firstname"] == "Kip"]
Empty DataFrame

Hmm, the result is empty. Looking back at the head() in Listing 11.13, we can guess
why; for example, the entry for Hendrik Lorentz includes a middle initial, so perhaps

20. More specifically, loc is a property, which is a special kind of attribute created using a property decorator.

21. Image copyright © 2012 Michael Hartl.

https://www.michaelhartl.com/feynman-lectures
https://www.michaelhartl.com/feynman-lectures/
https://stackoverflow.com/a/7377013/57750
https://realpython.com/python-property/

366 Chapter 11: Data Science

Figure 11.24: The author with Nobel laureate Kip Thorne and Stephen Hawking.

the same is the case for Kip’s entry in the DataFrame. Kip’s middle initial is “S.” (for
Stephen), so let’s include that in our comparison:

>>> nobel.loc[nobel["firstname"] == "Kip S."]
id firstname surname ... name city country

916 943 Kip S. Thorne ... LIGO/VIRGO Collaboration NaN NaN

Bingo. Now we can look for the year as with Feynman’s entry:

>>> nobel.loc[nobel["firstname"] == "Kip S."].year
2017

But what if we didn’t happen to know Kip’s middle initial (and didn’t think to
check Wikipedia for it)? It would be nice to be able to search all the first names
for the string "Kip". We can do this using Series.str, which allows us to use
string functions on a Series, together with contains() to search for a substring
(Listing 11.14).

https://en.wikipedia.org/wiki/Kip_Thorne

11.5 pandas Example: Nobel Laureates 367

Listing 11.14: Finding a record by substring.

>>> nobel.loc[nobel["firstname"].str.contains("Kip")]
id firstname surname ... name city country

916 943 Kip S. Thorne ... LIGO/VIRGO Collaboration NaN NaN

Perhaps unsurprisingly, since it’s a fairly uncommon name, there’s only one “Kip” in
the dataset. What about any other Feynmans? We can try again with "surname" in
place of "firstname":

>>> nobel.loc[nobel["surname"].str.contains("Feynman")]
ValueError: Cannot mask with non-boolean array containing NA / NaN values

Oops, we got an error. This is because of a large number of NaNs from organizations
that have won the Nobel Prize for Peace:

>>> nobel.loc[nobel["surname"].isnull()]
id firstname ... city country

465 467 Institute of International Law ... NaN NaN
474 477 Permanent International Peace Bureau ... NaN NaN
479 482 International Committee of the Red Cross ... NaN NaN
480 482 International Committee of the Red Cross ... NaN NaN
.
.
.

We can filter out NaNs and other Not Available values by passing the option
na=False to contains():

>>> nobel.loc[nobel["surname"].str.contains("Feynman", na=False)]
id firstname ... city country

86 86 Richard P. ... Pasadena CA USA

It looks like there’s only one result, which we can confirm with len():

>>> len(nobel.loc[nobel["surname"].str.contains("Feynman", na=False)])
1

368 Chapter 11: Data Science

Although there’s only one Nobel laureate named “Feynman”, there are famously
several named “Curie”, as seen in Listing 11.15.

Listing 11.15: Finding Curies in the laureates.csv dataset.

>>> curies = nobel.loc[nobel["surname"].str.contains("Curie", na=False)]
>>> curies

id firstname ... city country
4 5 Pierre ... Paris France
5 6 Marie ... NaN NaN
6 6 Marie ... Paris France
191 194 Irène ... Paris France

Here we’ve assigned the result to the variable curies for convenience. For example,
we can get the first name and surname for each Curie laureate as follows:

>>> curies[["firstname", "surname"]]
4 Pierre Curie
5 Marie Curie
6 Marie Curie
191 Irène Joliot-Curie

We see that Marie Curie (also known as Marie Skłodowska-Curie)22 won two
Nobel Prizes (Figure 11.2523). The other Curie laureates are Pierre Curie, Marie’s
husband, and Irène Joliot-Curie, one of their daughters. (In fact, there’s even one
more Nobel laureate in the absurdly accomplished Curie family; see Section 11.5.1
for more.)

Marie Skłodowska-Curie is the only person to win a Nobel Prize for two different
sciences. Let’s use pandas to see if there are any other multiple Nobel prizewinners.
One way to investigate this question is to use groupby() to group the winners by
name and then use the size() method to see how many there are:

22. Although typically known only as “Marie Curie” in English-language sources, Marie herself preferred
to use the Polish part of her name as well, and many European sources (including Polish ones) follow this
convention.

23. Image courtesy of Morphart Creation/Shutterstock.

https://www.europeana.eu/en/exhibitions/pioneers/maria-sklodowska-curie

11.5 pandas Example: Nobel Laureates 369

Figure 11.25: Marie Skłodowska-Curie with her husband and co-laureate Pierre Curie.

>>> nobel.groupby(["firstname", "surname"]).size()
firstname surname
A. Michael Spence 1
Aage N. Bohr 1
Aaron Ciechanover 1

Klug 1
Abdulrazak Gurnah 1

..
Youyou Tu 1
Yuan T. Lee 1
Yves Chauvin 1
Zhores Alferov 1
Élie Ducommun 1

All the displayed values here are 1, but we can sort them using sort_values() to
find any multiple laureates:

370 Chapter 11: Data Science

>>> nobel.groupby(["firstname", "surname"]).size().sort_values()
firstname surname
A. Michael Spence 1
Nicolay G. Basov 1
Niels Bohr 1
Niels K. Jerne 1
Niels Ryberg Finsen 1

..
Élie Ducommun 1
Linus Pauling 2
John Bardeen 2
Frederick Sanger 2
Marie Curie 2

This yields four multiple winners.
Although the sort_values() trick is nice, it would have failed if there had been

too many multiple laureates. A more general way to select winners of more than one
Prize is to use a boolean criterion directly. We can do this with the same grouping by
size combined with the criterion size > 1 (Listing 11.16). Note that we’ve added
"id" to groupby() to take into account the (unlikely but possible) case of different
people with the same name both winning Nobel Prizes.

Listing 11.16: Finding winners of multiple Nobel Prizes.

>>> laureates = nobel.groupby(["id", "firstname", "surname"])
>>> sizes = laureates.size()
>>> sizes[sizes > 1]
id firstname surname
6 Marie Curie 2
66 John Bardeen 2
217 Linus Pauling 2
222 Frederick Sanger 2

We see from Listing 11.16 that, at the time this dataset was assembled, only four
people had ever won more than one Nobel Prize: Frederick Sanger (Chemistry),
John Bardeen (Physics), Linus Pauling (Chemistry and Peace), and of course Marie
Curie (Physics and Chemistry). (2022 saw the emergence of a fifth multiple-laureate
when K. Barry Sharpless won his second Nobel Prize for Chemistry.)

https://en.wikipedia.org/wiki/Frederick_Sanger
https://en.wikipedia.org/wiki/John_Bardeen
https://en.wikipedia.org/wiki/Linus_Pauling
https://en.wikipedia.org/wiki/Marie_Curie
https://en.wikipedia.org/wiki/Marie_Curie
https://en.wikipedia.org/wiki/Karl_Barry_Sharpless
https://www.nobelprize.org/prizes/chemistry/2022/press-release/

11.5 pandas Example: Nobel Laureates 371

Selecting Dates
One of pandas’ greatest strengths is its ability to deal with times and time series, so let’s
start by taking a look at selecting dates. One way we can do this is by searching for
laureates by exact birthday as a string:

>>> nobel.loc[nobel["born"] == "1879-03-14"]
id firstname ... city country

25 26 Albert ... Berlin Germany

You might suspect that a Nobel Prize–winning “Albert” born in 1879 might be Albert
Einstein, and you’d be right, as we can see by checking the "surname" field:24

>>> nobel.loc[nobel["born"] == "1879-03-14"]["surname"]
Einstein

Looking closely, we see that Einstein was born on March 14, which is sometimes
known as Pi Day because of the resemblance between 03-14 (or 3/14 in the American
calendar system) and the first three digits of π ≈ 3.14. Fans of Pi Day are quick to
point out how great this is.

As the founder of Tau Day (https://tauday.com/), I was naturally interested in
finding some great Nobel laureate who was born on 06-28 (6/28) to match the first
three digits of τ ≈ 6.28. We’ve seemingly already solved this problem of searching by
substring (as in, e.g., Listing 11.14), so let’s try it out with the "born" field:

>>> nobel.loc[nobel["born"].str.contains("06-08", na=False)]
id firstname ... city country

79 79 Maria ... San Diego CA USA
125 126 Klaus ... Stuttgart Germany
281 283 F. Sherwood ... Irvine CA USA
304 306 Alexis ... New York NY USA
598 607 Luigi ... NaN NaN
790 809 Muhammad ... NaN NaN
889 916 William C. ... Madison NJ USA

[7 rows x 20 columns]

That’s 7 rows. Let’s narrow it down by restricting the results to Nobel laureates
in Physics using the & operator to perform a logical and (note that this syntax differs
from Python itself (Section 2.4.1)):

24. If you’re using Jupyter, you can probably just read off the full name from the result of evaluating the cell.

https://en.wikipedia.org/wiki/Time_series
https://tauday.com/

372 Chapter 11: Data Science

>>> nobel.loc[(nobel["born"].astype('string').str.contains("06-28")) &
... (nobel["category"] == "physics")]

id firstname ... city country
79 79 Maria ... San Diego CA USA
125 126 Klaus ... Stuttgart Germany

[2 rows x 20 columns]

That’s more like it. Let’s take a look at the first record using iloc (“index location”)
to find it by its index number, which is 79:

>>> nobel.iloc[79]
id 79
firstname Maria
surname Goeppert Mayer
born 1906-06-28
died 1972-02-20
.
.
.

That’s Maria Goeppert Mayer (Figure 11.2625), who won a Nobel Prize in Physics
for her contributions to the nuclear shell model, and who is the official physicist of
Tau Day. (Take that, Al!)

Speaking of birthdates, the lifespans of Nobel laureates have been the subject of
some scientific research over the years.26 Although we are not in a position to draw
any conclusions about the effect (if any) of winning a Nobel Prize on longevity, we
can make a histogram of the laureates’ ages to get a sense of the distribution.

Let’s begin by finding the record for Hans Bethe (“BAY-tuh”), one of the longest-
lived Nobel laureates:27

25. Image courtesy of Archive PL/Alamy Alamy Stock Photo.

26. See, for example, Matthew D. Rablen and Andrew J. Oswald, “Mortality and immortality: The Nobel
Prize as an experiment into the effect of status upon longevity”. Journal of Health Economics, Volume 27, Issue
6. December 2008, pp. 1462–1471.

27. Bethe was already a famous physicist in the 1930s due to his groundbreaking series of papers on nuclear
theory. He later served as the head of the theoretical division at Los Alamos during the making of the atomic
bomb. And yet he lived so long that I had a chance to meet him in the early 2000s when he came to give
an astrophysics talk at Caltech.

https://en.wikipedia.org/wiki/Maria_Goeppert_Mayer
https://en.wikipedia.org/wiki/Nuclear_shell_model
https://en.wikipedia.org/wiki/Hans_Bethe
https://www.sciencedirect.com/science/article/pii/S0167629608000775?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0167629608000775?via%3Dihub
https://en.wikipedia.org/wiki/Hans_Bethe#United_States
https://en.wikipedia.org/wiki/Hans_Bethe#Manhattan_Project
https://en.wikipedia.org/wiki/Hans_Bethe#Manhattan_Project

11.5 pandas Example: Nobel Laureates 373

Figure 11.26: Maria Goeppert Mayer, Nobel laureate and official physicist of Tau Day.

>>> bethe = nobel.loc[nobel["surname"] == "Bethe"]
>>> bethe["born"]
88 1906-07-02
>>> bethe["died"]
88 2005-03-06

By subtracting in our heads, we can see that Bethe lived to be 98, but doing this one
by one for all the laureates would be most impractical.

Let’s see if we can calculate Bethe’s age by pure subtraction:

>>> bethe["died"] - bethe["born"]
TypeError: unsupported operand type(s) for -: 'str' and 'str'

374 Chapter 11: Data Science

OK, the dates are being stored as strings, so it’s not surprising that simple subtraction
didn’t work. Let’s try converting to datetime objects:

>>> diff = pd.to_datetime(bethe["died"]) - pd.to_datetime(bethe["born"])
>>> diff
88 36042 days
dtype: timedelta64[ns]

That’s much more promising, but it’s a Series of timedelta64 objects, though, rather
than floats. We can fix this by using dt to gain access to the datetime directly and
days to find the number of days:

>>> diff.dt.days
88 36042
dtype: int64

At this point, we could then divide by 365 (or 365.25) to get the approximate
number of years, which is probably good enough for a histogram, but it isn’t quite
right because of leap years, the number of which will vary based on the exact date
range. Luckily, NumPy comes with a method called timedelta64 that handles this
automatically:

>>> diff/np.timedelta64(1, "Y")
88 98.679644
dtype: float64

Here 1, "Y" refers to a time delta (change) of “1 Year”.
Now let’s apply the same idea to the full list of Nobel laureates:

>>> nobel["born"] = pd.to_datetime(nobel["born"])
dateutil.parser._parser.ParserError: month must be in 1..12: 1873-00-00

Here there’s an error because at least one of the "born" dates has 00-00 for the month
and year. Why?

11.5 pandas Example: Nobel Laureates 375

>>> nobel.loc[nobel["born"] == "1873-00-00"]
id firstname surname ... name city country

465 467 Institute of International Law NaN ... NaN NaN NaN

[1 rows x 20 columns]
>>> nobel.iloc[465].born
>>> nobel.iloc[465].category
465 peace
Name: category, dtype: object
>>> nobel.iloc[465].year
465 1904
Name: year, dtype: int64

Ah, so an organization called the Institute of International Law won the Nobel Prize
for Peace in 1904. As you might guess from the "born" date, it was founded in 1873,
but because it’s not a person the Nobel data declines to specify an exact “birth” date.

This complicates matters somewhat because we can’t just drop Not Available val-
ues like NaN and NaT. Luckily, pandas has an option to force, or coerce, such values
when making the conversion. We can convert in place (thereby overwriting the old
data) like this:

>>> nobel["born"] = pd.to_datetime(nobel["born"], errors="coerce")
>>> nobel["died"] = pd.to_datetime(nobel["died"], errors="coerce")

Now we can double-check the value for the Institute of International Law:

>>> nobel.iloc[465].born
NaT

So the coercion converted the invalid date to Not a Time, which is perfect for our
purposes because such values are ignored automatically when plotting histograms.

At this point, we’re ready to calculate the laureates’ lifespans by subtracting
datetimes and dividing by NumPy’s magic time delta:

>>> nobel["lifespan"] = (nobel["died"] - nobel["born"])/np.timedelta64(1, "Y")

Note that this dynamically creates a new "lifespan" column in our nobel
DataFrame. We can do a reality check by making sure we’ve replicated the calculation
we did for Bethe:

https://en.wikipedia.org/wiki/Institut_de_Droit_International

376 Chapter 11: Data Science

>>> bethe = nobel.loc[nobel["surname"] == "Bethe"]
>>> bethe["lifespan"]
88 98.679644

So Hans Bethe’s lifespan checks out from our previous calculation.
We’re now finally ready to make the histogram. With all the work we’ve done,

it’s as simple as calling hist() with the "lifespan" column (Listing 11.17).

Listing 11.17: The code to make a lifespan histogram.

>>> nobel.hist(column="lifespan")
array([[<AxesSubplot:title={'center':'lifespan'}>]], dtype=object)
>>> plt.show()

The result appears in Figure 11.27. As expected from the research on the subject, the
lifespans of the Nobel laureates are skewed toward the upper end of the usual range.

Figure 11.27: A histogram of Nobel laureates’ lifespans.

11.6 pandas Example: Titanic 377

11.5.1 Exercises

1. Confirm that Frédéric Joliot-Curie, who shared the 1935 Nobel Prize for Chem-
istry with his wife Irène, appears in the laureates.csv dataset. Why did we miss
him when we searched for Curies in Listing 11.15? Hint: Search for an entry with
"firstname" equal to "Frédéric" (making sure to include the proper accents).

2. Verify that the Nobel Prize categories cited after Listing 11.16 are correct (e.g.,
that Frederick Sanger’s Nobel Prizes really were for Chemistry, etc.).

3. In Listing 11.17, what happens if you just call nobel.hist(), with no column
specified?

11.6 pandas Example: Titanic
Our second major pandas example uses survival data from the tragic sinking of RMS
Titanic in 1912 (Figure 11.2828). This is a standard dataset used by the pandas docu-
mentation itself,29 and as such has been extensively analyzed, making the “Google for
it” algorithm unusually effective.

As usual, our first step is to download the data, which we can do directly from
the Web, as shown in Listing 11.18. (We saw in Section 9.2 that request.get()
automatically follows redirects, but as far as I can tell read_csv() does not. I have
been unable to figure out how to get it to do so (if it’s even possible), so Listing 11.18
uses the raw Amazon S3 URL instead.)

Let’s take a look at the head():

>>> titanic.head()
PassengerId Survived Pclass ... Fare Cabin Embarked

0 1 0 3 ... 7.2500 NaN S
1 2 1 1 ... 71.2833 C85 C
2 3 1 3 ... 7.9250 NaN S
3 4 1 1 ... 53.1000 C123 S
4 5 0 3 ... 8.0500 NaN

28. Image courtesy of Shawshots/Alamy.

29. It’s available at https://github.com/pandas-dev/pandas/blob/main/doc/data/titanic.csv, but as with the
Nobel laureate data we’ll use the version at the Learn Enough CDN for maximum compatibility in case the
pandas version changes or disappears.

https://en.wikipedia.org/wiki/Fr%C3%A9d%C3%A9ric_Joliot-Curie
https://en.wikipedia.org/wiki/Titanic
https://en.wikipedia.org/wiki/Titanic
https://pandas.pydata.org/docs/dev/getting_started/intro_tutorials/02_read_write.html
https://pandas.pydata.org/docs/dev/getting_started/intro_tutorials/02_read_write.html

378 Chapter 11: Data Science

Figure 11.28: The ill-fated RMS Titanic.

Listing 11.18: Reading data right from a (raw S3) URL.

>>> URL = "https://learnenough.s3.amazonaws.com/titanic.csv"
>>> titanic = pd.read_csv(URL)

We see that the data is indexed by PassengerId, but that’s not very meaningful,
and we can give it a more personal touch by rereading the data and indexing on Name
instead. The way to do this is by specifying an index column using index_col (Listing
11.19).

11.6 pandas Example: Titanic 379

Listing 11.19: Setting a custom index column.

>>> titanic = pd.read_csv(URL, index_col="Name")
>>> titanic.head()

PassengerId ... Embarked
Name ...
Braund, Mr. Owen Harris 1 ... S
Cumings, Mrs. John Bradley (Florence Briggs Tha... 2 ... C
Heikkinen, Miss. Laina 3 ... S
Futrelle, Mrs. Jacques Heath (Lily May Peel) 4 ... S
Allen, Mr. William Henry 5 ... S

We can look at the value of the "Survived" column for each passenger whether
they survived or not:

>>> titanic.iloc[0]["Survived"]
0
>>> titanic.iloc[1]["Survived"]
1

Here 1 is for “Survived” and 0 is for “Didn’t Survive”, which follows the standard
practice for a category where each entry takes only one of two values (variously called
a “binary predictor”, an “indicator variable”, or a “dummy variable”).

Because of the choice of encoding, the mean value of the "Survived" attribute
is the total survival rate:

survival rate =
N∑

i=1

total number of survivors
total number of passengers

= sum of 1s in “Survived”
N

.

As a result, we can get the overall survival rate by calling mean() on the "Survived"
column:

>>> titanic["Survived"].mean()
0.3838383838383838

So the Titanic disaster survival rate was approximately 38%.
Let’s take a look at how survival rate was affected by some of the variables

applicable to the passengers. We’ll start by getting some info():

https://online.stat.psu.edu/stat462/node/161/

380 Chapter 11: Data Science

>>> titanic.info()
<class 'pandas.core.frame.DataFrame'>
Index: 891 entries, Braund, Mr. Owen Harris to Dooley, Mr. Patrick
Data columns (total 11 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Sex 891 non-null object
4 Age 714 non-null float64
5 SibSp 891 non-null int64
6 Parch 891 non-null int64
7 Ticket 891 non-null object
8 Fare 891 non-null float64
9 Cabin 204 non-null object
10 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(4)

The most interesting columns from the perspective of survival rate are probably
passenger class ("Pclass"), sex ("Sex"), and age ("Age").

We can use pandas to discover that passenger class consists of three categories:

>>> titanic["Pclass"].unique()
array([3, 1, 2])

These represent first-, second-, and third-class tickets, which correspond to accom-
modation quality from the highest to the lowest.

If we groupby() class we can see how survival rates vary:

>>> titanic.groupby("Pclass")["Survived"].mean()
Pclass
1 0.629630
2 0.472826
3 0.242363

So we see that the survival rate varies strongly by class, with first-class passengers
surviving at a rate of 62.9% and third-class passengers surviving at only 24.2%.

We can visualize this result by plotting a bar chart of survival rate. Each pan-
das Series object has a plot attribute that lets us call bar() to make a bar chart,
which includes the bar labels automatically. Heights are given by the height of each
categorical variable, in this case the survival rates we just calculated:

11.6 pandas Example: Titanic 381

Figure 11.29: Titanic survival rates by passenger class.

>>> survival_rates = titanic.groupby("Pclass")["Survived"].mean()
>>> survival_rates.plot.bar()
>>> plt.show()

The result appears in Figure 11.29.
We can apply similar techniques to the categorical variable "Sex":

>>> titanic["Sex"].unique()
array(['male', 'female'], dtype=object)

The code to make the bar chart is essentially the same but with grouping by "Sex"
instead of "Pclass":

>>> survival_rates = titanic.groupby("Sex")["Survived"].mean()
>>> survival_rates.plot.bar()
>>> plt.subplots_adjust(bottom=0.20)
>>> plt.show()

382 Chapter 11: Data Science

Figure 11.30: Titanic survival rates by sex.

The subplots_adjust() line here may be necessary to create enough room for the
labels on the x-axis to display properly on some systems (it was on mine). The result
should appear as in Figure 11.30. We see that the survival rate for female passengers
was significantly higher than that for male passengers.

We come now to the third major variable of likely interest, age. The class and sex
variables are categorical, which made creating a bar chart easy, but the "Age" variable
is numeric, so we have to bin the data, similar to making a histogram (Section 11.3.3).

The ages of Titanic passengers ranged from infants to 80:

>>> titanic["Age"].min()
0.42
>>> titanic["Age"].max()
80.0

At this point, we have to decide how many bins to use. Using 7 gives an age of
approximately 11 for the top of the first bin:

11.6 pandas Example: Titanic 383

>>> (titanic["Age"].max() - titanic["Age"].min())/7
11.368571428571428

This is a reasonable cutoff for a “child”.
The next step is to bin the data, which we can do with a pandas method

called cut(). First, we need to select only passengers with valid ages, which we
can accomplish with the notna() method to ensure that age is not Not Available
(Listing 11.20).

Listing 11.20: Selecting only values that are not Not Available.

>>> titanic["Age"].notna()
Name
Braund, Mr. Owen Harris True
Cumings, Mrs. John Bradley (Florence Briggs Thayer) True
Heikkinen, Miss. Laina True
Futrelle, Mrs. Jacques Heath (Lily May Peel) True
Allen, Mr. William Henry True

...
Montvila, Rev. Juozas True
Graham, Miss. Margaret Edith True
Johnston, Miss. Catherine Helen "Carrie" False
Behr, Mr. Karl Howell True
Dooley, Mr. Patrick True
Name: Age, Length: 891, dtype: bool
>>> valid_ages = titanic[titanic["Age"].notna()]

The values of titanic["Age"].notna() include booleans that are True if the age
is valid, which we can then use as an index to the titanic object to select only the
passengers with valid ages (the final line in Listing 11.20).

Next, we need to group the data by age and sort it to bring rows with similar ages
next to each other before binning:

>>> sorted_by_age = valid_ages.sort_values(by="Age")

This is necessary because otherwise we would be binning ages based on passenger
name, which doesn’t make any sense since it would mix passengers of completely
unrelated ages in the same bin.

At this point, we’re ready to use cut() to put the data into the desired number
of bins:

384 Chapter 11: Data Science

>>> sorted_by_age["Age range"] = pd.cut(sorted_by_age["Age"], 7)

Finally, we calculate the survival rate per bin by grouping by bins and finding the
mean() of the "Survived" column (remember, this works because of the 1=Survived,
0=Didn’t Survive encoding typically used for binary predictors):

>>> survival_rates = sorted_by_age.groupby("Age range")["Survived"].mean()

At this point, we can use the same bar chart technique used for "Pclass" and
"Sex" (with a bottom adjustment to get the labels to fit):

>>> survival_rates.plot.bar()
>>> plt.subplots_adjust(bottom=0.33)
>>> plt.show()

The result appears as shown in Figure 11.31.

Figure 11.31: Titanic survival rates by age.

11.6 pandas Example: Titanic 385

We see from Figure 11.31 that the survival rate was highest for the youngest
passengers, was approximately constant for most adults, and then fell off sharply in the
highest age range. But the male passengers were also older:

>>> titanic[titanic["Sex"] == "male"]["Age"].mean()
30.72664459161148
>>> titanic[titanic["Sex"] == "female"]["Age"].mean()
27.915708812260537

We know from Figure 11.30 that male passengers also had lower survival rates, so this
could account for some of the age disparity. We’ll see in Section 11.7 one way to
examine the relative contribution of each variable separately.

11.6.1 Exercises

1. Confirm using the code in Listing 11.21 that the Titanic survival rate for female
passengers in third class was 50%. How does this compare to the survival rate for
male passengers in first class?

2. Make two versions of the bar chart for Titanic survival rates by age shown
in Figure 11.31, one each for male passengers and female passengers. Hint:
Define sex-specific variables as shown in Listing 11.22 and redo the analysis after
Listing 11.20 separately for the male_ and female_ variables.

3. Widener Library at Harvard University was built by Eleanor Elkins Widener, who
survived the Titanic sinking, to honor her son Harry (Figure 11.3230), who did
not. Using a substring search similar to the one in Listing 11.14, show that Harry is
in our Titanic dataset, but Eleanor is not. How old was Harry when he died? Hint:
You can search for names containing the substring "Widener", but because we
set "Name" as the index column in Listing 11.19, you should use titanic.index
instead of titanic["Name"] in the search.

Listing 11.21: Finding a survival rate using multiple boolean criteria.

titanic[(titanic["Sex"] == "female") &
(titanic["Pclass"] == 3)]["Survived"].mean()

30. Image copyright © 2022 Michael Hartl.

https://en.wikipedia.org/wiki/Widener_Library
https://en.wikipedia.org/wiki/Eleanor_Elkins_Widener
https://en.wikipedia.org/wiki/Harry_Elkins_Widener

386 Chapter 11: Data Science

Listing 11.22: Preparing to visualize Titanic survival rates by age separately by sex.

male_passengers = titanic[titanic["Sex"] == "male"]
female_passengers = titanic[titanic["Sex"] == "female"]
valid_male_ages = male_passengers[titanic["Age"].notna()]
valid_female_ages = female_passengers[titanic["Age"].notna()]

Figure 11.32: A portrait of Harry Elkins Widener inside Widener Library at Harvard
University.

11.7 Machine Learning with scikit-learn
This section contains a brief introduction to machine learning, which is a field of com-
puting involving programs that “learn” in response to data inputs. Although opinions
differ over whether machine learning is part of “data science” per se, at the very least

11.7 Machine Learning with scikit-learn 387

it’s a closely related field, and is therefore suitable for inclusion in an introduction such
as this one.

Machine learning is a giant subject, and in this section we can only scratch the
surface. As with the other sections in this chapter, the main value is in developing
a basic familiarity with a relevant Python package, which in this case is known as
scikit-learn.

Building on the Titanic analysis in Section 11.6, we’ll first look at an example of
linear regression (Section 11.7.1), and we’ll then consider more sophisticated machine-
learning models (Section 11.7.2). We’ll end with an example of a clustering algorithm
as just one example of the many additional subjects at which scikit-learn excels.

11.7.1 Linear Regression

In this section, we’ll use scikit-learn to perform a linear regression, which finds the best
fit to a set of data (for a suitable definition of “best”).31 Referring to linear regression
as “machine learning” is sometimes considered a sort of inside joke because the tech-
nique is relatively simple and has been in use for many years. Nevertheless, it’s a great
place to start.

As with Section 11.6, we’ll use the survival data from Titanic. We’ll start by
importing the necessary libraries and creating a titanic DataFrame:

>>> import numpy as np
>>> import pandas as pd
>>> import matplotlib.pyplot as plt
>>> URL = "https://learnenough.s3.amazonaws.com/titanic.csv"
>>> titanic = pd.read_csv(URL)

Our goal is to consider the effect of age on survival rate. We’ll start by making a
scatter plot (Section 11.3.2) of survival rate vs. age and then find the best linear fit to
the data using scikit-learn.

We’ll first select just the "Age" and "Survived" columns, since those are the
columns of interest. Then, as a basic matter of data cleaning, we’ll consider only pas-
sengers with known age, so we’ll use dropna() (Section 11.4.1) to drop the NaN
values:

31. This section was inspired in part by the article “Linear Regression in Python” by Mirko Stojiljković.

https://scikit-learn.org/
https://en.wikipedia.org/wiki/Linear_regression
https://realpython.com/linear-regression-in-python/

388 Chapter 11: Data Science

>>> passenger_age = titanic[["Age" , "Survived"]].dropna()
>>> passenger_age.head()

Age Survived
0 22.0 0
1 38.0 1
2 26.0 1
3 35.0 1
4 35.0 0

For the x-axis of our plot, we’ll use the ages of the survivors, which we can obtain
by calculating the unique values of passenger_age["Age"] and then sorting them
to put them in ascending order:

>>> passenger_ages = passenger_age["Age"].unique()
>>> passenger_ages.sort()
>>> passenger_ages
array([0.42, 0.67, 0.75, 0.83, 0.92, 1. , 2. , 3. , 4. ,

5. , 6. , 7. , 8. , 9. , 10. , 11. , 12. , 13. ,
14. , 14.5 , 15. , 16. , 17. , 18. , 19. , 20. , 20.5 ,
21. , 22. , 23. , 23.5 , 24. , 24.5 , 25. , 26. , 27. ,
28. , 28.5 , 29. , 30. , 30.5 , 31. , 32. , 32.5 , 33. ,
34. , 34.5 , 35. , 36. , 36.5 , 37. , 38. , 39. , 40. ,
40.5 , 41. , 42. , 43. , 44. , 45. , 45.5 , 46. , 47. ,
48. , 49. , 50. , 51. , 52. , 53. , 54. , 55. , 55.5 ,
56. , 57. , 58. , 59. , 60. , 61. , 62. , 63. , 64. ,
65. , 66. , 70. , 70.5 , 71. , 74. , 80.])

At this point, we’re ready to calculate the survival rate for each age:

>>> survival_rate = passenger_age.groupby("Age")["Survived"].mean()

Let’s look at a slice from the middle as a reality check:

>>> survival_rate.loc[30:40]
Age
30.0 0.400000
30.5 0.000000
31.0 0.470588
32.0 0.500000
32.5 0.500000
33.0 0.400000
34.0 0.400000
34.5 0.000000
35.0 0.611111

11.7 Machine Learning with scikit-learn 389

36.0 0.500000
36.5 0.000000
37.0 0.166667
38.0 0.454545
39.0 0.357143
40.0 0.461538
Name: Survived, dtype: float64

So it looks like, say, 37-year-olds survived at a rate of 1/6 ≈ 16.7%.
As noted in Section 11.3.2, a scatter plot is a great way to get a broad overview

of the data:

>>> fig, ax = plt.subplots()
>>> ax.scatter(passenger_ages, survival_rate)
>>> plt.show()

The result is shown in Figure 11.33.

Figure 11.33: A scatter plot of Titanic survival rates by age.

390 Chapter 11: Data Science

It appears in Figure 11.33 that there is a general downward trend, in agree-
ment with the bar chart in Figure 11.31. We can quantify this trend using the
LinearRegression model from scikit-learn (Listing 11.23).32

Listing 11.23: Importing a linear regression model.

>>> from sklearn.linear_model import LinearRegression

We’ll now define variables X and Y based on the ages and survival rates as inputs to
the scikit-learn regression model.33 The input format expected by scikit-learn mod-
els is an array of one-dimensional arrays for X and a regular NumPy ndarray for Y.
The former is exactly the format created using the reshape((-1, 1)) method in
Section 11.2.2 (Listing 11.4):

>>> X = np.array(passenger_ages).reshape((-1, 1))
>>> X[:10] # Look at the first 10 ages as a reality check.
array([[0.42],

[0.67],
[0.75],
[0.83],
[0.92],
[1.],
[2.],
[3.],
[4.],
[5.]])

Defining Y, meanwhile, is much more straightforward:

>>> Y = np.array(survival_rate)

At this point, we’re ready to use a linear regression to find the best fit of the model
to the data:

32. SciPy also has a linear regression function (scipy.stats.linregress), but in this section we use the
one in scikit-learn in order to unify the treatment with the more advanced models in Section 11.7.2.

33. Conventions for the capitalization of regression variables are rather complicated; see here
(https://stats.stackexchange.com/questions/389395/why-uppercase-for-x-and-lowercase-for-y) for more.

https://stats.stackexchange.com/questions/389395/why-uppercase-for-x-and-lowercase-for-y

11.7 Machine Learning with scikit-learn 391

>>> model = LinearRegression()
>>> model.fit(X, Y)
LinearRegression()

The results of this calculation include the coefficient of determination, also called R2

(for technical reasons), which is the square of the Pearson correlation coefficient and
can take any value between −1 and 1, with 1 being perfect correlation and −1 being
perfect anti-correlation. R2 is available as the score() of the model:

>>> model.score(X, Y) # coefficient of determination R^2
0.13539675574075116

An R2 value of 0.135 is small but not negligible, though it’s important to bear in mind
the difficulty of interpreting R2.

We can get a visual indication of the fit by plotting the regression line itself. The
slope and y-intercept of the line are available via the coef_ and intercept_ attributes
of the model:

>>> m = model.coef_
>>> b = model.intercept_

Here the trailing underscores on the names are a scikit-learn convention for attributes
that are available only after the model has been applied using model.score().

We’ve named the slope and intercept using the standard names m and b for
describing a line in the xy-plane:

y = mx + b equation of a line.

We can combine a plot of this line with the scatter plot from Figure 11.33 to visualize
the fit (included here without the REPL prompt for ease of copying):

fig, ax = plt.subplots()
ax.scatter(passenger_ages, survival_rate)
ax.plot(passenger_ages, m * passenger_ages + b, color="orange")
ax.set_xlabel("Age")
ax.set_ylabel("Survival Rate")
ax.set_title("Titanic survival rates by age")
plt.show()

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://en.wikipedia.org/wiki/Coefficient_of_determination#As_squared_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://statisticsbyjim.com/regression/interpret-r-squared-regression/

392 Chapter 11: Data Science

Figure 11.34: Adding a regression line (and labels) to Figure 11.33.

The result is shown in Figure 11.34. As indicated by the modest R2 value, the fit in
Figure 11.34 is OK but not great. Clearly, the correlation with age is far from perfect,
and we found in Section 11.6 that both sex and passenger class had a significant effect
on survival rates. We’ll investigate these relationships further with more sophisticated
learning models in Section 11.7.2.

11.7.2 Machine-Learning Models

In Section 11.6, we used pandas to discover an association between Titanic survival
rates and the key variables of passenger class ("Pclass"), sex ("Sex"), and age ("Age").
In Section 11.7.1, we calculated a linear regression for survival rates as a function of
age, but the predictive capability of the linear regression model was fairly modest. In

11.7 Machine Learning with scikit-learn 393

this section, we’ll look at significantly more sophisticated learning models that yield
correspondingly better predictions.34

As in previous sections, we’ll import the necessary packages and create the
necessary DataFrame (shown without the REPL prompt for ease of copying):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

URL = "https://learnenough.s3.amazonaws.com/titanic.csv"
titanic = pd.read_csv(URL)

There is a large variety of different models supported by scikit-learn that we might
try. A detailed discussion of such models is beyond the scope of this tutorial, but here
is a selection of the models we’ll be considering in this section with links for more
information:

• Logistic Regression (https://stats.stackexchange.com/questions/389395/why-
uppercase-for-x-and-lowercase-for-y)

• Naive Bayes (https://en.wikipedia.org/wiki/Naive_Bayes_classifier)

• Perceptron (https://en.wikipedia.org/wiki/Perceptron)

• Decision Tree (https://en.wikipedia.org/wiki/Decision_tree)

• Random Forest (https://en.wikipedia.org/wiki/Random_forest)

These models were chosen as representative samples of different kinds of candidate
algorithms. The only exception is Random Forest, which in the case of our dataset
will turn out to be equivalent to Decision Tree, but was retained because “Random
Forest” sounds really cool. (In all seriousness, seeing when and by how much Random
Forest differs from Decision Tree is discussed in an exercise (Section 11.7.4).)

34. The analysis here is based in part on the article “Predicting the Survival of Titanic Passengers”, which
uses data from the popular Machine Learning from Disaster contest run by machine-learning site Kaggle (a
subsidiary of Google). The Kaggle dataset includes both training and test data; the purpose of the contest is
to use the training data to train models and then submit predictions based on the test data. Unfortunately,
this step isn’t clear in “Predicting the Survival of Titanic Passengers”, which uses scikit-learn’s predict()
method to calculate predictions but then doesn’t do anything with them. For participants in the contest,
those predictions would be used to create the submissions required by Kaggle.

https://en.wikipedia.org/wiki/Logistic_regression
https://stats.stackexchange.com/questions/389395/why-uppercase-for-x-and-lowercase-for-y
https://stats.stackexchange.com/questions/389395/why-uppercase-for-x-and-lowercase-for-y
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Decision_tree
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
https://towardsdatascience.com/predicting-the-survival-of-titanic-passengers-30870ccc7e8
https://www.kaggle.com/c/titanic
https://www.kaggle.com/

394 Chapter 11: Data Science

To use the various models on our training DataFrame, we first need to import
them from scikit-learn, which is available via the sklearn package (Listing 11.24).

Listing 11.24: Importing learning models.

from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

Note the similarity between these import statements and the one used for linear
regressions in Section 11.7.1 (Listing 11.23).

At this point, we need to bring our data into the format required for input into
scikit-learn’s learning models. Because we’ve decided to focus on the effects of class,
sex, and age on survival rates, our first step is to drop the columns that we won’t be
considering. For convenience, we’ll spell out the corresponding column names in a list
and then iterate over it, using the pandas drop() method to drop the corresponding
column (which by convention is axis=1; the default value of axis=0 would try to
drop a row instead):

dropped_columns = ["PassengerId", "Name", "Cabin", "Embarked",
"SibSp", "Parch", "Ticket", "Fare"]

for column in dropped_columns:
titanic = titanic.drop(column, axis=1)

Unlike things like histogram plots, which typically ignore Not Available values like
NaNs and NaTs, the learning models will croak if given invalid values. To avoid this
unfortunate circumstance, we’ll use the same trick seen in Listing 11.20 and redefine
our DataFrames to include only values that are not Not Available using the notna()
method (seen before in Listing 11.20):

for column in ["Age", "Sex", "Pclass"]:
titanic = titanic[titanic[column].notna()]

Another cause of model errors is raw categorical values like "male" and
"female", which the models don’t know how to handle. In order to fix this, we’ll

11.7 Machine Learning with scikit-learn 395

associate each of these categories to a number using the pandas map() method we saw
in Listing 11.12:

sexes = {"male": 0, "female": 1}
titanic["Sex"] = titanic["Sex"].map(sexes)

If "Pclass" were represented using strings like "first", "second", and
"third", we would have to do something similar for that variable, but luckily it’s
already represented using the integers 1, 2, and 3. That means we’re ready to move on
to the next step, which is to prepare our data. The independent variables are class, sex,
and age, while the dependent variable is survival rate. Following the usual convention,
we’ll call these X and Y, respectively:

X = titanic.drop("Survived", axis=1)
Y = titanic["Survived"]

Note that we’ve dropped the dependent "Survived" column from the X training
variable because that’s exactly what we’re trying to predict.

Before applying the learning model algorithms, let’s take a look at everything just
to make sure the data looks sensible:

print(X.head(), "\n----\n")
print(Y.head(), "\n----\n")

Pclass Sex Age
0 3 0 22.0
1 1 1 38.0
2 3 1 26.0
3 1 1 35.0
4 3 0 35.0

0 0
1 1
2 1
3 1
4 0
Name: Survived, dtype: int64

Looks good.

396 Chapter 11: Data Science

The original competition that inspired this example involved supplying training
data for creating models, which was then applied to test data not available to partici-
pants in the competition. Because this section isn’t part of that competition, we’ll split
the given data into separate training and test datasets ourselves. Using such separate
datasets helps guard against overfitting, which involves using so many free parameters
that the model doesn’t have predictive value beyond the original datasets—as the great
John von Neumann once reportedly quipped, “With four parameters I can fit an ele-
phant, and with five I can make him wiggle his trunk.” (We’ll cover a second guard
against overfitting called cross-validation as well.)

The main scikit-learn method for doing a train/test split is called, appropriately
enough, train_test_split(), which returns four values consisting of a training and
test variable for each of X and Y:

from sklearn.model_selection import train_test_split
(X_train, X_test, Y_train, Y_test) = train_test_split(X, Y, random_state=1)

Because train_test_split() shuffles the data before doing the split, we’ve set the
random_state option so that your results will be consistent with those shown in the
text.

At this point, we’re ready to try the various models out on the training data and
see how accurate their fits are when applied to the test data. Our strategy is to define
an instance of each of the models imported in Listing 11.24, calculate the fit() on
the training data, and then look at the score() of the model on the test data. We’ll
then compare the scores to compare the accuracy of the models.

First up is Logistic Regression:

logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
accuracy_logreg = logreg.score(X_test, Y_test)

Next is (Gaussian) Naive Bayes:

naive_bayes = GaussianNB()
naive_bayes.fit(X_train, Y_train)
accuracy_naive_bayes = naive_bayes.score(X_test, Y_test)

https://www.kaggle.com/c/titanic
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/John_von_Neumann

11.7 Machine Learning with scikit-learn 397

Then Perceptron:

perceptron = Perceptron()
perceptron.fit(X_train, Y_train)
accuracy_perceptron = perceptron.score(X_test, Y_test)

Then Decision Tree:

decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)
accuracy_decision_tree = decision_tree.score(X_test, Y_test)

And finally Random Forest (using a random_state option as with train_test_-
split() to obtain consistent results):

random_forest = RandomForestClassifier(random_state=1)
random_forest.fit(X_train, Y_train)
accuracy_random_forest = random_forest.score(X_test, Y_test)

Let’s make a DataFrame to hold and display the results (again omitting the prompt
for easier copying):

results = pd.DataFrame({
"Model": ["Logistic Regression", "Naive Bayes", "Perceptron",

"Decision Tree", "Random Forest"],
"Score": [accuracy_logreg, accuracy_naive_bayes, accuracy_perceptron,

accuracy_decision_tree, accuracy_random_forest]})
result_df = results.sort_values(by="Score", ascending=False)
result_df = result_df.set_index("Score")
result_df

The result appears in Listing 11.25.

Listing 11.25: The model accuracy results.

Model
Score
0.854749 Decision Tree
0.854749 Random Forest
0.787709 Logistic Regression
0.770950 Naive Bayes
0.743017 Perceptron

398 Chapter 11: Data Science

We see that Decision Tree and Random Forest are tied for the most accurate score,
followed by Logistic Regression and Naive Bayes neck-and-neck, with Perceptron
bringing up the rear. The models are close enough, though, that different values for
random_state could easily affect their order (Section 11.7.4).

Once we’ve performed the fit(), we can look at how important each factor was
in determining the results of the model. For example, for the Random Forest model,
the importances are as follows:

>>> random_forest.feature_importances_
array([0.16946036, 0.35821155, 0.47232809])
>>> X_train.columns
Index(['Pclass', 'Sex', 'Age'], dtype='object')

Comparing the columns to the importances, we see that "Age" was the biggest factor,
followed closely by "Sex", with "Pclass" being a distant third (half as important as
the second-highest factor). We can visualize the result as a bar chart as well:

>>> fig, ax = plt.subplots()
>>> ax.bar(X_train.columns, random_forest.feature_importances_)
<BarContainer object of 3 artists>
>>> plt.show()

Previous examples of bar() have gone through the pandas interface, but here we
see that Matplotlib also supports bar charts directly. (This isn’t surprising since, as
noted in Section 11.4, pandas uses Matplotlib under the hood.) The result appears in
Figure 11.35.

Cross-Validation
As previously noted, we split the data into training and test datasets as one guard
against overfitting. Another common technique to avoid “fitting an elephant” (per
von Neumann’s quip) is known as cross-validation. The basic idea is to artificially break
the original training data into new training and test datasets, train the model on the
training data, and then use the model to predict the test data. If doing this on several
different random choices for training and test subsets yields fairly consistent results,
we can be more confident that the model actually works.

Because this is such a common technique, scikit-learn comes with a predefined
routine for performing cross-validations called cross_val_score:

11.7 Machine Learning with scikit-learn 399

Figure 11.35: The importance of each factor in Titanic survival rates.

>>> from sklearn.model_selection import cross_val_score

This method implements so-called K-fold cross-validation, which involves breaking the
data into K pieces, or “folds”, using K−1 folds to train the model, and then predicting
the values of the final fold to assess accuracy. The default value is 5, which is fine for
our purposes, so we need only pass the function the classifier instance and the training
data. We’ll use Random Forest since it was tied for first (and, as previously noted, has
an especially cool name):

>>> random_forest = RandomForestClassifier(random_state=1)
>>> scores = cross_val_score(random_forest, X, Y)
>>> scores
array([0.75524476, 0.8041958, 0.82517483, 0.83216783, 0.83098592])
>>> scores.mean()
0.8095538264552349
>>> scores.std()
0.028958338744358988

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html

400 Chapter 11: Data Science

With scores that are nearly 81% accurate on average with a standard deviation of
just under 3%, we can reasonably conclude the Random Forest model is an accurate
predictor of Titanic survival data.

11.7.3 k-Means Clustering

As a final example, we’ll take a look at a clustering algorithm, which is but one
of the many amazing things that scikit-learn can do.35 We’ll start by importing
a utility method commonly used when demonstrating clustering algorithms called
make_blobs(), in this case consisting of 300 points divided into 4 blobs:

>>> from sklearn.datasets import make_blobs
>>> X, _ = make_blobs(n_samples=300, centers=4, random_state=42)

Note that we’ve also passed a random_state parameter, which serves as the seed for
the blobs and ensures consistent results (which can vary quite a lot).

We can see what’s “bloblike” about the data created by make_blobs() by plotting
the second column against the first:

>>> fig, ax = plt.subplots()
>>> ax.scatter(X[:, 0], X[:, 1])
>>> plt.show()

The result appears in Figure 11.36.
We can find a good fit for the 4 blobs using an algorithm called k-means clustering:

>>> from sklearn.cluster import KMeans
>>> kmeans = KMeans(n_clusters=4)
>>> kmeans.fit(X)

Note how similar the steps are to the model fits in Section 11.7.2. We can find the
model’s estimate for the center of each cluster using the cluster_centers_ attribute:

35. See https://jakevdp.github.io/PythonDataScienceHandbook/05.11-k-means.html for more details.

11.7 Machine Learning with scikit-learn 401

Figure 11.36: Some random blobs.

>>> centers = kmeans.cluster_centers_
>>> centers
array([[4.7182049 , 2.04179676],

[-8.87357218, 7.17458342],
[-6.83235205, -6.83045748],
[-2.70981136, 8.97143336]])

(Note the same trailing-underscore convention mentioned in Section 11.7.1 to indi-
cate an attribute that is defined only after calling fit().) The result is an array of
points whose meaning we can interpret by plotting the second column against the
first as we did with the original blobs:

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1])
centers = kmeans.cluster_centers_
ax.scatter(centers[:, 0], centers[:, 1], s=200, alpha=0.9, color="orange")
plt.show()

With the larger size, alpha transparency, and orange color, it’s easy to see the estimated
centers of the respective clusters on a scatter plot (Figure 11.37). The result is an

402 Chapter 11: Data Science

Figure 11.37: Clusters with their predicted centers.

excellent correspondence between the output of the clustering algorithm and what
we expect based on an intuitive notion of “clusters”.

11.7.4 Exercises

1. The RandomForestClassifier() function takes a keyword argument called
n_estimators that represents the “number of trees in the forest”. Accord-
ing to the documentation, what is the default value for n_estimators? Use
random_state=1.

2. By varying n_estimators in the call to RandomForestClassifier(), deter-
mine the approximate value where the Random Forest classifier is less accurate
than Decision Tree. Use random_state=1.

3. By rerunning the steps in Section 11.7.2 using a few different values of
random_state, verify that the ordering is not always the same as shown in
Listing 11.25. Hint: Try values like 0, 2, 3, and 4.

4. Repeat the clustering steps in Section 11.7.3 using two clusters and eight clusters.
Does the algorithm still work well in both cases?

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

11.8 Further Resources and Conclusion 403

11.8 Further Resources and Conclusion
Congratulations—now you really know enough Python to be dangerous! In addition
to the core material, you now have a good grounding in some of the most important
tools for data science with Python.

There are a million directions to go from here; here are a few of the possibilities:

• The official pandas documentation includes 10 minutes to pandas followed by
a large amount of additional tutorial material. The official documentation for
NumPy, Matplotlib, and scikit-learn are also excellent resources. Finally, the SciPy
and SageMath projects are worth knowing about; Sage in particular includes the
ability to do symbolic as well as numerical computations (much like Mathematica
or Maple).

• “Python for Scientific Computing”: Although not for data science per se, this
resource covers a lot of the same material needed for the subject. Among other
things, “Python for Scientific Computing” was the inspiration for the section
using Nobel Prize data (Section 11.5).

• Python Data Science Handbook by Jake VanderPlas: This book takes a similar
approach to this chapter and is available for free online.

• Data Science from Scratch by Joel Grus: This book is basically the polar opposite of
this chapter, taking a first-principles approach to data science that focuses on the
foundational ideas of the subject. This approach is impossible in a space as short as
ours but is an excellent way to go if you’re interested in becoming a professional
data scientist.

• Bloom Institute of Technology’s Data Science Course: This online course is aimed
at serious students interested in a career in data science.

• Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien
Géron: A much more advanced introduction to machine learning than Sec-
tion 11.7, including Keras, a Python interface to Google’s TensorFlow library.

For completeness, here are the general Python resources recommended in Sec-
tion 10.6:

• Replit’s 100 days of code: This is a guided introduction to Python programming
using Replit’s amazing collaborative browser-based IDE.

https://pandas.pydata.org/docs/user_guide/10min.html
https://numpy.org/doc/stable/
https://matplotlib.org/stable/index.html
https://scikit-learn.org/stable/user_guide.html
https://scipy.org/
https://www.sagemath.org/
https://aaltoscicomp.github.io/python-for-scicomp/
https://jakevdp.github.io/PythonDataScienceHandbook/
https://www.amazon.com/Data-Science-Scratch-Principles-Python/dp/1492041130/
https://www.bloomtech.com/courses/data-science
https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646
https://replit.com/learn/100-days-of-python
https://replit.com/

404 Chapter 11: Data Science

• Practical Python Programming by Dave Beazley: I’ve long been a huge fan of
Beazely’s Python Essential Reference and highly recommend his (free) online course.

• Learn Python the Hard Way by Zed Shaw: This exercise- and syntax-
heavy approach is an excellent complement to the breadth-first, narrative
approach taken in this tutorial. Fun fact: Zed Shaw’s “Learn Code the Hard
Way” brand was a direct inspiration for “Learn Enough to Be Dangerous”
(https://www.learnenough.com/).

• Python Crash Course and Automate the Boring Stuff with Python from No Starch
Press: Both of these books are good follow-ons to Learn Enough Python to Be
Dangerous; the former (by Eric Matthes) has more detailed coverage of Python
syntax while the latter (by Al Sweigart) includes a great many applications of
Python programming to everyday computer tasks.

• Captain Code by Ben Forta and Shmuel Forta: Although this book is principally
aimed at children, many adult readers have reported enjoying it as well.

• Finally, for people who want the most solid foundation possible in technical
sophistication, Learn Enough All Access (https://www.learnenough.com/all-
access) is a subscription service that has special online versions of all the
Learn Enough books and over 40 hours of streaming video tutorials, including
Learn Enough Python to Be Dangerous, Learn Enough Ruby to Be Danger-
ous (https://www.learnenough.com/ruby), and the full Ruby on Rails Tutorial
(https://www.railstutorial.org/). We hope you’ll check it out!

Those are just a few of the incredible variety of options available to you now
that you have learned the basics of Python and have developed your technical
sophistication. Good luck!

https://dabeaz-course.github.io/practical-python/Notes/Contents.html
https://www.dabeaz.com/per.html
https://dabeaz-course.github.io/practical-python/Notes/Contents.html
https://learnpythonthehardway.org/python3/
https://shop.learncodethehardway.org/
https://shop.learncodethehardway.org/
https://www.learnenough.com/
https://nostarch.com/python-crash-course-3rd-edition
https://nostarch.com/automatestuff2
https://nostarch.com/
https://nostarch.com/
https://www.informit.com/store/captain-code-unleash-your-coding-superpower-with-python-9780137653577
https://www.learnenough.com/society
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://www.railstutorial.org/
https://www.railstutorial.org/
https://www.learnenough.com/all-access

Index

Symbols
_ (underscore), separating words, 170
!= (not equals/bang equals operator), 54
’ (single quotes), 36, 37
” (double quotes), 36, 37
\ (backslash character), 43
(hash symbol), 39
% (modulo operator), 157, 158
+ operator, 39
= (equal sign), 40
== (comparison operator), 47

A
About pages, 269, 270

base titles, 281
navigation menus, 292

About templates, 265
About view, 278
accessing

combining list access, 83
elements, 124
lists, 71–74

accuracy, machine learning, 397, 399
adding

annotations, 345, 346
assertions, 275, 282, 283
attributes, 171, 172
behaviors, 49
comments, 118

detection to integer palindromes, 228
forms, 296, 297, 308
functional techniques, 153
functions, 131
iterators, 178
labels, 344
layers, 240
navigation templates, 290
newlines, 49
objects, 117
palindrome packages, 283
pending tests, 206–209
regression lines, 392
requests, 294
sine, 345
site navigation, 287–292
tau, 93
Test Python Package Index, 294
testing, 210, 212
tests, 306, 307
text, 116
ticks to grids, 343
title variables, 284
variable components to titles, 285

algorithms
clustering, 387
k-means clustering, 400–402
predicting centers, 402

alpha transparency, 401

405

406 Index

analysis
data analysis, 353–361
pandas, 338

and operator, 51
angles, 335
annotate() method, 345
annotations, adding, 345, 346
append() function, 80–81, 151
appending lists, 80–81
applications (apps), 1

deleting, 261
deploying, 22–33
detecting palindromes, 293–316
installing, 273
layouts, 255, 271–280
previewing, 21
in production, 262
requirements, 28, 260
setup, 256–262
site navigation, 287–292
site pages, 263–271
starting, 30, 260
template engines, 280–293
variable titles, 281–286
viewing status of, 31

applying
CamelCase, 170, 171
multiple arguments, 15

arbitrary strings, splitting, 70
archives, tape, 268
arguments

applying multiple, 15
command-line, 250
function calls, 121 (see also functions)
keywords, 13, 45, 99, 127–129
splitting with no, 71
strings as, 44
variables, 127–129

arange() function, 328
arrays, 69

angles, 335
associative, 109, 110
building, 216
formatting, 333
multidimensional, 330–333
numerical computations, 327–329

assertions, 198, 200, 275, 282, 283
assigning

attributes, 172
lists, 78
values, 110
variables, 40

associative arrays, 109, 110
attributes

adding, 171, 172
assigning, 172
data, 171, 172

automating, testing, 167, 209, 255, 272
auxiliary functions, 154, 155
average values, 348
axis labels, 357

B
backslash character (\), 43
bang equals operator (!=), 54
Bardeen, John, 370
base titles, 281
base-ten logarithms, 93
Bash shell programs, 9, 11
Beautiful Soup package, 248
Beazley, David, 11
behaviors

adding, 49
strings, 63

bell curves, 348
Bethe, Hans, 372
blobs, random, 400, 401
bool() function, 54, 55
Boole, George, 47
booleans. See also searching

combining/inverting, 51–54
context, 54–56
methods, 56, 57
strings, 48
tuples, 89
values, 47
variables, 311

bracket notation, list access with, 71
browsers, Python in, 18–34

C
C code, 327, 329

Index 407

CamelCase, 170, 171
capitalization, separating words, 170
capitalize() method, 56, 57
Cascading Style Sheets. See CSS (Cascading

Style Sheets)
categorical variables, 359
cells, 322, 324
centers, predicting, 402
chaining methods, 152
change mode. See chmod command
characters

building arrays, 216
columns, 49
continuation, 268
sequences of, 35 (see also strings)
yielding, 143

checking versions, 9, 10
chmod command, 17
classes

defining, 169–176, 202
derived classes, 183–190
equivalence, 158
hierarchies, 179, 180
inheritance, 179–183
Phrase, 169–170, 171, 173, 202
superclasses, 180
TranslatedPhrase, 184, 185

classic interfaces, 324. See also interfaces
client objects, creating, 274
cloud IDEs, 21, 28, 325

hello, world!, 24
local servers, 22
Matplotlib, 339
running Jupyter, 325
viewing notebooks, 326

clustering algorithms, 387
k-means clustering, 400–402
predicting centers, 402

code, 2. See also programming
C, 327, 329
formatting, 48–49
hello, world!, 1–6, 19 (see also hello,

world!)
histograms, 376
limiting, 49

palindromes, 191, 300 (see also palindromes)
Pythonic programming, 2
refactoring, 192, 220–229, 279
sinusoidal plots, 347
test suites, 192
testing, 287

columns, 49, 378, 379
combining booleans, 51–54
command-line

DOM manipulation at, 245–254
programs, 1, 11
terminals, 8

commands. See also functions; methods
chmod, 17
flask, 20
flyctl, 29
flyctl open, 31
imperative programming, 150
pip, 18
python, 11, 17
python3, 19, 115
repr, 45
touch, 15

comments, 39, 118. See also words
comparison operator (==), 47
comparisons, equality/inequality, 79
compositions, 181, 182
comprehensions, 149

conditions (lists with), 156–159
dictionaries, 149, 159–163
generators, 149, 163–164
lists, 149, 150–156
sets, 149, 164

concatenating strings, 38–44
Conda, 13, 14, 321
conditional strings, 51
conditions, list comprehensions with,

156–159
configuring. See also formatting

custom index columns, 379
environments, 195, 196
Flask, 256
projects, 194 (see also packages)
system setup, 9–11

constants (NumPy), 333–337

408 Index

content
decoding, 243
printing, 250, 253

context (booleans), 54–56
continuation characters, 268
control flow, strings, 48–51
controllers, 264
converting

strings, 144
time, 97

Coordinated Universal Time (UTC), 98
correspondence, state-length, 161, 162
cos() function, 335
cosine functions, 342, 344
Counter() function, 118, 119
counting words, 118, 119
coverage, initial test, 197–209
crashes, debugging, 134
creating. See configuring; formatting;

programming
cross-validation, 396, 398–400
CSS (Cascading Style Sheets), 271
ctime() method, 97
Curie, Marie, 368, 369, 370
Curie, Pierre, 369
current directory (dot = .), 17
customizing

index columns, 379
iterators, 176–179
time, 101

cutting functions, 132, 133

D
data analysis

Nobel laureates example, 361–377
with pandas, 353–361 (see also pandas)
selecting dates, 371–377
Titanic example (pandas), 377–386

data attributes, 171, 172
data science, 319, 320

data analysis with pandas, 353–361 (see also
pandas)

data visualization (Matplotlib), 338–353 (see
also data visualization [Matplotlib])

installing packages, 321

numerical computations (NumPy), 327–337
(see also numerical computations
[NumPy])

scikit-learn, 386–402 (see also machine
learning)

setup, 320–326
data types

arrays, 69
lists, 69
ndarray, 69, 327, 328

data visualization (Matplotlib), 338–353
histograms, 350–352
plotting, 339–347
scatter plots, 347–350
viewing plots, 339

DataFrame object, 358–361
dates, selecting, 371–377
datetime objects, 374
dayname() function, 124
debugging, 134

crashes, 134
Python, 135, 136

Decision Tree, 393, 397, 398
decode() method, 242, 243
decompose() method, 249
def keyword, 122, 125
defining

auxiliary functions, 155
axis labels, 357
classes, 169–176, 202
functions, 121–130
passwords, 56
Phrase class, 169–170, 171, 173
raw strings, 44
strings, 37, 106
TranslatedPhrase class, 184, 185
tuples, 87
variables, 39, 390

deleting
applications, 261
newlines, 236

deploying applications, 22–33
derived classes, 183–190
describe() function, 360
design, compositions, 181, 182. See also

formatting

Index 409

detecting palindromes, 140, 142, 228, 233, 255,
293–316. See also palindromes

dictionaries, 89, 109–115
comprehensions, 149, 159–163
formatting, 299
iteration, 112–113
merging, 113–114

directories. See also files
current directory (dot = .), 17
formatting, 13, 256
ignoring, 25, 196, 259
python_tutorial(), 231
structures, 192, 193

distribution
generating values, 358
random values, 351

division
floating-point, 91
integers, 91

Django, 255
docstrings, 37, 125
documentation

Flask, 265
Matplotlib, 340, 351
Python Package Index (PyPI), 224, 227

DOM (Document Object Model)
manipulation at the command line, 245–254
removing elements, 250

dot = . (current directory), 17
dot notation, 172
double quotes (”), 36, 37
DRY (Don’t Repeat Yourself) principle,

308–309
dunder (double-underscore) methods, 171
duplication, eliminating, 142

E
editing

installing packages, 203
packages, 273

Einstein, Albert, 371
elements

accessing, 124
creating lists, 72
inclusion, 77
printing, 85

removing DOM, 250
eliminating duplication, 142
embedded Python, 5
empty strings, 35, 36
engines

Jinja template, 272, 277
templates, 280–293

entering long strings, 314, 315
enumerate() function, 84
environments

configuring, 195, 196
data science (see data science)

epochs, 97
equal sign (=), 40
equality comparisons, 79
equivalence classes, 158
errors, 23

changing tuples, 86
NoMethodError type, 134
roundoff, 96
searching, 135

evaluating layouts, 290
examples

Nobel laureates (pandas), 361–377
pandas, 355–356
Titanic (pandas), 377–386

exceptions, 134
executing Flask micro-environments, 20
expressions, 42, 71, 103–109. See also regular

expressions
external files, 137. See also files

F
f-strings (formatted strings), 41–42. See also

strings
failures, testing, 199
fetching tarballs, 267
Feynman, Richard, 363
files

formatting, 115
functions in, 130–138
.gitignore, 320, 321
ignoring, 25, 196, 259
manifest, 257
opening, 232
processing, 234

410 Index

Python in, 13–15
reading shell scripts from, 231–240
README, 195, 197
setup, 257
structures, 192, 193
unzipping, 268, 270
zipping, 268

filtering
troubleshooting, 157
values, 367

find() method, 60
findall() method, 107, 117
first-class functions, 126–127
Flask, 18, 19, 130, 255

configuring, 256
deploying, 26
documentation, 265
rendering templates, 263
running, 20, 258
sample programs, 20
writing hello, world!, 257–258

flask command, 20
float() function, 95
floating-point division, 91
Fly Control, installing, 28
Fly.io, 28, 29, 30, 33
flyctl command, 29
flyctl open command, 31
for loops, 63, 64, 65, 83, 84
formatting

arrays, 333
code, 48–49
dictionaries, 299
directories, 13, 256
files, 115
indenting spaces, 49
notebooks, 323
PEP (Python Enhancement Proposal), 2, 37
repositories, 26
strings, 41–42
subdirectories, 256
system setup, 9–11

forms
adding, 296, 297, 308
adding tests, 306, 307
handling, 5

partial, 309
submissions, 255, 298, 299, 301
testing, 302–313

frameworks, 1, 255. See also Flask
functional programming, 5, 149. See also

comprehensions
functional techniques, 165–166
list comprehensions, 150–156
TDD (test-driven development), 166–167

functions, 5, 37. See also commands
adding, 131
append(), 80–81, 151
arange(), 328
auxiliary, 154, 155
bool(), 54, 55
cos(), 335
cosine, 342, 344
Counter(), 118, 119
cutting/pasting, 132, 133
dayname(), 124
defining, 121–130
describe(), 360
enumerate(), 84
in files, 130–138
first-class, 126–127
float(), 95
help(), 126
imperative_singles(), 220
isclose(), 335, 336
islower(), 122
ispalindrome(), 174
iter(), 177
join(), 81
len(), 46, 56, 73
linespace(), 336
list(), 70
lower(), 153
map(), 150, 360
numerical computations (NumPy), 333–337
open(), 232
palindrome(), 167
pop(), 80–81
print(), 44, 45, 56
processed_content(), 183
range(), 145, 328
read(), 232

Index 411

reduce(), 160
render_template(), 263
reshape(), 332
reverse(), 78
reversed(), 79, 139
set(), 144
skip(), 206
slice(), 74, 75
sort(), 77
sorted(), 79
split(), 81, 122
square(), 122, 126
str(), 93, 94
subplots(), 340
sum(), 165
trigonometric, 92, 334
type(), 89, 178
updating, 137
urlify(), 154
xrange(), 146

functools module, 160

G
generating values, 358
generators, 139, 143–146

comprehensions, 149, 163–164
random values, 349

GET requests, 273, 297
get() method, 241, 274
Git-Hub pages, 23, 25, 26, 33
GitHub README files, 197
.gitignore file, 320, 321
Google Translate, 245, 247, 254
GREEN, 214–220, 275, 276, 279, 306, 308,

312
grids, adding ticks to, 343
Gunicorn servers, installing, 260

H
hash symbol (#), 39
hashes, 109
Hawking, Stephen, 366
head() method, 362
hello, world!, 1–6, 8, 11, 12

cloud IDEs, 24
code, 19
deploying, 22–33

in files, 15
previewing, 23
REPL (Read-Eval-Print Loop), 11, 12
running, 32
writing, 257–258

help() function, 126
hierarchies

classes, 179, 180
inheritance, 187

higher-level languages, 1
histograms, 350–352

code, 376
series, 358

Home pages, 268, 271
base titles, 281
layouts, 28

Home view, 265, 278
Homebrew, installing Python, 10
HTML (HyperText Markup Language)

adding assertions, 275
layouts, 277
parsing, 248
returning to browsers, 264
structures, 272

hyperlinks, references, 265

I
identifiers, 39
IDEs (integrated development environments),

10, 13
cloud IDEs, 21 (see also cloud IDEs)
Matplotlib, 339
running Jupyter, 325
viewing notebooks, 326

ignoring
directories, 196, 259
files, 196, 259

imperative programming, 150, 157
imperative_singles() function, 220
importing

dictionaries, 113–114
items from modules, 96
learning models, 394
linear regression models, 390
modules, 136
packages, 203

in operator, 61

412 Index

inclusion, elements, 77
indenting spaces, 49
indices, 63

columns, 378, 379
printing list elements with, 85
Python Package Index (PyPI), 224, 227
Test Python Package Index, 294

inequality comparisons, 79
info() method, 362
inheritance, 179–183, 187
initial test coverage, 197–209
initializing

DataFrame objects, 359
repositories, 196

installing
applications, 273
Flask micro-environment, 19
Fly Control, 28
flyctl on Linux, 29
Gunicorn servers, 260
packages, 27, 203, 321
Python, 9–11

integers
detecting palindromes, 228
division, 91
summing, 165, 166

integrated development environments. See IDEs
interfaces

Jupyter, 324
notebooks, 322

interpolation, strings, 38–44
interpreters, 11, 17, 152
inverting booleans, 51–54
IPython, 320, 322
is-a relationships, 181
isclose() function, 335, 336
islower() function, 122
ispalindrome() function, 174
iter() function, 177
iteration

dictionaries, 112–113
lists, 83–86
strings, 62–66

iterators, 71, 138–147
adding, 178

customizing, 176–179
loops, 139

J
JavaScript, 64, 255
Jinja template engines, 272, 277, 280–293. See

also template engines
Jobs, Steve, 24
Johnson, Samuel, 159, 160
join() method, 81, 93
Jupyter, 320

interfaces, 324
notebooks, 322
plots, 341
running, 325
starting, 324
viewing notebooks, 326
viewing pandas, 364

JupyterLab, 322, 323

K
K-fold cross validation, 399
key-value pairs, 110
keys, 109

dictionaries, 111 (see also dictionaries)
ordering, 111

keys method, 177
keywords

arguments, 13, 45, 99, 127–129
def, 122, 125
method, 297
return, 122, 123

L
labels

adding, 344
axis, 357

languages
differences between Python and other, 5–6
higher-level, 1
HTML (see HTML [HyperText Markup

Language])
overview of, 6–11
Perl, 2

LATEX, 342, 343

Index 413

Latin palindromes, 304, 305
launching applications, 260. See also starting
layers, adding, 240
layouts, 5, 255

About view, 278
evaluating, 290
Home pages, 28
Home view, 278
HTML (HyperText Markup Language), 277
programming, 271–280
templates, 271

learning models, importing, 394
len() function, 46, 56, 73
lengths object, 161
lengths, strings, 46–47
letters() method, 212, 213, 221, 222
libraries, 1, 5. See also specific libraries

math, 333, 334
Matplotlib, 320
NumPy, 1, 69, 320 (see also NumPy)
pandas, 320
random, 349
scikit-learn, 320, 386–402
timeit, 329

licenses, templates, 195
limiting code, 49
linear regression, 387–392
linear spacing (NumPy), 333–337
linespace() function, 336
Linux

installing flyctl on, 29
installing Python, 10

list() function, 70
lists, 69

accessing, 71–74
appending, 80–81
assigning, 78
comprehensions, 149, 150–156
conditions (comprehensions with),

156–159
element inclusion, 77
iteration, 83–86
popping, 80–81
returning, 122
reversing, 77–80
sets, 86–89

slicing, 74–76
sorting, 77–80
splitting, 69–71
tuples, 86–89
undoing splits, 81–83
URLs (uniform resource locators), 152
zero-offset, 72, 73, 74

literals, strings, 35. See also strings
local servers, running, 22
locating data (pandas), 363–370
logarithms, 93, 334
Logistic Regression, 393, 396
long strings, entering, 314, 315
loops, 329. See also iteration

for, 63, 64, 65, 83, 84
iterators, 139
REPL (Read-Eval-Print Loop), 11–13
strings, 66

lower() function, 153

M
machine learning, 386–402

accuracy, 397, 399
cross-validation, 396, 398–400
K-fold cross validation, 399
k-means clustering, 400–402
linear regression, 387–392
models, 392–400
scatter plots, 389

main() method, 240
managing packages, 28, 321
manifest files, 257
map() function, 150, 360
matching words, 117
math, 91–92

modules, 92
to strings, 93–97

math library, 333, 334
math object, 92–93
MATLAB, 327, 331
Matplotlib, 320

data visualization, 338–353 (see also data
visualization [Matplotlib])

documentation, 340, 351
histograms, 350–352
scatter plots, 347–350

414 Index

matrices, multiplication, 331
Mayer, Maria Goeppert, 372, 373
merging dictionaries, 113–114
messages, errors, 134
method keyword, 297
methods. See also functions

annotate(), 345
booleans, 56, 57
capitalize(), 56, 57
chaining, 152
ctime(), 97
decode(), 242, 243
decompose(), 249
find(), 60
findall(), 107, 117
get(), 241, 274
head(), 362
info(), 362
join(), 81, 93
k-means clustering, 400–402
keys, 177
letters(), 212, 213, 221, 222
main(), 240
notna(), 383
overriding, 185, 186, 190
private, 189
processed_content() method, 187
programming, 8
readlines(), 235, 237
requests.get(), 244
resolution order, 179
score(), 391
search, 105
show(), 339, 340
sort_values(), 370
split(), 69, 93, 107–108
splitlines(), 70
strings, 56–62
subplots_adjust(), 382
time(), 97

mixed-case strings, 150
Model-View-Controller. See MVC

(Model-View-Controller)
models

importing learning, 394

linear regression, 387–392
machine learning, 392–400

modifying
dictionaries, 113–114
DOM manipulation at the command line,

245–254
values, 360

modules
datetime, 98
functools, 160
importing, 136
importing items from, 96
math, 92

modulo operator (%), 157, 158
moving

dictionaries, 113–114
functions, 132, 133

multidimensional arrays, 330–333
multilingual text-to-speech (TTS), 245
multiple arguments, applying, 15
multiplication, matrices, 331
MVC (Model-View-Controller), 264

N
Naive Bayes, 393
names

function calls, 121 (see also functions)
palindromes, 141

namespaces, 92
naming variables, 40
native objects, 91

datetimes, 97–103
dictionaries, 109–115
math, 91–92
math object, 92–93
regular expressions, 103–109
strings (math to), 93–97
time, 97–103
unique words, 115–120

navigation
site, 287–292
templates, 290
testing, 288–289

ndarray data types, 69, 327, 328

Index 415

newlines
adding, 49
deleting, 236
palindromes, 236
splitting, 70

NoMethodError type, 134
non-palindromes, 303
None object, 45
normal distribution, 348

generating values, 358
random values, 351

not equals/bang equals operator (!=), 54
not operator, 53
notation, dot, 172
notebooks

formatting, 323
interfaces, 322
plots in, 341
viewing, 326
viewing pandas, 364

notna() method, 383
numbers

random values, 349
references, 245
searching, 145, 163

numerical computations (NumPy), 327–337
arrays, 327–329
constants, 333–337
functions, 333–337
linear spacing, 333–337
multidimensional arrays, 330–333

NumPy, 1, 69, 320
numerical computations (NumPy), 327–337

(see also numerical computations
[NumPy])

random library, 349
support, 331

O
object-oriented programming (OOP), 5, 56
objects

adding, 117
assigning attributes, 172
DataFrame, 358–361
datetime, 374

first-class, 126
lengths, 161
math, 92–93
native, 91 (see also native objects)
None, 45

one-dimensional arrays, 333. See also arrays
online regex builders, 104
open() function, 232
opening files, 232
operations, math, 91–92
operators

and, 51
in, 61
+ operator, 39
comparison operator (==), 47
modulo operator (%), 157, 158
not, 53
not equals/bang equals (!=), 54
or, 51, 52

ordering keys, 111
overriding methods, 185, 186, 190

P
packages, 130, 191, 255

Beautiful Soup, 248
defining classes, 202
editing, 273
importing, 203
installing, 27, 203, 321
IPython, 320
Jupyter, 320
managing, 28, 321
palindromes, 272, 283
publishing, 224–227
README files, 195, 197
Requests, 241
setup, 192–197
templates, 195
Test Python Package Index, 294
updating, 229
venv, 13, 14
zeroes, 226

Palindrome Detector template, 266, 293–316.
See also applications; palindromes

base titles, 281

416 Index

views, 279
palindrome() function, 167
palindromes, 5, 139

code, 300
detecting, 140, 142, 228, 233, 255, 293–316
form submissions, 301
form tests, 302–313
GREEN, 214–220
importing packages, 203
Latin, 304, 305
names, 141
newlines, 236
non-palindromes, 303
packages, 272, 283
RED, 209–214
results, 300
searching, 222, 223
subdirectories, 256
TDD (test-driven development), 191 (see also

TDD [test-driven development])
testing, 140, 228
writing out, 237, 239

pandas, 320, 338
data analysis with, 353–361
DataFrame object, 358–361
examples, 355–356
locating data, 363–370
Nobel laureates example, 361–377
selecting dates, 371–377
series, 356–358
Titanic example, 377–386
viewing, 364

panel data. See pandas
paragraphs, printing, 250
parameters, random_state, 400
parsing

HTML (HyperText Markup Language), 248
URLs (uniform resource locators), 251

partial forms, 309
partial templates, 287
passing

test suites, 200, 202–205
variables, 310

passwords, defining, 56
pasting functions, 132, 133

Pauling, Linus, 370
pending tests, 206–209
PEP (Python Enhancement Proposal),

2, 37, 80
Perceptron, 393, 397
perfect squares, 145
Perl, 2
Peters, Tim, 2, 12
Phrase class, 169–170, 171, 173, 202
phrases, 5
pip command, 18
placeholders, arrays, 333
plots

adding labels, 344
cosine functions, 342
Jupyter, 341
plotting, 339–347
scatter, 347–350, 389
sinusoidal, 347
stacking subplots, 353
titles, 344
viewing, 338, 339 (see also Matplotlib)

pop() function, 80–81
popping lists, 80–81
POST request, 297
predicting centers, 402
previewing

applications, 21
hello, world!, 23

print() function, 44, 45, 56
printing

content, 250, 253
elements, 85
hello, world!, 11, 12
REPL (Read-Eval-Print Loop), 11–13
strings, 44–45
testing, 46

private methods, 189
private repositories, 27
processed_content() function, 183, 187
processing files, 234
production, applications in, 262
programming, 1

applications, 255 (see also applications)
checking versions, 9, 10

Index 417

functional, 5 (see also functional
programming)

hello, world!, 1–6 (see also hello, world!)
imperative, 150, 157
layouts, 271–280
methods, 8
object-oriented programming, 5, 56
overview of, 6–11
Perl, 2
Python in files, 13–15
Pythonic, 2
REPL (Read-Eval-Print Loop), 11–13
setup, 256–262
site pages, 263–271
system setup, 9–11
template engines, 280–293

programs. See also applications (apps)
Bash shell, 9, 11
command-line, 1
sample, 20 (see also sample programs)
wikp, 246
Zsh (Z shell), 11

projects, configuring, 194. See also packages
prompts

starting, 11
strings, 45

proof-of-concept, 256
publishing packages, 224–227
Python. See also programming

debugging, 135, 136
in files, 13–15
libraries (see libraries)
overview of, 6–11
packages, 192 (see also packages)
in shell scripts, 16–17
in web browsers, 18–34

python command, 11, 17
Python Enhancement Proposal. See PEP
Python Package Index (PyPI), 224
python_tutorial() directory, 231
python3 command, 19, 115
Pythonic programming, 2

R
random blobs, 400, 401

Random Forest, 393, 397, 398
random library, 349
random values, 349, 351
random_state parameter, 400
range() function, 145, 328
raw strings, 42–44
Read-Eval-Print Loop. See REPL
read() function, 232
reading

data, 378
shell scripts from files, 231–240
shell scripts from URLs, 240–245

readlines() method, 235, 237
README files, 195, 197
real artists ship, 24
records, searching, 367
RED, 209–214, 289, 290, 307
reduce() function, 160
refactoring code, 192, 220–229, 279, 287
references

hyperlinks, 265
numbers, 245
regular expressions, 104
removing, 249, 252
viewing, 252

regression, linear, 387–392
regular expressions, 71, 103–109, 215

online regex builders, 104
splitting, 107–108

relationships, is-a, 181
removing. See also deleting

DOM elements, 250
newlines, 236
references, 249, 252

render_template() function, 263
rendering templates, 263, 264, 309, 310
repetitions, 149
REPL (Read-Eval-Print Loop), 11–13, 96

backslash character (\), 43
docstrings, 125
functions, 122 (see also functions)
opening files, 232
strings, 35, 36, 37

repositories
formatting, 26

418 Index

initializing, 196
private, 27

repr command, 45
requests

adding, 294
GET, 273, 297
POST, 297

Requests package, 241
requests.get() method, 244
requirements, applications, 28, 260
reshape() function, 332
resolution order, methods, 179
resources, 403–404
results

adding forms, 308
non-palindromes, 303
palindromes, 300
rendering templates, 309, 310

return keyword, 122, 123
returning lists of squares, 122
reverse() function, 78
reversed() function, 79, 139
reversing

lists, 77–80
strings, 139

roundoff errors, 96
routes, 5, 264
running

Flask, 20, 130, 258
hello, world!, 32
Jupyter, 325
local servers, 22
shell scripts, 234

S
sample programs (Flask), 20
Sanger, Frederick, 370
scatter plots, 347–350, 389
scikit-learn, 320, 386–402. See also machine

learning
score() method, 391
scripting, 1. See also shell scripts
search method, 105
searching

errors, 135

locating data (pandas), 363–370
numbers, 145, 163
palindromes, 222, 223
readlines() method, 235
records, 367

selecting
dates, 371–377
troubleshooting, 158
values, 383

separating words, 170
sequences

of characters, 35 (see also strings)
imperative programming, 150

series
histograms, 358
pandas, 356–358

servers, local, 22
set() function, 144
sets, 69, 86–89, 149, 164
setup. See also configuring

applications, 256–262
data science, 320–326
files, 257
packages, 192–197
system, 9–11

Sharpless, K. Barry, 370
shell scripts, 5, 11

DOM manipulation at the command line,
245–254

Python in, 16–17
reading from files, 231–240
reading from URLs, 240–245
running, 234
writing, 8

show() method, 339, 340
side effects, 44
sine, adding, 345
single quotes (’), 36, 37
sinusoidal plots, 347
site navigation, 287–292
site pages

About pages, 269, 270
About templates, 265
Home pages, 268, 271
Home view, 265

Index 419

programming, 263–271
skip() function, 206
slice() function, 74, 75
slicing lists, 74–76
snake case, 40, 41
sort_values() method, 370
sort() function, 77
sorted() function, 79
sorting, 74, 77–80
spaces, indenting, 49
split() function, 69, 81, 93, 107–108, 122
splitlines() method, 70
splitting

arbitrary strings, 70
lists, 69–71
newlines, 70
regular expressions, 107–108
undoing, 81–83

SQL (Structured Query Language), 353
square() function, 122, 126
squares, generating, 146
Stack Overflow, 339
stacking subplots, 353
standard normal distribution, 348
starting

applications, 30, 260
DataFrame objects, 359
Flask micro-environment, 20
Fly.io, 28, 29, 30
Jupyter, 324
JupyterLab, 323
prompts, 11

state-length correspondence, 161, 162
statements, with, 233
status of apps, viewing, 31
str() function, 93, 94
strings, 11

as arguments, 44
behaviors, 63
booleans, 48
combining/inverting booleans, 51–54
concatenation, 38–44
conditional, 51
context (booleans), 54–56
control flow, 48–51

converting, 144
defining, 37, 106
docstrings, 37
entering long, 314, 315
formatting, 41–42
interpolation, 38–44
iteration, 62–66
lengths, 46–47
literals, 35
loops, 66
math to, 93–97
methods, 56–62
mixed-case, 150
overview of, 35–38
printing, 44–45
prompts, 45
raw, 42–44
reversing, 139
splitting arbitrary, 70
stripping, 236
URLs (uniform resource locators), 152

stripping strings, 236
Structured Query Language. See SQL

(Structured Query Language)
structures (HTML), 272
styles (PEP), 2, 37
subdirectories, formatting, 256
submitting forms, 255, 298, 299, 301
subplots_adjust() method, 382
subplots, stacking, 353
subplots() function, 340
substrings, searching records, 367
sum() function, 165
summing, integers, 165, 166
superclasses, 180
support (NumPy), 331
switching, readlines() method, 235
system setup, 9–11

T
tables, truth, 51, 52, 53
tape archives, 268
tarballs, fetching, 267
tau, 94
TDD (test-driven development), 5, 191–192

420 Index

functional programming, 166–167
GREEN, 214–220
initial test coverage, 197–209
package setup, 192–197
pending tests, 206–209
RED, 209–214
refactoring code, 220–229

technical sophistication, 3–4, 106, 152
template engines, 280–293

Jinja, 272, 277
site navigation, 287–292
variable titles, 281–286

templates, 255, 263
About, 265
boolean variables, 311
layouts, 271
navigation, 290
packages, 195
Palindrome Detector, 293–316 (see also

applications; palindromes)
partial, 287
passing variables, 310
rendering, 263, 264, 309, 310

Test Python Package Index, 294
test suites, 192, 199. See also testing

initial test coverage, 198
passing, 200, 202–205
pending, 206–209

test-driven development. See TDD
testing, 191–192

adding, 210, 212, 306, 307
automating, 167, 209–210, 255, 272
failures, 199
forms, 302–313
initial test coverage, 197–209
navigation, 288–289
palindromes, 140, 228
pending tests, 206–209
phrases, 191
printing, 46
refactoring code, 287
TDD (test-driven development), 5
writing, 210

text-to-speech (TTS), 245
text, adding, 116

Thorne, Kip, 366
ticks, adding to grids, 343
time, 97–103
time() method, 97
timeit library, 329
Titanic example (pandas), 377–386
titles

adding assertions, 282, 283
base, 281
plots, 344
variables, 281–286

tools
Conda, 13, 14
data science (see data science)

touch command, 15
TranslatedPhrase class, 184, 185
translation, 185, 186
transparency, alpha, 401
trigonometric functions, 92, 334. See also math
troubleshooting

filtering, 157
selection, 158

truth tables, 51, 52, 53
tuples, 69, 86–89

booleans, 89
defining, 87
unpacking, 87

tutorials, 3
two-dimensional arrays, 332. See also arrays
type() function, 89, 178
types, values, 109

U
underscore (_), separating words, 170
undoing splits, 81–83
unique words, 115–120
unpacking tuples, 87
unzipping files, 268, 270
updating

dictionaries, 113–114
functions, 137
packages, 229

urlify() function, 154
URLs (uniform resource locators), 152

parsing, 251

Index 421

reading shell scripts from, 240–245
UTC (Coordinated Universal Time), 98

V
validation

cross-validation, 396, 398–400
K-fold cross validation, 399

values
assigning, 110
average, 348
booleans, 47
filtering, 367
generating, 358
histograms, 350
modifying, 360
random, 349, 351
selecting, 383
types, 109

van Rossum, Guido, 7
Vanier, Mike, 83, 84, 156
variables

arguments, 127–129
assigning, 40
booleans, 311
categorical, 359
defining, 39, 390
naming, 40
passing, 310
string concatenation and, 39
titles, 281–286

venv packages, 13, 14
versions, checking, 9, 10
viewing

notebooks, 326
palindrome results, 300
pandas, 364
plots, 338, 339 (see also Matplotlib)
references, 252
status of apps, 31

views, 265
About, 278
Home, 278
Palindrome Detector template, 279

virtual environments, 11
visualization libraries, 320. See also data

visualization (Matplotlib); libraries

W
web applications, 255. See also applications

detecting palindromes, 293–316
installing, 273
layouts, 271–280
setup, 256–262
site navigation, 287–292
site pages, 263–271
template engines, 280–293
variable titles, 281–286

web browsers, Python in, 18–34
whitespace, 71
wikp program, 246
with statement, 233
words. See also text

adding objects, 117
counting, 118, 119
separating, 170
unique, 115–120

writing. See also programming
code, 192 (see also code)
hello, world!, 257–258
layouts, 271–280
out palindromes, 237, 239
setup, 256–262
shell scripts, 8 (see also shell scripts)
site pages, 263–271
template engines, 280–293
tests, 210

X
xrange() function, 146

Y
yielding, characters, 143

Z
zero-offset lists, 72, 73, 74
zeroes

function calls, 121 (see also functions)
packages, 226, 227

zipping files, 268
Zsh (Z shell), 9, 11

This page intentionally left blank

Index 427

V I D E O T R A I N I N G F O R T H E I T P R O F E S S I O N A L

Learn more, browse our store, and watch free, sample lessons at

i n f o r m i t. co m / v i d e o

Save 50%* off the list price of video courses with discount code VIDBOB

LEARN QUICKLY
Learn a new technology in just hours. Video training can teach more in

less time, and material is generally easier to absorb and remember.

WATCH AND LEARN

Instructors demonstrate concepts so you see technology in action.

TEST YOURSELF

CONVENIENT

Photo by Marvent/Shutterstock

http://informit.com/video

428 Index

http://informit.com/register
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com
http://informit.com/community
http://twitter.com/informit

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Hello, World!
	1.1 Introduction to Python
	1.1.1 System Setup and Installation

	1.2 Python in a REPL
	1.2.1 Exercises

	1.3 Python in a File
	1.3.1 Exercise

	1.4 Python in a Shell Script
	1.4.1 Exercise

	1.5 Python in a Web Browser
	1.5.1 Deployment

	1.5.2 Exercises

	Chapter 2 Strings
	2.1 String Basics
	2.1.1 Exercises

	2.2 Concatenation and Interpolation
	2.2.1 Formatted Strings
	2.2.2 Raw Strings
	2.2.3 Exercises

	2.3 Printing
	2.3.1 Exercises

	2.4 Length, Booleans, and Control Flow
	2.4.1 Combining and Inverting Booleans
	2.4.2 Boolean Context
	2.4.3 Exercises

	2.5 Methods
	2.5.1 Exercises

	2.6 String Iteration
	2.6.1 Exercises

	Chapter 3 Lists
	3.1 Splitting
	3.1.1 Exercises

	3.2 List Access
	3.2.1 Exercises

	3.3 List Slicing
	3.3.1 Exercises

	3.4 More List Techniques
	3.4.1 Element Inclusion
	3.4.2 Sorting and Reversing
	3.4.3 Appending and Popping
	3.4.4 Undoing a Split
	3.4.5 Exercises

	3.5 List Iteration
	3.5.1 Exercises

	3.6 Tuples and Sets
	3.6.1 Exercises

	Chapter 4 Other Native Objects
	4.1 Math
	4.1.1 More Advanced Operations
	4.1.2 Math to String
	4.1.3 Exercises

	4.2 Times and Datetimes
	4.2.1 Exercises

	4.3 Regular Expressions
	4.3.1 Splitting on Regexes
	4.3.2 Exercises

	4.4 Dictionaries
	4.4.1 Dictionary Iteration
	4.4.2 Merging Dictionaries
	4.4.3 Exercises

	4.5 Application: Unique Words
	4.5.1 Exercises

	Chapter 5 Functions and Iterators
	5.1 Function Definitions
	5.1.1 First-Class Functions
	5.1.2 Variable and Keyword Arguments
	5.1.3 Exercises

	5.2 Functions in a File
	5.2.1 Exercise

	5.3 Iterators
	5.3.1 Generators
	5.3.2 Exercises

	Chapter 6 Functional Programming
	6.1 List Comprehensions
	6.1.1 Exercise

	6.2 List Comprehensions with Conditions
	6.2.1 Exercise

	6.3 Dictionary Comprehensions
	6.3.1 Exercise

	6.4 Generator and Set Comprehensions
	6.4.1 Generator Comprehensions
	6.4.2 Set Comprehensions
	6.4.3 Exercise

	6.5 Other Functional Techniques
	6.5.1 Functional Programming and TDD
	6.5.2 Exercise

	Chapter 7 Objects and Classes
	7.1 Defining Classes
	7.1.1 Exercises

	7.2 CustomIterators
	7.2.1 Exercise

	7.3 Inheritance
	7.3.1 Exercise

	7.4 Derived Classes
	7.4.1 Exercises

	Chapter 8 Testing and Test-Driven Development
	8.1 Package Setup
	8.1.1 Exercise

	8.2 Initial Test Coverage
	8.2.1 A Useful Passing Test
	8.2.2 Pending Tests
	8.2.3 Exercises

	8.3 Red
	8.3.1 Exercise

	8.4 Green
	8.4.1 Exercise

	8.5 Refactor
	8.5.1 Publishing the Python Package
	8.5.2 Exercises

	Chapter 9 Shell Scripts
	9.1 Reading from Files
	9.1.1 Exercises

	9.2 Reading from URLs
	9.2.1 Exercises

	9.3 DOM Manipulation at the Comm and Line
	9.3.1 Exercises

	Chapter 10 A Live Web Application
	10.1 Setup
	10.1.1 Exercise

	10.2 Site Pages
	10.2.1 Exercises

	10.3 Layouts
	10.3.1 Exercises

	10.4 Template Engine
	10.4.1 Variable Titles
	10.4.2 Site Navigation
	10.4.3 Exercises

	10.5 Palindrome Detector
	10.5.1 Form Tests
	10.5.2 Exercises

	10.6 Conclusion

	Chapter 11 Data Science
	11.1 Data Science Setup
	11.2 Numerical Computations with NumPy
	11.2.1 Arrays
	11.2.2 Multidimensional Arrays
	11.2.3 Constants, Functions, and Linear Spacing
	11.2.4 Exercises

	11.3 Data Visualization with Matplotlib
	11.3.1 Plotting
	11.3.2 Scatter Plots
	11.3.3 Histograms
	11.3.4 Exercises

	11.4 Introduction to Data Analysis with pandas
	11.4.1 Handcrafted Examples
	11.4.2 Exercise

	11.5 pandas Example: Nobel Laureates
	11.5.1 Exercises

	11.6 pandasExample:Titanic
	11.6.1 Exercises

	11.7 MachineLearningwithscikit-learn
	11.7.1 LinearRegression
	11.7.2 Machine-LearningModels
	11.7.3 k-MeansClustering
	11.7.4 Exercises

	11.8 FurtherResourcesandConclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

