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Instructions

Science Platform is an emerging cloud-based technology for processing and exploratory 

analysis of big data sets in astronomy and earth sciences. The goal of the thesis is the  

design and implementation of an extensible, easily deployable  engine and a custom 

API , which allows to manage simple workflows for conducting machine learning 

experiments   supported by web-based interactive visualization and labelling  of millions 

of astronomical spectra . This thesis,  focused on development of a general cloud 

infrastructure, is  complemented by thesis of Alisher Laiyk focused on implementation of 

individual preprocessing, visualization and machine learning modules communicating 

through the  above mentioned API.

The key tasks are:

1)  Analyse the key Big Data technology of current science platforms as Pangeo, 

SciServer, ESA Datalabs or Astro Data Lab as well as the basic  functionality of  the 

already obsolete  VO-CLOUD system.

2)   Make survey of relevant solutions for key components of system as data format (FITS, 

Parquet, HDF5), data containers (e.g. Pandas, Dask DataFrame) , parallel computing 

engine (Spark, Dask), interactive web interface for visualization of Big data in cloud (e.g. 

Flask with Websockets, FastAPI, JupyterLab), and database system (e.g. PostgreSQL, 

MariaDB, Elasticsearch, Redis) and select the optimal one according to the user 

requirements. 

3)  Define an API allowing to run the stand-alone modules according to the simple 
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workflow description in a configuration file.

4)  Design the prototype  using open source SW libraries 

5)  Implement the platform and make it easily deployable (consider Docker, Podman or 

even Kubernetes)

6) Integrate it with the modules developed in the thesis of Alisher Laiyk and demonstrate 

the working system on the small  dataset. 

6) Discuss the performance and user experience of your solution and suggest future 

improvements and extensions towards much larger and different type of astronomical 

data sets (e.g. light curves, images).

Recommended literature and suggested tools and libraries will be provided by 

supervisor.
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Abstract

VO-CLOUD is a cloud-based web platform with over a decade of history,
designed to work with astronomical spectral data. Its purpose is to pro-
vide researchers with access to extensive collections of spectra and specialized
machine-learning tools for detecting sophisticated cosmic anomalies that may
form the basis for discoveries. The platform supports manipulating data from
astronomical archives, distributed computation, and detailed visualization of
results in the browser.

VO-CLOUD remains a relatively unique open-source solution that has ad-
hered to the Virtual Observatory paradigm—employing the then-current UWS
protocol to decouple client-side interactions from backend computation in a
distributed environment.

By mid-2024, however, the legacy infrastructure had lost the ability to
execute key experimental workflows or integrate new modules. This thesis,
therefore, aims to evolve VO-CLOUD by adopting modern technologies, up-
to-date standards, and established development practices.

As part of this work, core components have been completely redesigned
and implemented: new RESTful API and job-management mechanisms for
machine learning (including active learning and spectrum preprocessing) have
been developed; experiment-session persistence and management workflows
have been established; seamless access to a multi-terabyte file storage has
been provided; and full containerization has been implemented to allow easy
addition of new components. The redesigned architecture, with a clear separa-
tion of concerns across distinct responsibility zones, creates a robust “skeleton”
for integrating new analytical modules and supporting future extensions. The
new system has been named ML Job Manager, underscoring its focus on or-
chestrating and managing computational jobs.

Keywords FastAPI, Celery, Docker, ML Job Manager, astroinformatics,
RESTful API, machine learning workflows, astronomical big data, distributed
computing
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Abstrakt

VO-CLOUD je cloudová webová platforma s více než desetiletou historií, určená
pro práci s astronomickými spektrálními daty. Jejím cílem je poskytnout věd-
cům přístup k rozsáhlým souborům spekter a specializované nástroje stro-
jového učení pro detekci sofistikovaných kosmických anomálií, která mohou
položit základy nových objevů. Platforma podporuje manipulaci s přidělenými
daty z astronomických archivů, distribuované výpočty a podrobnou vizualizaci
výsledků přímo v prohlížeči.

Významným rysem VO-CLOUD je, že jde o relativně ojedinělé open-source
řešení, které vycházelo z koncepcí Virtuální observatoře – využívajících tehdy
aktuální protokol UWS ke zpřehlednění a oddělení interakcí na straně klienta
od výpočetních úloh na serveru v distribuovaném prostředí.

Avšak ke polovině roku 2024 původní infrastruktura ztratila schopnost
spouštět hlavní experimentální scénáře a integrovat nové moduly. Tato práce
si klade za cíl vyvinout VO-CLOUD s využitím moderních technologií, stan-
dardů a osvědčených vývojových postupů.

V rámci této práce byly zcela přepracovány a realizovány hlavní kompo-
nenty: navrženo a realizováno nové RESTful API a mechanismy pro řízení úloh
strojového učení (včetně aktivního učení a předzpracování spekter); zavedeny
postupy pro trvalé ukládání a řízení experimentálních relací; zajištěn plynulý
přístup k souborovému úložišti o velikosti řádově terabajtů; a kompletní kon-
tejnerizace umožňující snadné přidávání dalších komponent. Přepracovaná ar-
chitektura s jasným rozdělením odpovědností mezi jednotlivými zónami vytváří
robustní „kostru“ pro integraci nových analytických modulů a podporu bu-
doucích rozšíření. Obnovený systém byl pojmenován ML Job Manager, čímž
je zdůrazněn jeho zaměr na orchestraci a správu výpočetních úloh.

Klíčová slova FastAPI, Celery, Docker, ML Job Manager, astroinformatika,
RESTful API, postupy strojového učení, astronomická velká data, distribuo-
vané výpočty
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Chapter 1

Introduction

The swift advancement of machine learning techniques has transformed sci-
entific research by automating tasks that once required long hours of manual
work. As these algorithms detect subtle patterns and make accurate predic-
tions on massive datasets, they accelerate discoveries across disciplines. Open
access to terabyte-scale spectral archives in astronomy has opened new insights
into stellar composition, galaxy evolution, and other cosmic phenomena.

However, leveraging these vast archives requires a flexible and scalable
infrastructure. Machine learning scripts and pipelines break down when ex-
periments must be rerun, tuned, or expanded with new models. VO-CLOUD,
a cloud platform built initially by CTU students for Professor Petr Škoda un-
der the Virtual Observatory paradigm, had, by mid-2024, become technically
obsolete and unsupported, unable to orchestrate its machine learning tasks or
integrate new analysis modules.

This thesis introduces ML Job Manager, a complete reengineering of the
core of VO-CLOUD1. The container-first, microservices-style system cleanly
separates the server from the client: job submissions enter a queue through a
RESTful API server, and dedicated worker services pull and execute jobs. It
handles terabyte-scale LAMOST spectral datasets by converting raw spectra
into uniform wavelength grids and driving active-learning loops where an oracle
user iteratively labels the most uncertain spectra to refine a deep convolutional
network. This architecture provides a solid foundation for current research
and future developments by distinguishing API routing, task orchestration,
and data management.

The thesis is structured as follows. Chapter 2 reviews VO-CLOUD’s legacy
and shortcomings; Chapter 3 establishes the new system’s requirements; Chap-
ter 4 surveys the chosen technologies; Chapter 5 details the ML Job Manager
design and implementation; Chapter 6 discusses future enhancements; and
Chapter 7 concludes with a summary of contributions.

1https://vocloud-dev.asu.cas.cz
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Chapter 2

Analysis of the legacy solution

Before defining the requirements for the new system, it is essential to exam-
ine the current state and limitations of the existing VO-CLOUD platform.
This chapter comprehensively analyzes its architecture, core modules, and
operational workflows.

The analysis is grounded in 3 seminal theses that document the evolution
of VO-CLOUD: Jakub Koza’s Bachelor’s thesis, his Master’s thesis, and Tomáš
Mazel’s Bachelor’s thesis. Furthermore, the official VO-CLOUD GitHub repos-
itory1, which contains the source code and components of the platform, was
reviewed. [1, 2, 3]

The architectural choices and technical limitations uncovered in this review
will serve as the foundation for defining the functional and non-functional
requirements of the new solution in Chapter 3.

2.1 Key architectural concepts
This section reviews three foundational concepts: Virtual Observatory stan-
dards, the Universal Worker Service, and the Master-Worker pattern
that underpin the design and operation of VO-CLOUD.

2.1.1 Virtual Observatory
The Virtual Observatory (VO) is a federated distributed concept defined
by the International Virtual Observatory Alliance2 (IVOA) that integrates
heterogeneous astronomical datasets, computational services, and analytical
tools. Its components adhere to common protocols and metadata standards,
allowing researchers to access multiple archives and services through a single
interface without a concern for the underlying data locations or formats. [4, 5]

1https://github.com/vodev
2https://ivoa.net
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Key architectural concepts 3

Layered, distributed architecture. VO is based on a three-layer model
(see Figure 2.1):

Resource layer: distributed archives of spectra, images, and compute nodes.

Service layer: standardized RESTful interfaces for discovery, retrieval,
and server-side processing, including the Simple Spectral Access Protocol
(SSAP) and the DataLink extension.

Client layer: user-facing applications that integrate VO services and hide
underlying infrastructure details.

Figure 2.1 VO layered architecture. [6]

Spectral access protocols. VO defines standardized protocols for querying
and retrieving spectral data (see Figure 2.2):

Simple Spectral Access Protocol (SSAP): a RESTful interface that lets
clients specify parameters such as wavelength range, resolution, and object
coordinates to discover matching spectra. [7]

DataLink: a companion service that provides links for on-the-fly opera-
tions, such as subsetting, rebinning, combining spectra, and chaining re-
quests across multiple archives, while preserving a consistent response for-
mat. [8]



Key architectural concepts 4

Figure 2.2 SSAP placement in the VO architecture. [9]

Data exchange formats. VO relies on two complementary formats for
packaging and transmitting spectral data (see Figure 2.3):

Flexible Image Transport System (FITS): a versatile binary format that
encapsulates spectra in one or more Header/Data Units. Each header con-
tains standardized metadata, such as wavelength calibration, instrument
settings, and observation details, while the data units store the actual spec-
tral values for efficient download and local processing. [10]

VOTable: an XML‐based table format following the IVOA Spectrum Data
Model. It encodes both the spectral values and their metadata in a self-
describing structure, allowing clients to parse query results directly and
integrate them into visualization or analysis tools. [11]
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Figure 2.3 VOTable placement in the VO architecture. [12]

VO-CLOUD adheres closely to VO principles in its layered architecture and
its use of SSAP, DataLink, FITS, and VOTable while selectively extending
metadata and interfaces to support custom workflow and ML-driven analysis.

2.1.2 Universal Worker Service
The Universal Worker Service (UWS) is an IVOA recommendation for
asynchronous job management within the VO framework (see Figure 2.4). By
decoupling job submission from execution, UWS enables clients to submit long-
running tasks, monitor their progress, and retrieve results without maintaining
a continuous connection. [13]
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Figure 2.4 UWS placement in the VO architecture. [14]

Standardized job representation. A Job resource encapsulates parame-
ters (inputs), ownership metadata, and a Result List pointing to outputs (files,
tables, or data streams), all described in XML (see Figure 2.5).
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Figure 2.5 UWS Job domain. [15]

Asynchronous job handling. Clients create jobs using a RESTful end-
point and receive an identifier immediately, allowing the server to queue and
execute tasks independently of the client’s session.

Job lifecycle states. Each job transitions through a well-defined finite-
state machine: PENDING (created), QUEUED (awaiting execution), EXECUTING (in
progress) and one of {COMPLETED, ERROR, ABORTED} (finished). These primary
phases allow clients to monitor the progress of the job (see Figure 2.6).
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Figure 2.6 UWS Job transitions. [16]

Job cancellation. Clients can abort a running or queued job by issuing the
ABORT action. This immediately transitions the job to the ABORTED state and
triggers any configured cleanup actions.

RESTful bindings. Key RESTful API endpoints for UWS operations:

Method URI Action
POST /jobs Create a new job
POST /jobs/{job-id}/phase?PHASE=RUN Start job execution
GET /jobs/{job-id}/phase Retrieve job phase
DELETE /jobs/{job-id} Delete job

Table 2.1 Key UWS operations mapping to HTTP methods and URIs.

VO-CLOUD follows the UWS domain model, maintaining job phases and
REST endpoints, but adapts job metadata and extensions for experiment
tracking, ML parameters, and integration with its custom orchestration API.
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2.1.3 Master–Worker
The Master–Worker pattern is a standard distributed computing model that
separates coordination from execution (see Figure 2.7). A central Master ac-
cepts and dispatches jobs, while Workers poll for them, perform computations,
and return results. [17]

Figure 2.7 Master–Worker distributed pattern. [18]

Master server. Implements the UWS REST API as the entry point for
job submission. Upon receiving a request, it creates a new Job resource with
PENDING state, persists its parameters, and then transitions it to QUEUED for
assignment to an available Worker.

Workers. Independently running processes or applications that periodically
query the Master for QUEUED jobs. Each Worker fetches job parameters, loads
the necessary data from storage, executes the job, and posts results back via
the UWS endpoints.
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Asynchronous communication. Interaction between Master and Workers
is fully decoupled: the Master does not block waiting for job completion, and
Workers operate in parallel. Job states are updated independently through
standard UWS calls, ensuring reliability and transparency.

Scalability and fault tolerance. The Master can distribute workload across
any number of Workers, which may run on different nodes. If a Worker fails
or a job times out, the Master automatically re-queues the job for another
Worker without user intervention.

Resource isolation. Each Worker executes its job in a dedicated directory
to avoid data conflicts. Concurrency limits per node prevent resource exhaus-
tion and enable controlled parallelism.

VO-CLOUD uses this pattern to decouple request handling from compu-
tation, allowing query coordination and data processing to run on separate
nodes. By simply adding new Workers that adhere to the UWS protocol, the
system can scale horizontally to meet growing workloads without altering the
core submission and monitoring logic.

2.2 Core system components
This section presents VO-CLOUD’s three primary infrastructure elements: the
Master Server, Worker Services, and Data Storage, detailing their roles,
technologies, and interactions in the overall platform (see Figure 2.8).
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Figure 2.8 VO-CLOUD internal infrastructure. [19]

2.2.1 Master server
The Master Server is a single Java EE3 application that combines user in-
terface rendering, protocol handling, and job orchestration into one cohesive
service.

MVC layers. The Master Server follows the Model–View–Controller4 (MVC)
pattern to separate concerns and improve maintainability.

Presentation: JavaServer Faces5 (JSF) provides component-based page
construction, while Facelets and XHTML templates define view layouts.
The JSF lifecycle manages the handling and navigation of events. Client-
side JavaScript augments these views with animations, pagination, and
responsive form validation.

Business logic: stateless Enterprise JavaBeans6 (EJB) encapsulate core
3https://www.oracle.com/java/technologies/java-ee-glance.html
4https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-i

s-model-view-control-mvc
5https://www.oracle.com/java/technologies/javaserverfaces.html
6https://www.oracle.com/java/technologies/enterprise-javabeans-technology.

html

https://www.oracle.com/java/technologies/java-ee-glance.html
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-model-view-control-mvc
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-model-view-control-mvc
https://www.oracle.com/java/technologies/javaserverfaces.html
https://www.oracle.com/java/technologies/enterprise-javabeans-technology.html
https://www.oracle.com/java/technologies/enterprise-javabeans-technology.html
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domain behavior, such as job parameter validation, and user authentica-
tion/authorization, while Contexts and Dependency Injection7 (CDI) wires
together services and manages conversational contexts.

Persistence: the Java Persistence API8 (JPA) with Hibernate9 implements
object-relational mapping. Entity classes represent spectra metadata, job
definitions, and user records; Hibernate automatically generates SQL for
CRUD operations against the underlying relational database.

Unified REST API back end and UI front end. The Master Server
delivers its service endpoints and user interface from a single deployment.

REST endpoints: developed with the Java API for RESTful Web Services10

(JAX-RS), these Java classes map HTTP verbs to methods and serialize
data as JSON or XML. All endpoints live on the /api path and implement
IVOA standards (SSAP, DataLink) plus a custom UWS-style job API on
the /jobs path.

Static content: packaged in the same Web Application Archive (WAR),
XHTML templates define the HTML structure, CSS files apply styling,
and JavaScript files provide client-side behavior. Serving both API and UI
from one archive ensures that page rendering and data services share the
exact same codebase, paths, and versioning.

Job orchestration and workflow management. The Master Server han-
dles user access, data retrieval, and end-to-end job processing.

User authentication and authorization: integrates container-managed Java
Authentication and Authorization Service11 (JAAS) managed by contain-
ers to register users, assign roles, and enforce access control on API end-
points and UI pages.

Spectrum storage integration: connects to the centralized file repository
to locate and stream FITS and VOTable files, resolve URIs, and manage
access permissions for large spectral datasets.

Job creation and control: exposes UI forms and REST endpoints for users
to define job parameters, select input data, and submit new jobs; supports
pausing, resuming, or aborting jobs via the UWS-style protocol.

7https://docs.oracle.com/javaee/6/tutorial/doc/giwhl.html
8https://www.oracle.com/java/technologies/persistence-jsp.html
9https://hibernate.org/orm/

10https://www.oracle.com/technical-resources/articles/java/jax-rs.html
11https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASR

efGuide.html

https://docs.oracle.com/javaee/6/tutorial/doc/giwhl.html
https://www.oracle.com/java/technologies/persistence-jsp.html
https://hibernate.org/orm/
https://www.oracle.com/technical-resources/articles/java/jax-rs.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
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Worker dispatch: evaluates job requirements, selects an appropriate Worker
Service instance, and issues a REST call to initiate execution.

Result aggregation and reporting: receives callbacks or polls Workers for
completion status, consolidates output references and logs into the database,
and surfaces results through the REST API and generated UI pages.

This Master Server component forms the backbone of VO-CLOUD, unifying
user interaction, data services, and job orchestration in a single application
that coordinates all downstream processing.

2.2.2 Worker Services
Worker Services execute VO-CLOUD tasks within Java EE containers, pro-
viding modules for data preprocessing, active learning workflows, and real-time
visualization, while offloading intensive numerical computation and machine
learning routines to embedded Python scripts.

Java EE deployment and API contract. Two main Worker types run:

Spark Worker: integrates with the Spark12 ecosystem to preprocess spectra
at scale.

Universal Worker: handles active learning loops, model training, and result
packaging.

Each exposes a RESTful API that mirrors the UWS-style protocol, accepts
a JSON configuration payload, and returns the output upon completion.

Embedded Python processing. Within each Worker, Python scripts carry
out specialized data workflows:

Preprocessing: reads raw spectra, constructs a uniformly spaced wavelength
grid based on configuration parameters, interpolates spectral fluxes onto
that grid, and applies normalization and standardization routines. These
operations leverage NumPy13 for numerical operations and Scikit‐Learn14

for additional feature scaling or transformation.

Machine learning: drives an active learning loop using a convolutional
neural network implemented in TensorFlow15. The CNN is first trained on
spectra manually labeled by an oracle user, and then applies its learned
weights to classify the emission types of new, unseen spectra.

12https://spark.apache.org/docs/latest/
13https://numpy.org/doc/2.2/numpy-user.pdf
14https://scikit-learn.org/stable/user_guide.html
15https://www.tensorflow.org/tutorials

https://spark.apache.org/docs/latest/
https://numpy.org/doc/2.2/numpy-user.pdf
https://scikit-learn.org/stable/user_guide.html
https://www.tensorflow.org/tutorials
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The Java EE layer invokes these Python scripts as external processes and
inspects exit codes to transition job state back to the Master Server.

Interactive visualization and labeling. A dedicated Python service using
WebSockets16 hosts the spectrum viewer and labeling UI. Workers start this
service on demand and generate real-time spectral plots with Matplotlib17 for
the browser client.

Worker Services provide the scalable execution layer of VO-CLOUD, per-
forming preprocessing, learning, and visualization tasks, and returning results
via the Master API.

2.2.3 Data storage
VO-CLOUD relies on a multi-tiered storage architecture to manage meta-
data and raw data files, ensuring performance and scalability.

Relational metadata store. A PostgreSQL18 database holds structured
records for spectra metadata (object identifiers, observation timestamps, wave-
length ranges), job definitions, and user accounts. Access is provided via
JPA/Hibernate on the Master Server. Complex joins and transactional in-
tegrity guarantee reliable updates to job state and metadata consistency.

Elasticsearch index. An Elasticsearch19 cluster maintains an index of spec-
tral metadata for fast, faceted search and analytics. The Master Server uses the
Elasticsearch REST client to synchronize spectrum ingest and job completion
updates, enabling subsecond query response times for the web UI filters.

Network file storage. All raw and processed data, configuration files, and
logs are kept on a shared network filesystem (NFS) accessible to both Master
and Worker nodes:

Raw spectral archives: original FITS files from multiple LAMOST data
releases20 (DR1, DR2, DR3, …) and other surveys, stored in a standardized
directory hierarchy by survey and observation date.

Job artifacts: per-job JSON configuration files, execution logs, and inter-
mediate output, such as normalized spectra, used to audit any workflow
run.

16https://websockets.readthedocs.io/en/stable/
17https://matplotlib.org/stable/users/index
18https://www.postgresql.org/about/
19https://www.elastic.co/docs/solutions/search
20https://www.lamost.org/lmusers/

https://websockets.readthedocs.io/en/stable/
https://matplotlib.org/stable/users/index
https://www.postgresql.org/about/
https://www.elastic.co/docs/solutions/search
https://www.lamost.org/lmusers/
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File paths and URIs are persisted in PostgreSQL, enabling clients to stream
or download any file via the Master Server’s REST API.

This layered storage strategy ensures that VO-CLOUD can efficiently handle
terabyte-scale spectral archives, support interactive exploration, and maintain
full traceability of each processing workflow.

2.3 Integration and deployment
This section explains how VO-CLOUD is set up and deployed on the two
physical servers at the Astronomical Institute in Ondřejov. First, the purpose
and hardware of each server are described. Next, the servers where
Java and Python applications run are described. Finally, the use of Docker
containers for specific components is covered.

2.3.1 Deployment hosts
The VO-CLOUD system is deployed across two dedicated machines, each
providing compute and large-scale spectral storage.

betelgeuse

Hardware: equipped with a 12-core (24-thread) Intel CPU, NVIDIA GTX
980 GPU (4 GiB VRAM), 128 GiB RAM and a multiterabyte local disk
array.

Role: the primary host for the Master Server, Worker Services, and Python
visualization; the central filesystem for user uploads and job output is
mounted here.

Network: located on a private VLAN with no direct Internet exposure;
client access is mediated via a reverse proxy.

antares

Hardware: provides an 8-core Intel CPU, 24 GiB RAM, and a multiterabyte
disk for spectral archives.

Role: functions as a secondary Hadoop DataNode, storing and serving
HDFS21 data blocks for fault-tolerant distributed file storage, and as a
YARN worker (NodeManager), launching and monitoring Spark and other
containerized jobs.

Network: granted direct Internet connectivity; participates in the HDFS
cluster alongside betelgeuse.

21https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
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In summary, betelgeuse is the compute and storage nexus for core services,
while antares extends distributed processing capacity and provides external
cluster access.

2.3.2 Application servers
This subsection maps the Java EE and Python applications to their respective
runtime environments.

Java EE services. The VO-CLOUD Master Server and the Universal Worker
REST endpoints are deployed on WildFly22, an enterprise-grade Java EE ap-
plication server, for seamless lifecycle, transaction, and security management
on betelgeuse.

Python visualization. The spectrum viewer and the Active Learning UI for
the labeling purposes, both implemented with Tornado23, a lightweight asyn-
chronous Python web framework, are also executed on betelgeuse, accessing
the same shared filesystem for data.

Thus, Java applications run on bare metal WildFly for integrated lifecycle
management, while Python services are isolated in containers and access the
same file storage.

2.3.3 Containerization
VO-CLOUD employs a hybrid deployment model, combining native host-
system installations with Docker24-based isolation for selected services.

Native services.

Java EE components: the Master Server and Universal Worker REST end-
points run directly on WildFly, deployed on betelgeuse without container-
ization.

Hadoop daemons: Hadoop components operate natively on betelgeuse and
antares.

Elasticsearch & HDFS proxy: the Elasticsearch indexer and the NFS proxy
for HDFS mounting are installed and managed as standard Linux services
on the host.

22https://docs.wildfly.org
23https://www.tornadoweb.org/en/stable/
24https://docs.docker.com/build-cloud/

https://docs.wildfly.org
https://www.tornadoweb.org/en/stable/
https://docs.docker.com/build-cloud/
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Containerized services.

PostgreSQL database: the Master Server relational database is container-
ized to simplify versioning, upgrades, and backups.

Spectrum viewer: the Tornado-based interactive plotter is packaged in a
dedicated Docker image, mounting the read-only VO-CLOUD storage di-
rectory.

JupyterHub stack: JupyterHub25, its proxy, and per-user notebook servers
run under Docker Compose. Each user’s notebook launches in its own con-
tainer, with shared read-only access to VO-CLOUD storage and a private
writable workspace.

Only some components, PostgreSQL, the spectrum viewer, and JupyterHub,
are containerized. Most services still run directly on the hosts. Complete
isolation and uniform deployment remain for future work.

2.4 Basic usage scenarios
This section analyzes three core user workflows in VO-CLOUD: importing
new spectra, configuring and submitting computational jobs, viewing
outputs, and inspecting error logs.

2.4.1 Spectra import
The user may add new spectra to the workspace via three distinct mecha-
nisms:

1. Direct upload: drag and drop or file-chooser upload through the web
GUI.

2. VO protocols: SSAP and DataLink clients built into the Master Server
query VO services for spectral data.

3. Administrator import: administrators may place files directly on the
server, under the project home tree.

All imported files become visible in the VO-CLOUD UI. Users can then
move, rename, delete, or download them according to their permissions.

25https://jupyter.org/hub

https://jupyter.org/hub
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2.4.2 Job submission
To launch a job computation, the user selects Create Job from the main
menu and chooses one of the registered types of jobs (see Figures 2.9, 2.10).
The user either uploads or selects an existing JSON configuration, or chooses
from predefined templates (see Figure 2.11). Upon submission, the Master
Server enqueues the job via the UWS REST API, assigns it to an appropriate
Universal Worker or Spark Worker, and returns a job identifier. The UI then
displays the job phase in real time by polling the UWS endpoint.

Figure 2.9 VO-CLOUD job creation UI section. [20]

Figure 2.10 VO-CLOUD job specification UI section. [21]
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Figure 2.11 VO-CLOUD job configuration UI section. [22]

2.4.3 Result visualization
When a job enters a terminal state (COMPLETED, ERROR, or ABORTED), the user
can view all the output and any logs (see Figure 2.12).

For successful data processing jobs, the Master Server displays the job
directory in the browser. The user can see preprocessed spectra (CSV, FITS)
and download links for each file.

For active learning jobs, the results page embeds the labeling interface.
The spectra with the highest model uncertainty appear as zoomable plots of
raw and normalized data. The user assigns labels (by click), adds comments,
and then saves their changes (see Figure 2.13).

If a job fails or is aborted, the worker’s stdout stream appears in a log pane.
The user can review these logs online or download them for offline debugging.
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Figure 2.12 VO-CLOUD jobs UI page. [23]

Figure 2.13 VO-CLOUD job result and visualization UI page. [24]

2.5 Analysis summary
The VO-CLOUD platform integrates a rich set of capabilities, such as data
ingestion, job orchestration, computation, and result presentation in a sin-
gle environment. Despite its comprehensive workflow support, the following
limitations were identified:

Monolithic architecture. Core services, including the user interface,
job management, and data handling, are packaged as one extensive Java
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EE application. This tight coupling prevents individual components from
being updated or replaced independently, which slows down development.

Server-side UI rendering. Views are generated using JavaServer Faces
and XHTML templates, resulting in page reloads for most interactions.
Modern single-page application frameworks with JSON-based APIs would
deliver a more responsive user experience and simplify client-side logic.

Inconsistent containerization. Only a few components: PostgreSQL,
the spectrum viewer, and JupyterHub are deployed in Docker. Java EE
services and the Hadoop ecosystem run directly on host machines, lead-
ing to heterogeneous deployment scripts, environment drift, and increased
operational complexity.

Underutilized VO standards. Although SSAP and DataLink are sup-
ported, they are bypassed in practice because bulk downloads of extensive
spectral archives over these protocols can take weeks. The user prefers to
transfer data outside VO-CLOUD, rendering these protocol implementa-
tions redundant, yet still demanding maintenance.

Custom UWS integration. Job states and interactions are defined in
XML/XHTML and handled by bespoke REST mappings. A shift to JSON-
first libraries could eliminate boilerplate code, reduce parsing overhead, and
align with current web API best practices.

Sparse developer documentation. The codebase offers limited inline
comments. As a result, understanding, debugging, or extending the system
requires extensive code exploration.

Redundant Hadoop cluster. Although a Hadoop/Spark cluster was
provisioned, it is no longer used for production data processing. All spectral
transformations and machine learning tasks run on the Universal Worker,
making the cluster an unnecessary operational burden.

Taken together, these factors argue strongly in favor of a complete rewrite,
replacing the monolithic stack with clearly separated components, modern
APIs, full containerization, and concise and up-to-date documentation.



Chapter 3

Requirements for the new
system

Building on the analysis of the legacy platform, this chapter specifies the
functional and non-functional requirements for a modern, modular VO-
CLOUD replacement. These requirements cover the back-end API, job man-
agement, job queue, Worker behavior, and overall infrastructure.

3.1 General Functional Requirements
FR-G1 – RESTful API for job management. The system shall expose
HTTP endpoints that implement Create, Read, Update, and Delete (CRUD)
operations for jobs. All request and response bodies must be encoded in JSON
to ensure easy integration with external clients and services.

FR-G2 – Flexible, modular job types with asynchronous execution.
Job types shall be defined as independent, self-contained modules. Adding
a new type of job must require only minimal changes to the core codebase.
Initially, the system must support at least two job types:

Data preprocessing.

Active machine learning with interactive spectra labeling.

All jobs must be performed asynchronously so that the API remains re-
sponsive at all times.

FR-G3 – UWS-inspired phase management. Each job shall progress
through a well-defined set of states: PENDING, PROCESSING, COMPLETED, ERROR,
and ABORTED. Users and Workers may initiate valid state transitions; any in-
valid transition must produce a clear error message. Jobs may be deleted in

22
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any terminal state. In the event of failure, a human-readable log file must be
preserved for diagnosis.

FR-G4 – Configuration-driven execution. Every job shall reference a
JSON configuration file stored on the server. This file must specify input and
output paths, algorithm parameters, and required environment settings. The
system shall persist these configuration files and supply them to Workers at
execution time.

FR-G5 – Ordered job scheduling. Jobs shall be recorded in the database
in the exact order of their creation, along with a timestamp. By default, the
processing must follow a first-come, first-served policy. Workers will consume
tasks from a shared queue as soon as they become available.

3.2 Job management functional requirements
FR-M1 – Job data model. Each job record shall include the following
fields:

job_id: a globally unique identifier.

type: the job category (e.g., preprocessing, active-ML).

label: a brief, human-readable name.

created_at: the timestamp of job creation.

dir_path: the file system path to the job’s output directory.

FR-M2 – Job creation via JSON. An API endpoint must accept a JSON
payload to instantiate new jobs. All required fields (type, label, etc.) must
be validated before acceptance. Upon successful creation, the job shall enter
the PENDING state.

FR-M3 – Job storage and access. All job records (including their meta-
data and output paths) must be persisted in a database. The API shall allow
clients to retrieve, modify, or delete any job. Records of completed or failed
jobs must remain queryable for audit and analysis purposes.

FR-M4 – Phase transitions. When a job begins execution, its state must
move from PENDING to PROCESSING. A job may transition from PROCESSING to
COMPLETED, ERROR, or ABORTED.
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FR-M5 – Job abortion. The system shall allow users or Workers to abort
any job that has not yet been completed. Aborted jobs must immediately
move to the ABORTED state, and any allocated resources must be released.

FR-M6 – Job listing order. When listing jobs through the API or UI, the
newest jobs appear first and the oldest last. Pagination controls must respect
this ordering.

FR-M7 – Queue integration. Upon creation or start, every job must be
queued in the shared queue. Aborted or deleted jobs must be removed from
this queue. Both the job manager and Worker processes shall be able to add,
remove, and poll jobs in the same queue.

3.3 Job queue functional requirements
FR-Q1 – FIFO ordering. The job queue shall ensure that jobs are queued
in the same order in which they were queued.

FR-Q2 – Job removal. The queue must support removing any job that
has been aborted or is no longer needed.

FR-Q3 – Shared access. The central job manager and all Worker instances
must share access to the same queue for enqueuing, dequeuing, and status
updates.

3.4 Worker functional requirements
FR-W1 – Queue consumption. Workers must poll or subscribe to the
queue and retrieve jobs in FIFO order.

FR-W2 – Job type execution. Each Worker shall declare which types of
jobs it supports. Upon fetching a job, the Worker must verify its compatibility
before execution.

FR-W3 – Error handling and logging. If a job fails due to invalid param-
eters or runtime exceptions, the Worker must capture the complete traceback
in a log file and mark the job as ERROR.

FR-W4 – Metrics reporting. Upon completion (success or failure), Work-
ers must report key execution metrics back to the Master Server via a desig-
nated API endpoint.
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3.5 Non-functional requirements

3.5.1 Infrastructure and maintainability
NFR-I1 – Containerization. Every service component must be buildable
and executable within Docker containers (or Podman). Orchestration is pro-
vided through Docker Compose or an equivalent tool.

NFR-I2 – Cross-platform execution. The platform must run reliably on
Linux servers. Containerized deployment must also allow operation on other
OS hosts without major adjustments.

NFR-I3 – Modern technology stack. Development must employ up-to-
date frameworks, libraries, and language versions to ensure maintainability
and security.

3.5.2 Extensibility, modularity, and performance
NFR-E1 – Modular architecture. The platform must separate the API,
queue management, Worker execution, and storage layers into distinct modules
with well-defined interfaces.

NFR-E2 – Horizontal scalability. It must be possible to scale out by
dynamically adding or removing Worker instances to meet workload demands.

NFR-E3 – Non-blocking operations. Long-running tasks shall not block
the main API or degrade responsiveness. Resources allocated for individual
jobs must be released promptly when no longer needed.

3.5.3 Compatibility, documentation, and openness
NFR-C1 – VO-independence. The new system should focus on core job
management and ML workflows, rather than mandating legacy VO protocols.

NFR-C2 – Clear documentation and self-describing API. A specifi-
cation must be published for all HTTP endpoints. The comprehensive deploy-
ment, usage, and developer guides shall be maintained in a public repository.

NFR-C3 – Open source. All source code shall be released under a permis-
sive open source license to foster community collaboration and reproducibility.



Chapter 4

Researching suitable
technologies

In this chapter, technologies are reviewed and selected to achieve a clear
separation of responsibilities among the server infrastructure of the new sys-
tem. Leading scientific platforms and proven architectural patterns are ex-
amined to adopt best practices without reinventing the wheel. The goal is to
assemble a modern, maintainable technology stack that meets the modularity,
scalability, and asynchronous execution requirements in Chapter 3.

4.1 Overview of large scientific platforms
This section summarizes the architecture and key technologies of three
large scientific platforms: Pangeo, SciServer, and ESA Datalabs, each designed
to support large-scale data analysis through modular, scalable infrastructures.

4.1.1 Pangeo
“The Pangeo community is actively engaged in developing geoscientific
software and platforms. Many of these tools are useful far beyond the
geoscientific domain.” [25]

Pangeo is an open-source ecosystem designed for reproducible analysis
of large multidimensional datasets. Although its origins lie in geoscience,
the cloud-native architecture and scalable tools of the platform support any
domain that requires parallel processing of terabyte-scale data (see Figure
4.1). [26]

26



Overview of large scientific platforms 27

Figure 4.1 Pangeo internal infrastructure. [27]

Key architectural concepts.

Modular ML extensions: the Pangeo-ML project extends core Pangeo li-
braries with high-level interfaces to integrate extensive datasets into ML
workflows seamlessly.

Cloud-native storage: chunked, compressed formats are hosted on dis-
tributed object stores or High Performance Computing (HPC) filesystems
to enable efficient parallel I/O.

Distributed compute engine: computational frameworks orchestrate task
graphs across clusters, supporting both in-memory and out-of-core compu-
tation for workloads exceeding available RAM.

Labeled data model: ML data-handling frameworks enrich N-dimensional
arrays with coordinate metadata, simplifying indexing, alignment, and
broadcasting of complex data structures.

Interactive analysis: code UI notebooks provide a web-based interface for
consoles and dashboards, while the Holoviz technology stack provides re-
sponsive large-data visualizations.

Core technologies and formats.

Zarr1, HDF52 for scalable chunk-based storage optimized for parallel reads
and writes.

Dask3 as the scheduler and distributed executor, enabling seamless scaling
from single machines to large clusters.

1https://zarr.dev
2

3https://www.dask.org

https://zarr.dev
https://www.dask.org
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Xarray4 for metadata-aware, multidimensional array management and anal-
ysis.

JupyterLab5 for interactive computing and exploration within the browser.

hvPlot6, SpatialPandas, GeoViews for high-level interactive visualizations
of big data.

4.1.2 SciServer
“SciServer is a revolutionary new approach to achieving productive sci-
ence research by bringing the analysis to the data.” [28]

SciServer is a cloud‐based science platform developed by the Institute for
Data Intensive Engineering and Science (IDIES) at Johns Hopkins University.
It evolved from SkyServer, the Sloan Digital Sky Survey (SDSS) web portal,
where SDSS is an international astronomy project that maps the universe in
three dimensions through optical imaging and spectroscopy. SciServer extends
SkyServer’s server-side analytics to multiple domains, hosting large relational
databases and file stores, while offering interactive and batch analyses through
Docker/VM‐based environments (see Figure 4.2). [29, 30]

4https://docs.xarray.dev/en/stable/
5https://jupyterlab.readthedocs.io/en/latest/
6https://hvplot.holoviz.org

https://docs.xarray.dev/en/stable/
https://jupyterlab.readthedocs.io/en/latest/
https://hvplot.holoviz.org
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Figure 4.2 SciServer internal infrastructure. [31]

Key architectural concepts.

Server-side data access: core datasets (SDSS catalog) reside in relational
databases and are accessed via the SkyServer Web interface or the SQL
programming endpoints.
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Containerized analysis environments: SciServer Compute provides code
UI notebooks and command-line sessions running in containers, co-located
with the data to eliminate large transfers.

Asynchronous and interactive querying: CasJobs enables long-running queued
SQL queries with personal database spaces and shared scratch spaces, while
SkyServer supports immediate interactive queries via a web portal.

Integrated file storage: SciDrive offers RESTful file storage for private and
shared data, and temporary FileScratch volumes are mounted in the com-
pute sessions to minimize data movement.

Unified REST API layer: all core services, data queries, compute session
management, and file operations are exposed through consistent REST
APIs for automation and external integration.

Core technologies.

Docker/VM containers to encapsulate interactive and batch computing
environments (SciServer Compute) adjacent to the data.

JupyterLab, RStudio7 for in-browser interactive analysis sessions using
Python, R, or MATLAB.

4.1.3 ESA Datalabs
“ESA datalabs offers the possibility of searching ESA’s data holdings
across domains using the ESA data discovery portal we are developing.
To start, you will be able to search for data collections in astronomy,
earth observation, navigation, but we expect to offer representative data
collections from all of ESA’s directorates.” [32]

ESA Datalabs is a collaborative e-science platform provided by the Eu-
ropean Space Agency (ESA) to support data-intensive research in space and
Earth sciences. Instead of transferring large datasets to users, ESA Datalabs
allows code and workflows to run in situ on ESA’s infrastructure, with seamless
access to mission archives and federated data collections (see Figure 4.3). [33,
34, 35]

7https://posit.co/download/rstudio-desktop/

https://posit.co/download/rstudio-desktop/
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Figure 4.3 ESA Datalabs internal infrastructure. [36]

Key architectural concepts.

Bring-code-to-data paradigm: Users select data collections through a web
portal, then mount them into their workspace without copying, enabling
immediate access and execution.

N-tier, modular design:

User Layer: web platform (customized JupyterLab, Octave, Zeppelin)
decouples presentation from processing.
Exploitation/Preservation Layer: domain-specific and generic anal-
ysis modules operate on native or federated datasets.
Support Layer: shared libraries and glue-code components provide
standard services between modules.
Infrastructure Layer: storage and orchestration solutions are config-
ured to meet specific requirements.

Federated data discovery: a unified portal allows searching ESA’s holdings
across astronomy, Earth observation, navigation, and other domains, then
mounting chosen collections into user workspaces via RESTful APIs.
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Collaborative workspaces: private and team storage areas support fine-
grained access control, persistent backups, and project sharing without
data duplication.

Reproducible computational narratives: notebooks and workflows capture
code, dependencies, and data references to ensure long-term reproducibility
of the analyses.

Core technologies.

Kubernetes8, Rancher9 for container orchestration, service management,
scalability, and high availability.

Docker to package analysis environments, including JupyterLab, Octave,
and Zeppelin, with domain-customized extensions.

JupyterLab, Octave10, Zeppelin11 as in-browser IDEs and notebook inter-
faces supporting Python, R, MATLAB, and domain-specific languages.

4.2 Selection of architectural patterns and concepts
To decompose the legacy monolith into independent, scalable components,
three architectural approaches are considered: microservices, job queues,
and containerized orchestration.

4.2.1 Microservices
“Microservices architecture is a new trend embraced by many organiza-
tions as a way to modernize their legacy applications.” [37]

In contrast to a monolithic application, where all modules are packaged
and deployed as a single executable, microservice architecture organizes an
application as a collection of small autonomous services that can be developed,
deployed and scaled independently (see Figure 4.4).

8https://kubernetes.io
9https://www.rancher.com

10https://gnu-octave.github.io/packages/
11https://zeppelin.apache.org

https://kubernetes.io
https://www.rancher.com
https://gnu-octave.github.io/packages/
https://zeppelin.apache.org
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Figure 4.4 Microservices architecture. [38]

Principles and motivations. Key principles guiding the decomposition
into microservices include:

Modularization: services encapsulate functionality and expose only the in-
terfaces required by others, reducing coupling and improving comprehen-
sibility.

Independent deployability: services can be released on separate schedules,
minimizing the risk of system-wide downtime.

Polyglot governance: each service may adopt the most suitable language,
framework, and persistence mechanism for its domain.

Fault isolation: service failures are contained, preventing cascading errors
that would destroy an entire monolith.

Advantages and drawbacks. Microservices offer:

Enhanced scalability through fine‐grained resource allocation.

Accelerated development process.

Improved resilience by isolating faults within individual services.

However, they introduce operational complexity in service communication,
orchestration, and data consistency management.
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Application to the new solution. For the new system, the monolithic
VO-CLOUD platform will be restructured into three collaborating services:

1. UI client service: a single‐page application (SPA) handling user interac-
tion, developed in parallel by Alisher Layik as part of his thesis (“Science
Platform for Machine Learning of Big Astronomical Data – Data Analysis
Modules”).

2. API service: implements REST endpoints, validates requests, and queues
tasks.

3. Job queue service: provides the messaging backbone for decoupling the
API from workers and ensuring reliable delivery.

4. Worker Services: consume jobs from the queue, performs computations,
and reports status.

This split clarifies the responsibilities, enables independent scaling of the
API and compute layers, and aligns with modern DevOps practices.

4.2.2 Job queue
“Distributed task processing plays a crucial role in modern cloud com-
puting architectures, enabling efficient execution of large-scale compu-
tations by dividing tasks across multiple nodes.” [39]

A dedicated job queue decouples request submission from execution, al-
lowing tasks to be enqueued rapidly and consumed asynchronously by Worker
processes (see Figure 4.5).

Figure 4.5 Job queue pattern. [40]
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Conceptual considerations. Key requirements for an effective job queue
include:

Decoupling and asynchrony: producers submit jobs without blocking exe-
cution, while consumers pull job when resources allow, smoothing load and
improving responsiveness.

Ordering guarantees: queues should preserve insertion order (FIFO) or
support priority schemes to ensure predictable processing sequences.

Reliability and durability: jobs must be stored persistently until acknowl-
edged, preventing loss in the face of failures.

Scalability: the queue must handle high job volumes and allow multiple
consumers to process jobs in parallel.

Fault tolerance: failed or timed-out jobs should be re-tried or re-queued
automatically, isolating errors and preventing system-wide disruption.

Application to the new solution. In the redesigned platform, a stan-
dalone queue service will:

Accept job messages from the API service immediately upon request vali-
dation.

Persist jobs durably until they are fetched and acknowledged by worker
instances.

Support multiple Worker consumers pulling jobs concurrently, enabling
horizontal scaling of compute capacity.

This dedicated queue layer ensures that job submission remains fast and
that compute resources are utilized efficiently and resiliently.

4.2.3 Containerization & orchestration
“Containerization provides many promising features like super lightweight,
faster spin‐up/down, efficient energy and resource utilization, impres-
sive workload distribution capabilities, achieving server consolidation,
and many more, but at the same time it has few major problems such as
weaker isolation, higher chance of container sprawl, lack of capable tools
for container orchestration and cross‐platform supports and container
portability limitations.” [41]
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By packaging each service and its dependencies into isolated containers,
the system achieves consistent and reproducible deployments across environ-
ments. The orchestration tool then automates the scheduling, scaling, and
management of these containers (see Figure 4.6).

Figure 4.6 Containerization approach. [42]

Conceptual considerations. A containerized architecture must address:

Lightweight virtualization: containers share a common host kernel, mini-
mizing CPU, memory, and storage overhead compared to VMs.

Portability: identical container images can run on any compliant host OS,
ensuring “write once, run anywhere” deployments.

Resource efficiency: fast start and shutdown facilitate dynamic scaling and
server consolidation for energy and cost savings.

Orchestration needs: automated scheduling, rolling updates, and self‐healing
require a robust control plane.

Persistent storage and networking: stateful workloads demand volume
management and software‐defined networking across datacenters and clouds.

Application to the new solution. The entire platform will be delivered
as container images and managed by a single orchestration layer:
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Each microservice (UI client, API, queue, workers) is encapsulated in its
own Docker image with explicit dependency manifests.

Docker Compose will schedule containers across the cluster, handle service
discovery, and perform rolling upgrades with zero downtime.

Persistent volumes will be provisioned to support job metadata, logs, and
any stateful components.

This unified containerized approach guarantees portability, simplifies con-
figuration, and provides the foundation for automated CI/CD and multi‐cloud
deployments.

4.3 Choice of core infrastructure components
This section justifies the selection of the fundamental technologies for the
new system, focusing on the implementation language, the relational
database, and the message broker.

4.3.1 Implementation language
“Python is colloquially known as the lingua franca of data. It is a non-
compiled, not strongly typed, and multi-paradigm programming language
that has a clear and simple syntax. Its tooling ecosystem is also exten-
sive, especially in the analytics and ML space.” [43]

Python was selected for both the API and Worker services based on several
compelling factors:

Ecosystem maturity: Python 3.13 (API) and 3.11 (Worker) support a
wide array of scientific ML libraries: NumPy, SciPy, Scikit-Learn, Pandas,
TensorFlow, most of which pioneered their primary APIs in Python and
continue to prioritize it over other languages.

Lightweight infrastructure: compared to Java EE, Python services in-
cur a lower memory and startup overhead, simplifying containerization and
horizontal scaling.

Data-centric tooling: “Almost every major new software library for use
in the data world has a Python API.” Its preeminence in data science
and machine learning ensures seamless access to the latest frameworks and
community-driven innovations.

Popularity and community support: as of August 2023, Python ranked
as the most popular programming language worldwide (TIOBE index12).

12https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
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This widespread adoption results in abundant third-party packages, tuto-
rials, and commercial tools.

Interoperability: Python easily interfaces with database drivers, message
brokers, and cloud development kits. This makes it straightforward to wrap
high-performance native code or cloud-native services without friction.

DevOps and MLOps alignment: modern CI/CD and deployment pipelines
(Docker, Podman, Kubernetes) have first-class support for Python.

Operational efficiency: compared to JVM-based stacks, Python ser-
vices exhibit lower memory footprints and faster startup times, facilitating
denser container packing, rapid autoscaling and cost-effective resource uti-
lization.

Together, these factors establish Python as the de facto choice for building
scalable, maintainable, and data-intensive microservices in this project.

4.3.2 Relational database management system
“PostgreSQL is one of the most popular open source database manage-
ment systems. It is highly versatile and used across different industries
and areas as diverse as particle physics and geospatial databases. One
of the defining characteristics of PostgreSQL is its extensibility, which
enables developers to add new database functionality without forking
from the original project. Many companies have leveraged the rich
functionality and ecosystem of PostgreSQL to build advanced, success-
ful applications.” [44]

PostgreSQL was selected as the project RDBMS for the following reasons:

Demonstrated scalability: achieves consistent throughput improvements
on gigabyte scales without performance degradation.

Operational maturity: enterprise-grade backup and tools have already
underpinned VO-CLOUD’s production workloads.

Structured-domain modeling: relational schemas, ACID transactions,
and declarative constraints (foreign keys, unique indexes, check constraints)
enable precise encoding of domain entities and relationships.

Full open-source stack: PostgreSQL and its ecosystem of extensions
(PostGIS, pgML, MADlib, etc.) are released under permissive open source
licenses.

The latest stable PostgreSQL 17 release will be used to take advantage of
its long-term support, performance enhancements, and wide ecosystem com-
patibility.
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4.3.3 Message broker
“RabbitMQ acts as an intermediary between the various services. It
reduces the load and delivery time on server web applications by delegat-
ing tasks that would typically take a lot of time and resources. Message
queuing allows web servers to respond quickly to requests rather than
being forced to perform complex procedures that can take more time and
resources.” [45]

A standalone RabbitMQ broker will be deployed to manage the system
job queue. Publishers (the API service) will queue jobs via the Advanced Mes-
sage Queuing Protocol (AMQP) exchanges, and consumers (Worker services)
will pull and process these messages asynchronously.

Key characteristics.

Standardized protocol: Advanced Message Queuing Protocol (AMQP) en-
sures interoperability, defining exchanges, queues, bindings, and routing
keys for reliable message delivery.

Decoupling of components: API and Worker services communicate only
through the broker, eliminating direct dependencies and allowing each ser-
vice to scale and evolve independently.

Asynchronous processing: tasks persist in durable queues until acknowl-
edged, allowing the API to respond immediately and Workers to consume
at their own pace.

Load leveling and scalability: multiple Worker instances can subscribe to
the same queue, evenly distributing workload, and supporting horizontal
scaling with high throughput.

Fault tolerance: unacknowledged or failed messages can be re‐queued or
routed to dead‐letter queues, preventing message loss and isolating errors.

Lightweight operations: RabbitMQ was chosen for its lower infrastructure
overhead and simpler configuration, avoiding the operational complexity
required by high-throughput brokers such as Apache Kafka13.

Application to the new solution. In the redesigned platform, RabbitMQ
will:

Host an exchange to which the API service publishes validated task mes-
sages (jobs).

13https://kafka.apache.org
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Maintain durable queue that buffer jobs until they are consumed by Worker
services.

Support bindings that route messages based on job type.

Provide monitoring and management endpoints for visibility into queue
depth, message rates, and consumer health.

This dedicated message broker ensures that job submission remains fast,
reliable, and resilient, while compute capacity can be scaled independently of
request traffic.

4.4 Selection of frameworks and libraries
To support the development, validation, and deployment of microservices
and data pipelines, a curated set of tools and libraries was selected for their
robustness, interoperability, and community support.

4.4.1 Package management
“Poetry is a tool for dependency management and packaging in Python.
It allows you to declare the libraries your project depends on and it will
manage (install/update) them for you. Poetry offers a lockfile to ensure
repeatable installs, and can build your project for distribution.” [46]

Poetry is adopted as the dependency and environment manager for the
project.

Usage of Poetry. [47]

Isolated environments: automatically creates a dedicated virtual environ-
ment per project, so that API, Worker, and CLI components run on the
same interpreter and library versions.

Single manifest: declares all dependencies in pyproject.toml, unifying
the project metadata and requirements.

Reproducible installs: generates a poetry.lock file that pins exact package
versions, ensuring identical installations on developers’ machines and CI
pipelines.

Conflict prevention: employs an advanced dependency resolver to detect
and prevent version conflicts before installation, avoiding “dependency
hell”.

Integrated packaging: provides built-in commands to build and publish
internal Python packages, simplifying long-term maintenance and distri-
bution.
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4.4.2 Web framework
“FastAPI is a modern, fast (high-performance), web framework for
building APIs with Python based on standard Python type hints.” [48]

FastAPI was chosen as the project’s web framework for the following
reasons:

Key features. [48]

High performance: one of the fastest Python frameworks available.

Rapid development: type-hint driven code generation and automatic inter-
active documentation (OpenAPI/JSON Schema).

Asynchronous support: first-class async/await endpoints handle I/O-bound
tasks efficiently, improving responsiveness to data-intensive workloads.

Data validation: built-in integration for request/response models ensures
strong typing, automatic serialization, and runtime validation.

Dependency injection: intuitive and declarative dependency management
keeps the code modular, testable, and maintainable.

Standards-based: full compatibility with OpenAPI interactive documenta-
tion and JSON Schema simplifies tooling and integration.

Robust ecosystem: widely adopted by major organizations (Microsoft, Uber,
Netflix, Cisco) for ML services and microservice architectures.

Comparison to other frameworks. [49]

Django14: batteries-included, heavy-weight MVC stack; great for full-stack
apps, but slower and more monolithic.

Flask15: minimal micro-framework; flexible but requires manual assembly
of extensions for validation, docs, and async support.

FastAPI: strikes a balance: light weight, async-first, and comes with built-
in validation and documentation, making it ideal for ML-driven, API-first
backends.

14https://www.djangoproject.com
15https://flask.palletsprojects.com/en/stable/

https://www.djangoproject.com
https://flask.palletsprojects.com/en/stable/
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4.4.3 Data validation & serialization
“Powered by type hints—with Pydantic, schema validation and seri-
alization are controlled by type annotations; less to learn, less code
to write, and seamless integration with your IDE and static analysis
tools.” [50]

Pydantic provides fast, declarative schemas and JSON Schema export,
with a Rust-based core for performance. Its deep integration with FastAPI
ensures that all request and response data are automatically validated and
serialized.

4.4.4 Database Object Related Mapping
“SQLAlchemy is the Python SQL toolkit and Object Relational Map-
per that gives application developers the full power and flexibility of
SQL.” [51]

SQLAlchemy’s Core and Object Related Mapping (ORM) layers enable
both schema-centric SQL construction and domain-centric object persistence.
It supports asynchronous engines (via asyncio), fully integrates with tools for
migrations, and is the de facto standard for Python database access.

4.4.5 Database schema migrations
“Alembic provides for the creation, management, and invocation of
change management scripts for a relational database, using SQLAlchemy
as the underlying engine.” [52]

Alembic tracks incremental schema changes in versioned migration scripts.
On service start-up, pending migrations are applied automatically, ensuring
database schemas remain synchronized across environments.

4.4.6 Job orchestration
“Celery is a simple, flexible, and reliable distributed system to process
vast amounts of messages, while providing operations with the tools
required to maintain such a system.” [53]

Celery is the project’s task orchestration framework, selected for its production-
proven reliability and rich feature set:
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Core capabilities. [54]

Producer/consumer API: defines jobs in the API service (producer) and
executes them in Worker processes (consumers) via AMQP protocol, fully
decoupling request handling from heavy computation.

Retry and timeout policies: built-in decorators allow per-job configuration
of retry counts, backoff strategies, and execution time limits, improving
resilience to transient failures.

Job routing: supports multiple named queues, exchange bindings, enabling
separation of pre-processing, inference, and post-processing workloads.

Horizontal scalability: additional Worker instances can be added or re-
moved at runtime, allowing independent scaling of ML inference capacity
without affecting the API layer.

Application to the new solution.

The API service enqueues validated inference and pre-processing jobs via
@celery.task decorators.

Worker services run Celery workers that consume from dedicated queue,
execute ML model, and update job status in API app.

Celery’s configurable timeouts and retry logic ensure that failed jobs are
requeued.

4.4.7 Asynchronous I/O
“aiofiles is a library for handling local disk files in asyncio applications
by delegating operations to a thread pool.” [55]

aiofiles enables non-blocking host NFS file reads and writes in async end-
points, while the standard os module offers portable path and environment
utilities [56]. Together, they prevent file I/O from blocking the event loop.

4.4.8 Scientific data handling
“The astropy package contains key functionality and common tools
needed for performing astronomy and astrophysics with Python.” [57]

“The h5py package is a Pythonic interface to the HDF5 binary data
format. It lets you store huge amounts of numerical data, and easily
manipulate that data from NumPy.” [58]

Astrospectral data are read from FITS files using astropy, which provides:
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Comprehensive support for FITS I/O, including header parsing metadata
and main spectral data (fluxes, waves) parsing.

Utilities for unit conversions, coordinate transformations, and spectrum
manipulation.

Integration with affiliated astronomy packages for advanced analysis work-
flows.

The preprocessed spectra and the derived matrices are stored in HDF5
using h5py, chosen for:

High-performance, array-style access: datasets are exposed as NumPy-
like arrays with on-disk slicing and lazy loading.

Self-describing, portable files: metadata and raw data coexist in a
single binary container compatible with project tools.

Seamless ML integration: native interoperability with NumPy, allowing
zero-copy data pipelines in worker processes.

Numerical computation and machine learning are performed with:

NumPy16 for vectorized array operations and linear algebra.

scikit-learn17 for classical ML preprocessing (scaling, feature extraction,
clustering).

TensorFlow18 for deep neural network training and inference in worker
pipelines.

Each preprocessing job, implemented in Alisher Layik’s analysis modules,
loads a single LAMOST sub-catalog (400–500 MB of FITS spectra), interpo-
lates each spectrum to a common uniform grid, standardizes, and normalizes
it in a sequential pipeline. Since each job’s working set is under a gigabyte
and must be processed in order, the overhead of a Dask cluster or Xarray ar-
rays isn’t justified. Instead, the cleaned data are written to HDF5 via h5py,
enabling fast, zero-copy slicing. Model training then streams these HDF5
datasets sequentially into the convolutional network, yielding a simple, effi-
cient workflow without distributed-data complexity.

16https://numpy.org
17https://scikit-learn.org/stable/
18https://www.tensorflow.org

https://numpy.org
https://scikit-learn.org/stable/
https://www.tensorflow.org
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4.4.9 Containerization
“Docker is an open platform for developing, shipping, and running
applications… Containers are lightweight and contain everything needed
to run the application.” [59]

“Docker Compose is a tool for defining and running multi-container
applications. It simplifies the control of your entire application stack,
making it easy to manage services, networks, and volumes in a single
YAML configuration file.” [60]

Docker is used to encapsulate each microservice: API, queue, workers, and
auxiliary tools, into immutable self-contained images. These containers include
the exact runtime, system libraries, and application dependencies required,
ensuring reliability across different environments.

Docker Compose orchestrates the complete project stack by declaring
each service (API, RabbitMQ, PostgreSQL, Workers) in docker-compose.yml.

By standardizing on Docker and Docker Compose (both of which are fully
compatible with Podman19) the system gains a portable, declarative, and
scriptable infrastructure layer.

4.5 Summary of technology selection
This chapter surveyed leading scientific platforms and modern architectural
patterns to select the best technologies for VO-CLOUD reengineering. The
case studies of Pangeo, SciServer, and ESA Datalabs highlighted the advan-
tages of modular, container-based systems co-located with data. Combined
with DevOps best practices, this led to three core concepts: responsibility sep-
aration through microservices, asynchronous work via job queues, and reliable
and portable deployments through containers.

Consequently, the following technology stack was adopted:

Implementation language: Python 3.13 for API Service and Python
3.11 for Workers, chosen for its lightweight runtime, rich ML/data ecosys-
tem, and first-class support in CI/CD pipelines.

Relational database: PostgreSQL 17, selected for its proven scalability,
strong relational guarantees, and mature open-source ecosystem.

Message broker: RabbitMQ, providing a lightweight standards-based
queueing layer with durable persistence, load leveling, and fault tolerance.

Package management: Poetry to enforce isolated environments, deter-
ministic dependency resolution, and integrated packaging workflows.

19https://podman.io

https://podman.io
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Web framework: FastAPI, delivering high-performance, async-first re-
quest handling, automatic interactive API documentation, and type-safe
validation.

Data validation & serialization: Pydantic is for declarative, Rust-
powered schema validation and serialization to JSON.

ORM and migrations: SQLAlchemy (async-capable) for flexible SQL
expression and object mapping; Alembic for automated, versioned database
schema evolution.

Job orchestration: Celery, enabling producer/consumer patterns, retry/time-
out policies, and horizontal scaling of ML inference and preprocessing work-
loads.

Async I/O: aiofiles and Python’s built-in os module to prevent file oper-
ations from blocking the event loop.

Scientific data handling: Astropy for FITS I/O and spectral metadata;
h5py (HDF5) for high-performance, NumPy-compatible storage; NumPy,
scikit-learn, and TensorFlow for numerical and ML pipelines.

Containerization: Docker images and Docker Compose (Podman com-
patible) to encapsulate each service and declare the multicontainer stack.

This curated stack balances the demands of data-intensive astronomy work-
flows with modern software engineering best practices (microservices, async
APIs, CI/CD). The result will be a flexible, maintainable, and scalable founda-
tion upon which the new modular platform can be implemented and operated
in various environments.



Chapter 5

Implementation of the new
system

The design and implementation of the new ML Job Manager system are pre-
sented in this chapter. Building upon the limitations revealed in the legacy
VO-CLOUD platform, the requirements defined in Chapter 3 and the tech-
nology stack chosen in Chapter 4 are applied to construct four interconnected
microservices: the ML Job API, the ML Job DB, the ML Job Queue, and
the ML Job Worker. Each component is implemented using best practices
in domain-driven design and container-based deployment.

5.1 API microservice
The ML Job API microservice has been designed according to a layered
“onion” architecture1, in which each abstraction layer communicates only with
its immediate neighbors. At the core lie the repository interfaces (implemented
with SQLAlchemy), surrounded by a domain service layer that encapsulates
business logic, and finally by the API routing layer (built on FastAPI) that
exposes HTTP endpoints. This service cleanly separates four distinct do-
mains: file management, spectral data reading, job orchestration, and
spectrum labeling, so that each concern is implemented and evolved in iso-
lation. It no longer contains user‐interface code or direct queue‐management
logic. The ML Job API’s sole responsibility is to validate and process client
requests, coordinate across its internal domains, persist and retrieve state from
the ML Job DB, and enqueue job items for downstream Workers.

1https://dev.to/yasmine_ddec94f4d4/onion-architecture-in-domain-driven-des
ign-ddd-35gn
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5.1.1 File management domain
The File management domain encapsulates all operations on the server’s file
storage.

Capabilities. The following operations are provided to fully interact with
the system’s dedicated file storage:

Upload arbitrary files (configurations, auxiliary data) into specific directo-
ries.

Download result or log files produced by completed jobs.

Create and delete directories to organize job outputs.

List the contents of any directory (files and subdirectories).

Layered architecture. The File management domain is decomposed into
four layers (from bottom to top):

1. Repository interface (src/files/repository.py): defines the CRUD con-
tract over files and directories.

2. Repository implementation (src/files/repositories/lfs.py): an LFS
repository using os, aiofiles, and aioshutil2 libraries.

3. Service layer (src/files/service.py): orchestrates files’ repository calls
and returns Pydantic serializers.

4. API router (src/files/api/rest.py): FastAPI Class-Based View3 (CBV)
files’ router exposing HTTP methods, paths, parameters, response models,
and error mappings.

Domain entities. As in the legacy VO-CLOUD implementation, each file
and directory is represented by a self-describing metadata typed model. Each
file and directory is represented by a Pydantic “entity” model that carries both
its identity and the metadata. The FileEntity includes the exact file name
filename (including extension), the normalized relative path of its parent di-
rectory parent_dir_path, the file size in bytes size, and a UTC timestamp of
last modification modified_at. The DirectoryEntity similarly encapsulates
the directory’s name dirname and the relative path of its containing folder
parent_dir_path, allowing clients to reconstruct the full storage hierarchy
and navigate the server filesystem with precise context.

2https://pypi.org/project/aioshutil/
3https://fastapi-utils.davidmontague.xyz/user-guide/class-based-views/

https://pypi.org/project/aioshutil/
https://fastapi-utils.davidmontague.xyz/user-guide/class-based-views/
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// ml-job-api/src/files/entities.py
class FileEntity(BaseModel):

filename: str
parent_dir_path: str
size: int
modified_at: datetime

class DirectoryEntity(BaseModel):
dirname: str
parent_dir_path: str

Code listing 5.1 Domain entity models for file and directory metadata.

Local filesystem repository implementation. The FileRepository ab-
straction defines the full set of supported file and directory operations for
the ML Job API system. In the FileLFSRepository implementation, these
operations are mapped directly onto the server’s local filesystem: creating
and deleting directories, listing contents, uploading files, and streaming down-
loads. To support large files without blocking the FastAPI event loop, a
helper function download_file (in src/files/utils.py) reads from disk in
fixed‐size chunks and yields each fragment as an asynchronous iterator (see
Code 5.2). Parent directories are created on demand, and path normalization
via get_norm_path prevents traversal attacks. Missing‐resource checks (us-
ing os.path.exists and os.path.isfile/isdir) raise domain‐specific errors
(FileNotExistError, DirectoryAlreadyExistError, etc.), to be translated
into precise HTTP responses at the API layer (see Code 5.3).

// ml-job-api/src/files/utils.py
async def download_file(file_path: str, chunk_size: int) ->

AsyncIterator[bytes]:↪→

async with aiofiles.open(file_path, "rb") as file_reader:
while chunk := await file_reader.read(chunk_size):

yield chunk

Code listing 5.2 Utility function for LFS file download.
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// ml-job-api/src/files/repositories/lfs.py
class FileLFSRepository(FileRepository):

...
async def download_by_filename_and_parent_dir_path(self,

filename: str, parent_dir_path: str) ->
AsyncIterator[bytes]:

↪→

↪→

# Build relative and absolute paths
rel_file_path = get_norm_path(parent_dir_path,

child_name=filename)↪→

abs_file_path = get_norm_path(parent_dir_path,
prefix=self.shared_dir_path, child_name=filename)↪→

# Ensure file exists
if not os.path.exists(abs_file_path) or not

os.path.isfile(abs_file_path):↪→

raise FileNotExistError(f"Cannot download
file='{rel_file_path}'.")↪→

return download_file(abs_file_path, self.chunk_size)
...

Code listing 5.3 Repository implementation for LFS file and directory manipula-
tion.

Service usecases. The FileService encapsulates business logic by delegat-
ing all storage interactions to the abstract file repository. It translates client
parameters into repository calls and converts returned entities into Pydantic
serializers, remaining completely agnostic to the underlying storage medium.
For example, when handling a download request, the FileService method
download_file_by_filename simply forwards the given parameters to the
repository, then returns the async byte stream (see Code 5.4).

// ml-job-api/src/files/service.py
class FileService:

...
async def download_file_by_filename(self, filename: str,

params: EntryLocateParams) -> AsyncIterator[bytes]:↪→

return await self.repository
.download_by_filename_and_parent_dir_path(filename,

params.parent_dir_path)↪→

...

Code listing 5.4 Service usecases for file and directory operations.
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API router. The REST API router, implemented as a FastAPI REST
router in src/files/api/rest.py, glues together HTTP transport and the
file‐management service. Each endpoint is fully annotated with path, HTTP
method, operation tags, response model, status codes, and human‐readable
summaries and descriptions. Input validation is performed automatically by
FastAPI and Pydantic: malformed paths, missing query parameters, or invalid
payloads result in HTTP 422. Within each handler, domain exceptions such as
FileNotExistError or DirectoryNotExistError are caught and translated
into HTTP 404, while DirectoryAlreadyExistError yields HTTP 409. Any
unanticipated failures bubble up as HTTP 500. By mapping every possible
outcome to a precise status code and structured JSON response, the router
guarantees a clear, consistent contract for clients and automatically generates
interactive OpenAPI documentation with example values.

Method URI Success Errors
POST /{filename}/upload 201 422, 500
GET /{filename}/download 200 404, 422, 500
DELETE /{filename} 204 404, 422, 500
POST /directories/{dirname} 201 409, 422, 500
DELETE /directories/{dirname} 204 404, 422, 500
GET / 200 404, 422, 500

Table 5.1 API REST mapping for file and directory endpoints.

5.1.2 Spectral data domain
The Spectral data domain provides on-demand access to raw LAMOST FITS
spectra.

Capabilities. This domain supports a single operation:

Retrieve both header metadata and the full wavelength and flux arrays for
a given FITS spectrum.

Layered architecture. The Spectral data domain mirrors the same four-
layer onion structure:

1. Repository interface (src/spectra/repository.py): declares the contract
get_by_filename returning a SpectrumEntity.

2. Repository implementation (src/spectra/repositories/lfs.py): com-
putes the LAMOST‐encoded path, verifies file existence, and offloads FITS
parsing to a background thread via asyncio.to_thread4.

4https://docs.python.org/3/library/asyncio.html

https://docs.python.org/3/library/asyncio.html
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3. Service layer (src/spectra/service.py): invokes the repository, wraps
the result in a Pydantic serializer, and remains storage-agnostic.

4. API router (src/spectra/api/rest.py): FastAPI REST router with one
GET endpoint, parameter validation, response model, and HTTP error map-
pings.

Domain entity. Each spectral measurement records the distribution of elec-
tromagnetic energy as a function of wavelength (or, equivalently, frequency).
A photon’s energy is given by

E = h ν = h
C0

λ
,

where h = 6.626 × 10−34 J s (Planck’s constant), ν is the photon frequency
in hertz (Hz, cycles s−1), λ its wavelength in meters (m), and C0 = 2.998 ×
108ms−1 the constant speed of light in vacuum. In spectroscopic practice, it
is often expressed λ in ångströms (1 Å = 10−10 m) and converted E to more
convenient units only when needed.

The spectral intensity, or energy flux, across a unit area is defined as

I = Q =
∂E/∂t

area

[
Wm−2

]
,

which at the photon level corresponds to the rate of photon arrival per time
and area. In astronomical spectroscopy, the calibrated flux density per unit
wavelength is recorded, F (λ), typically in units of [61]

10−17 erg s−1 cm−2 Å.

In the ML Job API system, each spectrum therefore provides two principal
arrays:

λi: the wavelength vector in ångströms,

Fi: the corresponding flux density measurements in 10−17 erg s−1 cm−2 Å.

Together, these define the spectral “wave” (the sampled wavelengths) and
its “flux” (the photon-derived intensity) across the observed band, providing
the foundational data for all downstream visualization and analysis.

Beyond these raw data arrays, every spectrum in the system carries meta-
data describing the source and acquisition: the telescope pointing (RA/DEC),
the observing date/time, the instrument configuration (spectrograph and fiber
IDs), and classification results (e.g., redshift, spectral type). This combina-
tion of physical measurements and contextual metadata allows to relate each
spectral measurement back to its celestial origin and observing conditions.

Each spectrum in the ML Job API is represented by a Pydantic domain
entity SpectrumEntity that captures exactly the set of metadata and data
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arrays needed for downstream visualization and analysis. In LAMOST Data
Release 2 (DR2), the FITS filename filename follows the special defined pat-
tern spec-<LMJD>-<PLANID>_sp<SPID>-<FIBERID>.fits, encoding observa-
tion time, plan ID, spectrograph and fiber numbers. The targetname parame-
ter comes from the DESIG header, while observed_at parameter is parsed from
the DATE-OBS header. Celestial coordinates (ra, dec), spectral classification
(type, subtype), photometric magnitudes (mag_1…mag_7), and signal-to-noise
ratios (sn_u…sn_z) reflect key header keywords. Finally, the analysis results
redshift (z) and its uncertainty (z_err) are taken from the Z and Z_ERR head-
ers. The two principal data arrays: wave and flux, are extracted from the
primary data unit’s third and first rows, respectively. This compact entity
model thus provides all information required to reconstruct each spectrum’s
provenance, calibration, and science-ready data in a single object.

// ml-job-api/src/spectra/entity.py
class SpectrumEntity(BaseModel):

filename: str
targetname: str
observed_at: datetime
type: SpectrumType
subtype: str
ra: float
dec: float
magtype: str
mag_1, mag_2, ..., mag_7: float
sn_u, sn_g, ..., sn_z: float
z: float
z_err: float
wave: list[float]
flux: list[float]

Code listing 5.5 Domain entity model for spectral metadata, wave, and its flux
data.

Local filesystem repository implementation. The SpectrumRepository
abstraction declares the single supported operation, retrieving a parsed spec-
trum entity by its FITS filename, without prescribing where or how the data
are stored. In the SpectrumLFSRepository implementation, this operation is
mapped directly onto the server’s local filesystem: the relative directory path
is computed from the LAMOST‐encoded filename. Existence and file‐type
checks using os.path.exists and os.path.isfile guard against missing or
invalid files, raising SpectrumNotExistError when appropriate.

Because each FITS file is only ∼200 KB and is accessed on demand for
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UI-driven visualization, the overhead of maintaining a separate database ta-
ble (and associated indexing) for spectral metadata, as done in the legacy
VO-CLOUD system, was judged superfluous. Instead, blocking FITS pars-
ing is offloaded to a background thread via asyncio.to_thread, invoking a
synchronous helper function read_file (which employs astropy.io.fits) to
extract header metadata and data arrays directly from disk. The extracted
dictionary is subsequently validated into a SpectrumEntity before being re-
turned (see Code 5.6 and Code 5.7), with end-to-end latency remaining under
one second per spectrum.

// ml-job-api/src/spectra/utils.py
def read_file(file_path: str) -> dict[str, Any]:

with fits.open(file_path) as hdul_reader:
header = hdul_reader[0].header
data = hdul_reader[0].data
raw_spectrum = dict(

filename=header["FILENAME"],
targetname=header["DESIG"],
observed_at=header["DATE-OBS"],
type=header["CLASS"],
subtype=header["SUBCLASS"],
ra=header["RA"],
dec=header["DEC"],
magtype=header["MAGTYPE"],
mag_1, mag_2, ..., mag_7=header["MAG7"],
sn_u, sn_g, ..., sn_z=header["SN_Z"],
z=header["Z"],
z_err=header["Z_ERR"],
wave=data[2].tolist(),
flux=data[0].tolist(),

)

return raw_spectrum

Code listing 5.6 Utility function for LFS spectrum read.
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// ml-job-api/src/spectra/repositories/lfs.py
class SpectrumLFSRepository(SpectrumRepository):

...
async def get_by_filename(self, filename: str) ->

SpectrumEntity:↪→

# Build relative and absolute paths
rel_parent_dir_path = self._get_dir_path(filename)
rel_file_path = get_norm_path(rel_parent_dir_path,

child_name=filename)↪→

abs_file_path = get_norm_path(rel_parent_dir_path,
prefix=self.shared_dir_path, child_name=filename)↪→

# Ensure file exists
if not os.path.exists(abs_file_path) or not

os.path.isfile(abs_file_path):↪→

raise SpectrumNotExistError(f"Cannot get spectrum
from file='{rel_file_path}'.")↪→

spectrum_file_data = await asyncio.to_thread(read_file,
abs_file_path)↪→

return SpectrumEntity.model_validate(spectrum_file_data)
...

Code listing 5.7 Repository implementation for LFS spectra reading.

Service usecases. The SpectrumService encapsulates all business logic for
spectral retrieval by delegating data access to the abstract repository and
remaining agnostic to the storage backend. Upon receiving a request, it in-
vokes method get_by_filename, handles any SpectrumNotExistError propa-
gation, and transforms the resulting SpectrumEntity into a Pydantic serializer
for API output (see Code 5.8).



API microservice 56

// ml-job-api/src/spectra/service.py
class SpectrumService:

...
async def retrieve_spectrum_by_filename(self, filename: str)

-> SpectrumReadSerializer:↪→

entity = await self.repository.get_by_filename(filename)

return SpectrumReadSerializer(**entity.model_dump())
...

Code listing 5.8 Service usecases for spectra operations.

API router. The REST API router for spectral data, implemented as a
FastAPI REST router in src/spectra/api/rest.py, binds HTTP transport
to the SpectrumService. The single GET endpoint is fully annotated with
path parameter validation (against the LAMOST filename pattern), operation
tags, response model, status codes, and human‐readable summaries and de-
scriptions. Invalid inputs (e.g., invalid filenames) are rejected with HTTP 422,
a missing spectrum triggers a caught SpectrumNotExistError translated into
HTTP 404, and any unexpected failures result in HTTP 500.

Method URI Success Errors
GET /{filename} 200 404, 422, 500

Table 5.2 API REST mapping for spectra endpoints.



Chapter 6

Conclusion

A comprehensive analysis of the legacy VO-CLOUD platform was performed,
revealing a tightly coupled Java EE monolith, server-side UI rendering, par-
tial containerization, and outdated protocol implementations. These findings
specified a complete rewrite with precise functional and non-functional require-
ments: a JSON-first REST API, UWS-inspired job phases, modular job types,
FIFO task queuing, and fully containerized deployment.

To meet these requirements, modern technologies were selected according
to best practices. FastAPI application now powers the back-end API, Celery
with RabbitMQ manages asynchronous job dispatch, and PostgreSQL provides
reliable metadata storage. Docker containers and Docker Compose orchestrate
all services. This combination establishes a lightweight microservices architec-
ture with clear separation of concerns between API, queue, Workers, and data
storage.

The machine learning and data preprocessing modules from Alisher Laiyk’s
work have been integrated and adapted into this new infrastructure. His front-
end application was connected via a shared Docker Compose configuration,
aligning with the designed zones of responsibility.

An initial implementation, ML Job Manager, realizes this architecture.
It converts raw LAMOST FITS files into uniform wavelength grids, drives
active-learning loops with user-in-the-loop labeling, and stores results in a
PostgreSQL database. Job definitions, logs, and metrics flow through FastAPI
endpoints and Celery Workers, forming the skeleton of a scalable, maintain-
able system. All code is released under a permissive open source license to
encourage community contribution.

Looking ahead, the result is a unique open-source platform tailor-made for
large-scale astronomical spectra analysis and interactive ML workflows.

The original VO-CLOUD core has been thoroughly reengineered into a
container-first, microservices-based system that meets today’s portability, scal-
ability, and developer productivity standards. All project goals have been met,
and the system is now ready for future enhancements.
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Appendix A

Nějaká příloha

Sem přijde to, co nepatří do hlavní části.
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