
SCIENCE PLATFORM
FOR MACHINE
LEARNING OF BIG
ASTRONOMICAL DATA –
DATA ANALYSIS
MODULES

Alisher Laiyk

Bachelor’s thesis
Faculty of Information Technology
Czech Technical University in Prague
Department of Software Engineering
Study program: Informatics
Specialisation: Software engineering
Supervisor: RNDr. Petr. Škoda,CSc.
May 16, 2025

Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Science platform for machine learning of big astronomical

data - data analysis modules

Alisher Laiyk

RNDr. Petr Škoda, CSc.

Informatics

Software Engineering 2021

Department of Software Engineering

until the end of summer semester 2025/2026

Instructions

Science Platform is an emerging cloud-based technology for processing and exploratory

analysis of big data sets in astronomy and earth sciences. The goal of the thesis is the

design, implementation, testing and integration of several data analysis modules

needed for performing selected machine learning methods on a large volume of

astronomical spectra (namely active deep learning and dimensionality reduction as e.g.

tSNE, PCA, UMAP) including various methods of preprocessing and data visualization.

This thesis is complemented by the thesis of Olexandr Burakov focused on development

of a cloud infrastructure allowing to launch these modules according to simple workflow

manager through custom API.

The key tasks are:

1) Analyse data and parameters requirements of the typical machine learning

procedures applied on spectra, mainly the active deep learning and tSNE.

2) Identify the best libraries for performing selected algorithms of pre-processing,

active deep learning and dimensionality reduction as well as solutions for Big Data

visual analysis.

3) Wrap such data analysis modules by the API defined in thesis of O. Burakov.

4) Prepare simple workflow scripts allowing to run the modules through the above

mentioned API.

5) Demonstrate the correct functionality of workflows on a suitable data sets (e.g.

LAMOST or SDSS spectra).

Electronically approved by Ing. Michal Valenta, Ph.D. on 8 November 2024 in Prague.

6) Integrate the modules with the help of O. Burakov into his cloud infrastructure

7) Discuss the performance and flexibility of your solution and suggest future

improvements and extensions towards much larger and different type of astronomical

data sets (e.g. light curves, images).

Recommended literature and suggested tools and libraries will be provided by

supervisor.

Electronically approved by Ing. Michal Valenta, Ph.D. on 8 November 2024 in Prague.

Czech Technical University in Prague
Faculty of Information Technology
© 2025 Alisher Laiyk. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Laiyk Alisher. Science platform for machine learning of big
astronomical data – data analysis modules. Bachelor’s thesis. Czech Technical Uni-
versity in Prague, Faculty of Information Technology, 2025.

I would like to thank my supervisor RNDr. Petr Škoda
CSc.for his help and advice in writing this thesis. My
deep gratitude also goes to my family and friends, who
supported me during my studies.

iv

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations sti-
pulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Section 2373(2) of Act No. 89/2012 Coll., the Civil Code, as
amended, I hereby grant a non-exclusive authorization (licence) to utilize this
thesis, including all computer programs that are part of it or attached to it and
all documentation thereof (hereinafter collectively referred to as the ”Work”),
to any and all persons who wish to use the Work. Such persons are entitled
to use the Work in any manner that does not diminish the value of the Work
and for any purpose (including use for profit). This authorisation is unlimited
in time, territory and quantity.

I declare that I have used AI tools during the preparation and writing of
my thesis. I have verified the generated content. I confirm that I am aware
that I am fully responsible for the content of the thesis.

In Prague on May 16, 2025

v

Abstract

The aim of this thesis was to implement analysis modules for applying selected
machine learning methods on astronomical spectra. As a result of this thesis
preprocessing, active deep learning, dimensionality reduction modules, and the
front-end part for a cloud-based platform were implemented. All modules are
runnable from the terminal. Moreover, preprocessing and active deep learning
modules can be launched through a web interface. Using those modules enables
to find interesting and unusual astronomical spectra.

Keywords web application, astronomical spectra, active learning, prepro-
cessing, deep learning, dimensional reduction, React, Python, LAMOST DR2

Abstrakt

Cílem této práce bylo implementovat analytické moduly pro aplikaci vybraných
metod strojového učení na astronomická spektra. Výsledkem této práce byla
implementace modulů předzpracování, aktivního hlubokého učení, redukce di-
menzí a front-endové části pro cloudovou platformu. Všechny moduly jsou
spustitelné z terminálu. Moduly předzpracování a aktivního hlubokého učení
lze navíc spouštět prostřednictvím webového rozhraní. Použití těchto modulů
umožňuje vyhledávat zajímavá a neobvyklá astronomická spektra.

Klíčová slova webová aplikace, astronomická spektra, aktivní učení, předzpra-
cování, hluboké učení, redukce dimenzí, React, Python, LAMOST DR2

vi

Contents

Introduction 1

1 Analysis 2
1.1 Astronomical data . 2

1.1.1 Astronomical spectroscopy 2
1.1.2 Astronomical spectrum 2

1.1.2.1 Electromagnetic spectrum 2
1.1.3 Storage format . 3

1.1.3.1 FITS . 3
1.1.3.2 HDF5 . 3

1.1.4 LAMOST data . 3
1.2 Active deep learning . 3

1.2.1 Deep learning . 4
1.2.2 Convolutional neural networks 4
1.2.3 Class balancing . 4
1.2.4 Active learning . 4

1.2.4.1 Query Strategy 5
1.2.5 Performance estimation 5

1.3 Spectra preprocessing . 5
1.4 Dimensionality reduction . 6
1.5 VO-CLOUD . 6

1.5.1 Active deep learning job 6
1.6 Requirements . 7

1.6.1 Functional requirements 7
1.6.2 Non-functional requirements 8

2 Design 9
2.1 Analysis modules . 9

2.1.1 Active deep learning module 9
2.1.1.1 Configuration file 10

2.1.2 Preprocessing module 11
2.1.2.1 Configuration file 11

2.1.3 dimensionality reduction module 11
2.1.3.1 Configuration file 11

2.2 Front-end . 12
2.2.1 Angular . 12

vii

Contents viii

2.2.2 React . 12
2.2.3 Next.js . 13
2.2.4 Considerations . 13

3 Implementation 14
3.1 Modules . 14

3.1.1 Code modification . 14
3.1.2 Active deep learning . 14

3.1.2.1 Output . 15
3.1.3 Preprocessing . 16

3.1.3.1 Output . 16
3.1.4 Dimensionality reduction 16

3.1.4.1 Output . 16
3.1.5 Integration . 17

3.2 Front-end . 17
3.2.1 Styling . 17
3.2.2 Communication with infrastructure 17
3.2.3 Pages . 19
3.2.4 Job listing . 19

3.2.4.1 Job creation 20
3.2.4.2 Job Detail . 20
3.2.4.3 File system . 23

3.3 Workflow . 25
3.3.1 Launching . 26

4 Discussion 28
4.1 Performance . 28
4.2 Future improvements . 28

5 Conclusion 30

A Launching the programs 31

Contents of the attachment 37

List of Figures

3.1 New platform model. 18
3.2 Home page and navigation bar. 19
3.3 Job listing. 19
3.4 Active learning job’s creation form. 20
3.5 Job’s information and files on job’s detail page. 21
3.6 Spectrum labeling. 22
3.7 Plot of training data containing 60 spectra after applying t-SNE. 22
3.8 Performance estimation plot. 23
3.9 Plot of preprocessed spectrum. 23
3.10 Displaying file system. 25

List of Tables

List of Code listings

3.1 Example of application of t-SNE method. 16
3.2 Example of button . 17
3.3 Example of plot rendering component. 24
3.4 Example of preprocessing job’s configuration file. 25
3.5 Example of active learning job’s configuration file for zero iter-

ation. 26
3.6 Example of active learning job’s configuration file for first and

subsequent iterations. 26
3.7 Front-end Dockerfile. 27
3.8 Front-end Docker Compose file. 27

ix

List of Code listings x

A.1 Example of module launching. 31

List of abbreviations

API Application Programming Interface
DOM Document Object Model
CNN Convolutional neural network
FITS Flexible Image Transport System
GPU Graphics processing unit
HDF5 Hierarchical Data Format Version 5
HTML HyperText Markup Language
JSON JavaScript Object Notatio

LAMOST DR2 The Large Sky Area Multi-Object Fiber
Spectroscopic Telescope Data Release 2

REST API Representational State Transfer Applica-
tion Programming Interface

t-SNE t-Distributed Stochastic Neighbor Emed-
ding

XHTML EXtensible HyperText Markup Language

xi

Introduction

The datasets in astronomy are vast, with some observatories gathering ter-
abytes of information daily. This sheer volume exceeds the capabilities of
manual processing and analysis. Therefore, astronomers use machine learning
algorithms to identify valuable data. [1]

The VO-CLOUD platform provided opportunities for processing and ana-
lyzing large astronomical data [2, 3]. Currently, it requires refactoring.

The aim of this thesis was to design, implement, and integrate several data
analysis modules necessary to apply selected machine learning methods on a
large dataset of astronomical spectra. That is, pre-processing, active deep
learning, and dimensionality reduction. In addition, a new front-end was de-
veloped. This thesis is complemented by the thesis of Olexandr Burakov, who
developed the platform’s infrastructure. The preprocessing and active deep
learning modules were integrated into the back-end, while the dimensionality
reduction module was left standalone.

This thesis commences with an analytical chapter that provides an overview
of astronomical data, a review of module analyses, and a discussion of the VO-
CLOUD platform. The second chapter details the configuration of each module
and the selection of technologies used in the front-end. The third chapter
discusses the implementation and integration of analysis modules, alongside
the development of the front end. Finally, a review of the implementation, its
performance, and potential improvements in features are given.

In this thesis, the code [4] developed by Ing. Ondřej Podsztavek during his
bachelor’s thesis [5] and writing the article [6] was utilized.

1

Chapter 1

Analysis

1.1 Astronomical data
In this section, the astronomical spectrum and its properties are discussed,
and file formats are reviewed to store such data.

1.1.1 Astronomical spectroscopy
Spectroscopy is one of the most important tools in astronomy for exploring the
universe. It enables the identification of chemical compositions and physical
properties of astronomical sources. [7]

1.1.2 Astronomical spectrum
Spectrum is a plot that shows the intensity of emitted light over a range of
energies. Each spectrum contains a wide variety of data. [8]

1.1.2.1 Electromagnetic spectrum
White light(visible or optical light) can be divided into its constituent colors,
resulting in the rainbow. A rainbow is a continuous spectrum that displays
the varying light energies present in white light. The electromagnetic spectrum
includes a variety of light energies beyond white light. It covers all energies of
light, extending from low-energy radio waves, through microwaves, infrared,
optical light, ultraviolet, high-energy X-rays and gamma rays. [8]

2

Active deep learning 3

1.1.3 Storage format
The next subsections describe the files format in which astronomical data are
often stored.

1.1.3.1 FITS
Flexible Image Transport System (FITS) is the data format most commonly
used in astronomy for transporting, analyzing and storing scientific data files.
FITS is mainly used to store scientific data set presented as multidimensional
arrays and 2-dimensional tables structured into rows and columns containing
data. [9]

1.1.3.2 HDF5
The Hierarchical Data Format version 5 (HDF5) is a file format supporting
massive, complex, and diverse data. HDF5 can be seen as a file system con-
tained within a single file. In HDF5, directories are called groups and files are
called datasets. Groups may include other groups or datasets inside them.
Datasets include the actual data in the file, and are often contained in other
groups. Moreover, each group and dataset may have metadata, which describe
the data within them. [10]

1.1.4 LAMOST data
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)
is located in China. The second LAMOST data release 2 (DR2) contains
4,136,482 spectra. The wavelengths of the LAMOST spectra cover the range
of 3100-9100 angstrom(Å), where one angstrom is equal to 10−10 meters. The
LAMOST DR2 contains:

3,784,461 stars.

37,206 galaxies.

8,630 quasars.

306,185 unknown objects. [11]

1.2 Active deep learning
Using standard machine learning algorithms on astronomical spectra data
without a proper training set would give an inaccurate result. This is why
the convolutional neural network (CNN) should be applied, as it has been
used effectively in astronomy and astrophysics. However, applying CNN alone
is insufficient, they must be combined with class balancing and active learning
for effectiveness. [6]

Active deep learning 4

1.2.1 Deep learning
Traditional machine learning approaches had constraints in processing raw
data. For years, developing an effective machine learning system required
thorough research to create a transformation from raw data to a representation
or feature vector, which is utilized by the learning system for data classification.
To remove this constraint, representation learning is used; it can take raw
data and automatically extract representations. Deep learning approaches are
a form of representative learning with multi-layer representations, consisting
of non-linear modules, where each module transforms the representation from
one level to a higher-level representation. [12]

Numerous deep learning applications use feedforward neural networks, which
aim to map inputs and outputs of consistent size. To move between layers,
a group of units computes a weighted sum of their inputs derived from the
preceding layer and then applies a linear function to this result. [12]

1.2.2 Convolutional neural networks
The convolutional neural network (CNN, ConvNet) is a type of deep feedfor-
ward network that handles data in multiple arrays. Typical CNN is organized
as a series of stages. The first few stages consist of two types of layers: convo-
lutional layers and pooling layers. In a convolutional layer, units are formed
in feature maps, where each unit connects to specific areas in the feature maps
of the earlier layer through a collection of weights, which are named a filter
bank. The output of the locally weighted sum is fed into a non-linear function.
One instance of a filter bank is shared between all units in one feature map.
Each feature map in a layer uses distinct filter banks. The feature map carries
out a filtering operation as a discrete convolution. In the pooling layer, similar
features are combined into one. [12]

1.2.3 Class balancing
Usually, labeled target spectra are less common compared to labeled non-
target spectra. Hence, the labeled training data will be unbalanced and the
target spectra will represent a small minority. To overcome this problem, the
synthetic minority oversampling technique (SMOTE) will be applied. SMOTE
will equate the count of labeled target spectra with the count of labeled non-
target spectra. [6]

1.2.4 Active learning
Active learning is a specialized subfield of machine learning in which the learner
selects the most informative sample for labeling. This concept not only im-
proves algorithm performance, but at the same time reduces the amount of

Spectra preprocessing 5

training samples, which is essential detail since sometimes obtaining large
amount of training samples is challenging. Active learning solves this problem
by querying the oracle to label selected unlabeled samples. [13]

There are several types of active learning scenarios, in this thesis work
pool-based active learning is used, where the learner selects an unlabeled
sample from a static pool [13].

1.2.4.1 Query Strategy
Active learning requires the evaluation of the informativeness of the unlabeled
sample. The most basic and widely used query strategy is the uncertainty
sampling. In this strategy, the learner queries the samples where it is least
confident. The uncertainty measure will be calculated through the entropy:

x∗ENT = argmax
x

−
∑
i

P (yi | x; θ) logP (yi | x; θ).

where yi covers all possible labels. [13]

1.2.5 Performance estimation
Monitoring the CNN’s performance is necessary for determining when to end
active learning iterations. Active learning stops when newly labeled spectra
no longer increase CNN performance. Performance precision estimated as:

precision =
TP

TP + FP

where TP (truly positive) represents the count of correctly predicted target
spectra and FP (false positive) represents the count of incorrectly predicted
target spectra. [6]

1.3 Spectra preprocessing
To utilize active deep learning, spectral data have to be structured as a mat-
rix, where each row corresponds to an individual spectra sample, while each
column corresponds to a flux measurement at specific wavelengths. Thus, each
spectrum needs to be transformed to have the same wavelengths [5]. A specific
interval of wavelengths and uniform points within it will be selected.

After that, the min-max normalization is applied, which will scale the
spectral flux into a unit-less range from -1 to 1 using equation [6]:

x′ = 2 · x−min(x)

max(x)−min(x)
− 1

Where x is an unscaled spectrum and x′ is a scaled spectrum. This was done
for the following reasons:

Dimensionality reduction 6

Spectra are classified according to their forms [6].

The value of [-1, 1] is suitable for applying CNN [6].

Spectra will map to the same space after dimensionality reduction [5].

1.4 Dimensionality reduction
Following preprocessing, each spectrum is represented as a point in high-
dimensional space. In order to better understand the data, dimensionality
reduction should be used. [5]

t-Distributed Stochastic Neighbor Emedding(t-SNE) dimensionality reduc-
tion algorithm that transforms each point from a high-dimensional space to
a point in 2-dimensional or 3-dimensional space. t-SNE is like Stochastic
Neighbor Embedding(SNE), but it applies a heavy-tailed distribution in a
low-dimensional space, which solves the disadvantages of SNE. [14]

1.5 VO-CLOUD
VO-CLOUD is a distributed system for applying machine learning algorithms
on big astronomical data. The user invokes these algorithms as computational
tasks called jobs [2, 3]. Currently, VO-CLOUD requires refactoring because
certain functionalities are non-operational(such as using Jupyter [15], launch-
ing jobs), and adding new functionalities to the system is impossible. The
platform’s infrastructure was developed by Olexandr Burakov.

The front-end part needs to be refactored for the following reasons:

VO-CLOUD uses XHTML that is no longer supported [16].

The back-end is responsible for generating HTML for the front-end, which
means that any change to the user interface requires modifications in the
back-end code.

Jobs at the end of their completion must produce HTML code that displays
the result. [2]

1.5.1 Active deep learning job
One of the VO-CLOUD’s jobs was an active deep learning job developed by
MUDr. Tomáš Mazel Ph.D. This job used a CNN model [4] developed by
Ing.Ondřej Podsztavek. For saving the result CSV [17] files were used, while
the metadata was stored using Elasticsearch [18]. [19]

However, this job also requires refactoring primarily because the code [20]
is difficult to maintain:

Requirements 7

Functions contain too much code and accept too many parameters (some-
times unused).

The code is highly nested.

Code is not logically divided to smaller function or modules.

In addition, storing large astronomical datasets in a CSV file can result in
excessive memory usage and considerably slow down the processes of reading
and writing [21].

1.6 Requirements
Requirements are often divided to two types:

1. Functional: outlines the types of functionalities the system must possess.

2. Non-functional: outline the necessary quality constraints that functionali-
ties must satisfy. [22]

1.6.1 Functional requirements
1. The user can launch modules from the terminal.

2. The user can create preprocessing and active deep learning tasks (jobs)
using JSON configuration files and launch them through the web interface.

3. The user can abort running jobs through the web interface.

4. The user can delete jobs through the web interface.

5. The user can view a list of all jobs.

6. The user can download the results of successfully finished jobs.

7. The user can upload, download, and delete files and directories from the
platform’s storage.

8. After completing the active deep learning job, the user can see the plot of
the raw and preprocessed spectrum and some of their metadata.

9. After completing the active deep learning job, the user can label samples
and evaluate the job’s performance.

Requirements 8

1.6.2 Non-functional requirements
1. The preprocessing and active deep learning modules are integrated into the

platform infrastructure.

2. If the displayed job is still running, the system will check every 10 seconds
the status of the job until the job is finished.

3. The user can not delete the processing job.

Chapter 2

Design

In this chapter, module analysis and front-end design will be discussed.

2.1 Analysis modules
Just like in VO-CLOUD [2, 3] each module is configured with a JSON file and
outputs some files. The preprocessing and active deep learning module can be
launched through the web interface. All modules can be launched from the
terminal. Nevertheless, it is recommended to use the web interface.

In the preprocessing and active deep learning module, the code [4] devel-
oped by Ing. Ondřej Podsztavek during his bachelor’s thesis [5] and writing
the article [6] will be used.

2.1.1 Active deep learning module
In this module CNN model [4] developed by Ing. Ondřej Podsztavek will be
used. It has an input layer containing 140 units and an output layer containing
3 units with softmax activation. In the convolutional layer all filters with size
3 pixels and without padding. The initial two layers contain 64 filters, the
subsequent two contain 128 filters, and the final pair of layers features 256
filters. Following every two convolutional layers, there is a max-pooling layer
with a size of two pixels with a stride of two. After the final max-pooling layer,
there are two fully-connected layers, each containing 512 units, with a dropout
rate of 0.5 applied during training. Model is implemented using Tensorflow
framework. [5]

The TensorFlow framework is developed by Google. It provides a wide
range of tools and libraries for machine learning. TensorFlow has been applied
both within computer science and across other scientific fields. [23]

9

Analysis modules 10

2.1.1.1 Configuration file
Some of the following parameters were also present in the previous implemen-
tation of the active deep learning module [19]. Parameters for model training,
prediction, and saving, and a path to the performance estimation file were
added.

iteration: iteration number.

training_data_path: path to the HDF5 file that contains training data.

pool_data_path: path to the HDF5 file that contains the pool data.

classes: list used for spectra classification.

candidate_classes: list of candidate classes.

training_data_to_add_path: path to HDF5 file containing the oracle
spectra.

oracle_data_to_add_path: path to JSON file containing labels for
oracle spectra. Those spectra and labels will be added to the training
data.

oracle_batch_size: the number of spectra that need to be labeled by
the oracle. The default value is 100.

perf_est_batch_size: the number of spectra to calculate the perfor-
mance estimation. The default value is 10.

perf_est_list_path: path to JSON file consisting of performances from
previous iteration. Is required starting from second iteration.

show_candidates: if true, shows spectra that were predicted as candi-
date class, otherwise does not. The default value is false.

save_model: if true, saves model. The default value is false.

epochs_train: number of iterations to train the model, one interaction
goes through the entire training data [24]. The default value is 6400.

batch_size_train: sample count for every gradient update [24]. The
default value is 64.

min_delta_train: change in the monitor metrics that can be treated as
improvement [25]. The default value is 0,004.

patience_train: number of epochs without improvements after which
model training is terminated [25]. The default value is 10.

Analysis modules 11

batch_size_predict: samples count per batch [24]. The default value is
16384.

Similar to the previous implementation of the active deep learning module [19],
iterations start from 0. The 0 iteration is distinct, serving specifically to pre-
pare the initial training data without applying deep learning. The default
values for model training and prediction were hard-coded in code [4], which is
why they were chosen as default ones.

Provided HDF5 files must have filenames, wave, fluxes datasets. Addi-
tionally, for training data labels dataset is required, which contains integer
corresponding to the classes indexes.

2.1.2 Preprocessing module
For spectra transformation, the NumPy 1.25.0 library is used. It is a scien-
tific computing library in Python that provides a multidimensional array and
various fast operations on them. [26, 27]

For spectra scaling, the scikit-learn 1.6.1 library is used, which provides
various machine learning algorithms. [28, 29]

2.1.2.1 Configuration file
Preprocessing module configuration parameters:

wave_start_point: starting wavelength in angstroms.

wave_end_point: ending wavelength in angstroms.

wave_point_count: count of fluxes within the selected wavelength in-
terval.

data_dir_path: path to directory that contains LAMOST DR2 spectra
in FITS files.

2.1.3 dimensionality reduction module
For dimensionality reduction scikit-learn 1.6.1 [29] library is used.

2.1.3.1 Configuration file
The configuration file will contain only two parameters:

data_path: path to HDF5 containing pre-processed spectra.

classes: classification classes.

Provided HDF5 files must have fluxes and labels datasets.

Front-end 12

2.2 Front-end
In the next subsections, various web frameworks and technologies are dis-
cussed.

The design of the web interface will be similar to the design of the VO-
CLOUD [2, 3, 19] platform, which will help current users transition to the new
web interface without any need to relearn the user interface.

2.2.1 Angular
Angular is a web framework created by Google that relies on TypeScript. It
employs two-way data binding, allowing real-time synchronization between the
data model and the user interface. Through the use of dependency injection,
developers can craft modular components that are both easy to maintain and
test. Additionally, Angular provides built-in libraries that offer extensive fea-
tures like routing, form management, and more. [30, 31]

Angular’s learning curve is steep due to its complex architecture. Angu-
lar applications generally have larger bundle sizes of data compared to other
frameworks due to the integration of numerous libraries and features. This
results in slower loading times. To solve these issues, specific strategies or pat-
terns must be applied. Using Angular for a small application may lead to poor
performance. Angular is frequently updated, leading to refactoring of existing
code. [31]

2.2.2 React
React is a library developed by Meta company for building user interfaces.
It uses JavaScript Syntax Extension (JSX), which combines JavaScript and
HTML, and is used for creating React components. These components are
reusable and can be combined with other components to form a complex user
interface. Data between components is passed in one direction, from the parent
component to the child component. One of the important React features is a
virtual DOM(Document Object Model), which is an instance of the original
DOM [32]. Updating the entire DOM is slow, but the virtual DOM only
updates the specific parts, making updates much more efficient. [33, 34].

React is regularly updated, requiring developers to always monitor changes.
Due to frequent updates, the React documentation may not be immediately
updated. Without proper optimization, components may cause unnecessary re-
renders. React serves as a library for building user interfaces, not a full-fledged
framework, which leads to the necessary integration of certain technologies and
libraries. [34, 35]

Front-end 13

2.2.3 Next.js
Next.js is a framework developed by Vercel for building web applications using
React components. In a Next.js application, the HTML page is rendered on
the server side, and then React makes it interactive on the client side using
JSON data and JavaScript. In addition, it supports statically generated web
pages. Instead of manually creating routes for the web application, they are
generated from the folder structure of the web application. When a page is
loaded, not all scripts are downloaded, they will be downloaded as needed,
which improves application performance. Next.js enables the creation of API
Routes, which can be used to create your own endpoints. [34, 36]

Similar to Angular and React, Next.js receives regular updates, requiring
developers to spend more time learning new features and refactoring existing
projects. Next.js has a hard learning curve, it introduces some concepts that
are hard to learn. Connecting routing logic directly to pages complicates page
maintenance. As the application expands, the build time increases. [34, 37]

2.2.4 Considerations
Currently, the front-end needs to support only a certain number of function-
alities:

1. Displaying jobs with pagination.

2. Using the platform’s file system.

3. Creating, launching, aborting, and deleting a job.

4. Downloading the result of the job.

5. Spectra labeling.

These functionalities do not require complex logic. Thus, using Next.js or
Angular framework for their development is not necessary. Hence, React was
chosen to implement the front-end.

Moreover, Vite build tool will be used, which provides faster development.
It has a dev server containing superior features compared to native JavaScript
modules [38]. The Tailwind CSS framework is applied for styling, offering
classes that can be combined to create new designs [39]. JavaScript will be
replaced with TypeScript [40] due to its static typing.

Chapter 3

Implementation

In this chapter, data analysis modules and the front-end implementation will
be discussed.

3.1 Modules
Each module takes two parameters: the path to the configuration file and the
path to the directory where the result of the module will be saved.

3.1.1 Code modification
The code written by Ing. Ondřej Podsztavek requires modification, since it is
programmed to process the wavelength of the spectra within the interval from
6519Å to 6732Å, using 140 uniform points along this range, and classifies the
spectra into three distinct classes.

3.1.2 Active deep learning
CNN model [4] was updated, now it works with different numbers of classes,
waves, and uniform points. The model training and prediction parameters are
now configurable. After loading the configuration, the workflow of the module
for the first and further iterations:

1. Reads training and pool data. Duplicate data is removed. Additionally,
any training data present within the pool dataset is also excluded from
the pool. The consistency between waves from training and pool data is
verified to ensure they match.

2. After successful loading, training data is balanced, then the model training
and prediction starts.

14

Modules 15

3. For each spectrum, the entropy is calculated, and label with the highest
probability is taken.

4. Selecting spectra with the highest entropy for oracle labeling. Identifying
spectra predicted as candidate classes and a random subset of those spectra
for performance estimation.

5. Necessary files are created, and the result is saved to an HDF5 file.

Workflow for zero iteration is simpler; it only takes the first count of the spectra
from the pool data for labeling and creates files.

3.1.2.1 Output
After successful completion, several files were created:

1. training_data.h5: HDF5 file containing training data from current job.

2. new_config.json: configuration file for next iteration.

3. dim_reduc.json: contains data for scatter plot after t-SNE applying on
training data. Will not be created in zero iteration.

4. perf_est_list.json: contains performances from previous iterations. Will
not be created in zero iteration.

5. result.h5: HDF5 file containing the result of the job with the following
datasets:

filenames: contains the filenames of LAMOST DR2 spectra.
wave: contains preprocessed waves.
fluxes: contains preprocessed fluxes.
labels: contains labels predicted by CNN.
entropies: contains entropies(informativeness) of spectra.
oracle_indexes: contains the indexes of spectra, which were selected
for labeling.
perf_est_indexes: contains the indexes of spectra, which were se-
lected to calculate the performance estimation.
candidate_indexes: contains the indexes of spectra, which were pre-
dicted as candidate class. Will not be created if the show_candidate
parameter in the configuration is false.

Using indexes from oracle_indexes, perf_est_indexes, candidate_indexes
on the filenames or fluxes dataset, you will obtain the corresponding spec-
trum filename and fluxes.

Modules 16

3.1.3 Preprocessing
Spectrum wave and fluxes are now configurable. After loading the configura-
tion, the workflows of module:

1. Transform new wave for spectra.

2. Reads each spectrum filename, wave and fluxes from FITS file in the pro-
vided directory, and transform fluxes.

3. After reading and transforming all spectra, applies fluxes scaling.

4. Saves the result.

3.1.3.1 Output
The result will be saved to HDF5 file result.h5 with the following datasets:

1. filenames: contains the names of spectra.

2. wave: contains preprocessed waves.

3. fluxes: contains a list of preprocessed fluxes.

3.1.4 Dimensionality reduction
Workflow of the module after loading the configuration:

1. Reading fluxes and labels from the provided HDF5 file.

2. Applying t-SNE algorithm on fluxes.

3. Constructing the plot.

4. Saving the result.

from sklearn.manifold import TSNE

tsne = TSNE(random_state=42)
fluxes_embedded = tsne.fit_transform(fluxes)

Code listing 3.1 Example of application of t-SNE method.

3.1.4.1 Output
The result of the module is a picture of a constructed scatter plot after applying
t-SNE and dim_reduc.json file containing data for recreating the scatter
plot.

Front-end 17

3.1.5 Integration
After the modules were implemented, with the help of Olexandr Burakov they
were integrated into an infrastructure he had developed. The dimensionality
reduction module was not directly integrated, but is invoked inside the active
deep learning module to visualize the training data. Together with Olexandr
Burakov we refactored the module’s code to match his coding style, added
configuration validation and documentation.

LAMOST DR2 FITS files are divided into many directories. In the infras-
tructure, all these directories are located in one root directory. When writing
the configuration for the preprocessing job, the path to the directory contain-
ing LAMOST DR2 FITS file needs to be written relative to the root directory,
for example /name_of_directory.

Moreover, spectra that were selected for oracle labeling, performance es-
timation, and were predicted as candidate classes, are saved to the database
using the API that was defined by Olexandr Burakov.

3.2 Front-end
In this section, the structure and functionalities of the implemented front-end
are discussed. Moreover, active deep learning job has been shortened to active
learning job.

3.2.1 Styling
As was said before, for styling Tailwind CSS [39] framework is used. The
following code demonstrates styling a button using Tailwind classes:

<button className="p-2 bg-blue-600 text-white rounded
cursor-pointer disabled:opacity-50 hover:bg-blue-800">↪→

button text
</button>

Code listing 3.2 Example of button

The button that is produced has a blue background with white text and
rounded edges. When hovered over, the background becomes darker and the
cursor changes to a pointer. If the button is disabled, its opacity decreases
to 50 %.

3.2.2 Communication with infrastructure
All communication between the front-end and the platform infrastructure oc-
curs over a RESTful API [41]. When the front-end sends an HTTP [42] re-

Front-end 18

quest(creating a new job, starting a job, uploading a file, etc), the infrastruc-
ture accepts the request and executes the corresponding workflow. Figure 3.1
demonstrates the entire platform model.

Figure 3.1 New platform model.

Front-end 19

3.2.3 Pages
The navigation bar is fixed on all pages to navigate through the web interface.

Figure 3.2 Home page and navigation bar.

3.2.4 Job listing
The list of jobs is displayed in a table using pagination and shows the phase,
type, identifier, label, timestamps, and execution duration of each job. For
enhanced clarity, jobs are color-coded according to their phase:

PENDING – white. The job is created, but is not started.

PROCESSING – yellow. The job is running.

ABORTED – purple. The job was aborted during the PROCESSING
phase.

ERROR – red. The job ended with an error.

COMPLETED – green. The job successfully completed.

If at least one job in the list is in the PROCESSING phase, every 10 seconds,
the job’s phase will be checked until the job is finished. To view more detail
about job’s detail,

Figure 3.3 Job listing.

Front-end 20

3.2.4.1 Job creation
To create a new job, click on the appropriate button above the job table.
After that, the form creation needs to be filled, label and configuration fields
are required, description is optional. The user can fill configuration in one of
the following ways:

Write the configuration directly.

Upload the configuration file. After uploading, the contents of the file are
displayed for the user to review and edit.

Upload the template and then edit it. The template will contain all con-
figuration fields for this job.

An error message will be displayed if the label is empty, or the configuration
is empty or invalid. After successful job creation, the user will be redirected
to the job’s detail page.

Figure 3.4 Active learning job’s creation form.

3.2.4.2 Job Detail
The user can view the job details on this page and control its execution: start-
ing, aborting, and deleting. Deletion is not allowed if the job is in the PRO-
CESSING phase. After the job is finished log file is created, and regardless
of whether it is in ABORTED, ERROR, or COMPLETED phase, the job can
not be restarted. Similar to the job listing page, if the job is in the PROCESS-
ING phase, every 10 seconds, the job’s phase will be checked until the job is
finished. Moreover, the user can view and download files in the job directory.

Front-end 21

Once a job has been successfully finished, it transitions into the
COMPLETED phase. In this phase, the user can view the job results. For
the preprocessing job, the user can only download the result file. However, the
active learning job detail page has additional functionalities.

Figure 3.5 Job’s information and files on job’s detail page.

In the COMPLETED phase of the active learning job, the user reviews
several spectra and can label them. Each spectrum will be colored depending
on its set:

ORACLE – gray. Spectra selected for oracle labeling.

PERFORMANCE_ESTIMATION – orange. Randomly chosen spec-
tra to evaluate performance.

CANDIDATE – blue. Spectra predicted as candidate classes.

The user labels the spectra using radio buttons and has the option to
add a brief comment to each spectrum. For navigating between spectra prev
and next buttons are used, Additionally, upon selecting the radio button, the
next spectrum in the list will be automatically selected. After clicking submit
button following steps is happens:

Saving labeled and commented spectra to the database.

If any oracle spectrum were labeled, names and labels of all user labeled
oracle spectra will be saved to the oracle_data.json file, which is used in
the next iteration to adding oracle spectra to the training data.

If all spectra from PERFORMANCE_ESTIMATION set were labeled, per-
formance for current iteration will be calculated and the result will be saved
to perf_est_list.json file.

Front-end 22

It is not mandatory to label every oracle spectrum, at least one is enough.
However, for estimating performance, all spectra from PERFORMANCE_ES-
TIMATION set need to be labeled. If the user attempts to start the job for
the next iteration without estimating the performance for the current iteration,
the job will fail.

Information about labeling displays how many spectra from ORACLE and
PERFORMANCE_ESTIMATION set are labeled and saved. The user can
view a scatter plot of training data after t-SNE is applied, and view a plot
of performance by clicking corresponding buttons, those buttons are not pre-
sented if job’s iteration is 0.

Figure 3.6 Spectrum labeling.

Labels for figure 3.7 and values for figure 3.8 were randomly generated for
illustration purposes.

Figure 3.7 Plot of training data containing 60 spectra after applying t-SNE.

Front-end 23

Figure 3.8 Performance estimation plot.

The user can view the preprocessed plot of the currently selected spectrum.
In addition, the user has the option to view a raw plot and metadata of the
current spectrum by clicking the button under the preprocessed plot.

Figure 3.9 Plot of preprocessed spectrum.

The Plotly [43] library is used to render interactive plots. A specific area
of a plot can be zoomed in on by drawing a box, or the plot can be panned. To
switch between these two modes, the user needs to hover over the plot; several
buttons will then appear in the top-right corner, and the user can click the
desired one. To restore the initial view, the user can double-click on the plot
or click the “reset axes” button in the top-right corner. By hovering over a
data point, the user can see its value. In addition, the user can download an
image of the plot. See code listing 3.3 to view an example of rendering a plot.

3.2.4.3 File system
�On this page, the user can interact with the platform’s storage, which is
displayed as a file system. Initially, files are displayed along with their size in
bytes and the date they were last modified, followed by a list of directories.
Directories are distinguishable from files by being underlined and highlighted
in blue. To open a directory, the user needs to click on its name. The user can
also create new directories and upload files. If a file with an identical name as

Front-end 24

import React from 'react';
import Plot from "react-plotly.js";

interface PlotProps {
title: string;
waves: number[];
fluxes: number[];

}

const SpectrumPlot: React.FC<PlotProps> = ({title, waves,
fluxes}) => {↪→

return (
<div>

<Plot
data={[{ x: waves, y: fluxes}]}
layout={{

title: {text: title},
xaxis: {

title: {text: 'Wavelengths'},
zeroline: false

},
yaxis: {

title: {text: 'Fluxes'},
zeroline: false

},
autosize: true

}}
style={{width: '100%', height: '100%'}}

/>
</div>

);
};

export default SpectrumPlot;

Code listing 3.3 Example of plot rendering component.

Workflow 25

the uploaded file exists in the directory, this file will be overwritten. Deleting
a directory removes all the contained files and subdirectories as well.

Figure 3.10 Displaying file system.

3.3 Workflow
A typical user workflow proceeds as follows:

1. The user opens the preprocessing job creation page, fills the form, submits
it, and starts it. The system runs a preprocessing job and saves the result.

{
"wave_start_point": 5000,
"wave_end_point": 6500,
"wave_point_count": 150,
"data_dir_path": "/B6001"

}

Code listing 3.4 Example of preprocessing job’s configuration file.

2. Once the preprocessing job is completed, the user navigates to the active
learning job creation page. The user fills out the form and specifies in
the configuration that it is the zero iteration, also sets the path to the
preprocessing job result to “pool_data_path” parameter. Then, the
user submits and starts the job. After the zero iteration is completed,
only the ORACLE spectra are displayed for the labeling. After completing
labeling, the user starts the first iteration using either the configuration file
created by zero iteration or by completing it manually.

3. After the regular iteration of the active learning job completes success-
fully, the user estimates the performance of the iteration, views the plot of
performance, and if satisfied, ends the work, otherwise starts labeling the
ORACLE spectra and starts the next iteration.

Workflow 26

{
"iteration": 0,
"pool_data_path": "/pool_data_dir/pool_data.h5",
"classes": [

"other",
"single peak",
"double peak"

],
"candidate_classes": [

"single peak",
"double peak"

],
"oracle_batch_size": 100

}

Code listing 3.5 Example of active learning job’s configuration file for zero itera-
tion.

{
"iteration": 1,
"pool_data_path": "/pool_data_dir/pool_data.h5",
"training_data_path":

"training_data_dir/training_data_path.h5"↪→

"classes": [
"other",
"single peak",
"double peak"

],
"candidate_classes": [

"single peak",
"double peak"

],
"oracle_batch_size": 30,
"perf_est_size": 10

}

Code listing 3.6 Example of active learning job’s configuration file for first and
subsequent iterations.

3.3.1 Launching
The front-end is containerized and orchestrated using Docker Compose [44].
By executing docker compose up command the front-end will be launched

Workflow 27

without further setup or configuration.

FROM node:20-alpine
WORKDIR /app
COPY package*.json ./
RUN npm install
COPY . .
EXPOSE 10300
CMD ["npm", "run", "dev"]

Code listing 3.7 Front-end Dockerfile.

services:
ml-job-client:

image: ml-job-manager-client
container_name: ml-job-manager-client
build:

context: .
dockerfile: Dockerfile

ports:
- "10300:10300"

Code listing 3.8 Front-end Docker Compose file.

Chapter 4

Discussion

4.1 Performance
The preprocessing and active deep learning modules performance depends on
their configuration, since their core logic remains unchanged and only their
parameters are now configurable.

The preprocessing module, where the wavelength range was set from 5000 Å
to 8500 Å with 1000 uniform points, processed 2431 LAMOST DR2 FITS files
completed in 28.05 s. Active deep learning module was launched on NVIDIA
GeForce GTX980 GPU with training data consisting of 1000 samples and
pool data containing 2431 samples, where each spectrum has wavelengths rang-
ing from 5000 Å to 8500 Å and 1000 flux counts, and it took 44.23 seconds.

When creating a new directory, the front-end does not re-fetch the list con-
taining all files and directories. Instead, after receiving a successful response,
the newly created directory is added to the existing list in the web interface.
The same logic applies to file uploading, file and directory deletion, and com-
mitting spectrum labels and comments. This approach reduces the load on
the infrastructure.

4.2 Future improvements
Some improvements written below requires corresponding back-end extension.

Improve user interface design. Make it more user-friendly, for example,
replace the JSON file configuration with a form-based input method.

After labeling spectra on the active learning job details page, enable the
user to start the next iteration from that page.

Integrating user authentication and logging. Implementing access control
based on roles.

28

Future improvements 29

Uploading multiples files. Deleting multiple files and directories.

Using custom model dialog instead of browser synchronous dialog, as it
blocks the whole page until the user responds.

Enabling to work with the other astronomical data.

Adding new types of jobs for processing astronomical data.

Adding new analysis modules for processing astronomical data.

Instead of checking every 10 seconds the job’s status by sending a request
to the server, use a websocket.

Chapter 5

Conclusion

The primary goal of the thesis was to design, implement, and integrate analysis
modules - preprocessing, active deep learning, and dimensionality reduction.
All three modules can be launched from the terminal. Moreover, the front-
end was developed, which enables the launch of preprocessing and active deep
learning modules through the web interface.

The aim of the thesis and all requirements were fulfilled. The preprocessing
module processes the raw spectra, enabling the application of the active deep
learning module. This module can help identify interesting or unusual spectra.
Meanwhile, the dimensionality reduction module improves the comprehension
of the data. Through the web interface, the user can conveniently and easily
launch these modules.

30

Appendix A

Launching the programs

For launching modules from terminal go to modules directory and run following
commands:

python -m venv env
source env/bin/activate
pip install -r requirements.txt
env/bin/python /directory_name/file_name config_path

result_directory↪→

Code listing A.1 Example of module launching.

Main file of each module has the name job_*.py
For running front-end and infrastructure(back-end), go to ml-job-manager-

client and ml-job-manager directories and run ”docker compose up” from ter-
minal. When building a container for the back-end, it will take 65-75 GB
of disk space. The front-end will run on localhost:10300, the back-end API
will run on localhost:10000. After starting the container /ml-job-manager di-
rectory is created, this directory will be used for storing the data. Inside
/ml-job-manager directory, SPECTRA directory is created, which will con-
tain LAMOST DR2 FITS files. Insert in /ml-job-manager/SPECTRA direc-
tory from B6001.zip and F5902.zip from the attachments. Do not change the
name of these directories. The path and directory name can be changed in the
.env file inside the ml-job-manager directory.

31

Bibliography

1. Machine Learning | Center for Astrophysics | Harvard & Smithsonian
[online]. 2024. Available also from: https://pweb.cfa.harvard.edu/re
search/topic/machine-learning. [Accessed 2025-05-13].

2. KOZA, Jakub. Design and implementation of a distributed platform for
data mining of big astronomical spectra archives [online]. 2017. Available
also from: https://dspace.cvut.cz/bitstream/handle/10467/631
45/F8-BP-2015-Koza-Jakub-thesis.pdf?sequence=2&isAllowed
=y. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology. [Accessed 2025-05-12].

3. KOZA, Jakub. Interactive Cloud-Based Platform for Parallelized Ma-
chine Learning of Astronomical Big Data [online]. 2017. Available also
from: https://dspace.cvut.cz/bitstream/handle/10467/69141/F8
-DP-2017-Koza-Jakub-thesis.pdf?sequence=1&isAllowed=y. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology. [Accessed 2025-05-12].

4. PODSZTAVEK, Ondřej. active-cnn/active_cnn at master · podondra/active-
cnn — github.com [online]. 2019. Available also from: https://github
.com/podondra/active- cnn/tree/master/active_cnn. [Accessed
2025-04-09].

5. PODSZTAVEK, Ondřej. Deep Learning in Large Astronomical Spectra
Archives [online]. 2017. Available also from: https://dspace.cvut.cz/b
itstream/handle/10467/69666/F8-BP-2017-Podsztavek-Ondrej-th
esis.pdf?sequence=1&isAllowed=y. Bachelor’s thesis, Czech Technical
University in Prague, Faculty of Information Technology. [Accessed 2025-
05-12].

6. ŠKODA, P.; PODSZTAVEK, O.; TVRDÍK, P. Active deep learning method
for the discovery of objects of interest in large spectroscopic surveys. As-
tronomy & Astrophysics. 2020, vol. 643, A122. Available from doi: 10.1
051/0004-6361/201936090. Published online: 2020-11-11.

32

https://pweb.cfa.harvard.edu/research/topic/machine-learning
https://pweb.cfa.harvard.edu/research/topic/machine-learning
https://dspace.cvut.cz/bitstream/handle/10467/63145/F8-BP-2015-Koza-Jakub-thesis.pdf?sequence=2&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/63145/F8-BP-2015-Koza-Jakub-thesis.pdf?sequence=2&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/63145/F8-BP-2015-Koza-Jakub-thesis.pdf?sequence=2&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/69141/F8-DP-2017-Koza-Jakub-thesis.pdf?sequence=1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/69141/F8-DP-2017-Koza-Jakub-thesis.pdf?sequence=1&isAllowed=y
https://github.com/podondra/active-cnn/tree/master/active_cnn
https://github.com/podondra/active-cnn/tree/master/active_cnn
https://dspace.cvut.cz/bitstream/handle/10467/69666/F8-BP-2017-Podsztavek-Ondrej-thesis.pdf?sequence=1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/69666/F8-BP-2017-Podsztavek-Ondrej-thesis.pdf?sequence=1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/69666/F8-BP-2017-Podsztavek-Ondrej-thesis.pdf?sequence=1&isAllowed=y
https://doi.org/10.1051/0004-6361/201936090
https://doi.org/10.1051/0004-6361/201936090

Bibliography 33

7. MASSEY, Philip; HANSON, Margaret M. Astronomical spectroscopy.
arXiv preprint arXiv:1010.5270. 2010.

8. Spectra - Introduction [online]. 2013. Available also from: https://im
agine.gsfc.nasa.gov/science/toolbox/spectra1.html. [Accessed
2025-05-07].

9. FITS Primer [online]. 2014. Available also from: https://fits.gsfc.n
asa.gov/fits_primer.html. [Accessed 2025-05-10].

10. Hierarchical Data Formats - What is HDF5? | NSF NEON | Open Data
to Understand our Ecosystems [online]. 2025. Available also from: https
://www.neonscience.org/resources/learning-hub/tutorials/abou
t-hdf5. [Accessed 2025-05-10].

11. LAMOST Data Release Two - LAMOST DR2 — dr2.lamost.org [online].
2015. Available also from: https://dr2.lamost.org/doc/data-produc
tion-description. [Accessed 2025-04-02].

12. LECUN, Yann; BENGIO, Yoshua; HINTON, Geoffrey. Deep learning.
nature. 2015, vol. 521, no. 7553, pp. 436–444. Available from doi: 10.10
38/nature14539.

13. SETTLES, Burr. Active Learning Literature Survey. 2009. Computer Sci-
ences Technical Report, 1648. University of Wisconsin–Madison.

14. VAN DER MAATEN, Laurens; HINTON, Geoffrey. Visualizing data us-
ing t-SNE. Journal of machine learning research. 2008, vol. 9, no. 11.

15. Project Jupyter | Home [online]. [N.d.]. Available also from: https://ju
pyter.org/. [Accessed 2025-05-16].

16. W3C XHTML2 Working Group Home Page — w3.org [online]. 2013.
Available also from: https://www.w3.org/MarkUp/. [Accessed 2025-04-
14].

17. BONNER, Anne. What is a CSV file: A comprehensive guide | Flatfile.
2020. Available also from: https://flatfile.com/blog/what-is-a-cs
v-file-guide-to-uses-and-benefits/. [Online; accessed 2025-05-14].

18. Elasticsearch: The Official Distributed Search & Analytics Engine | Elas-
tic. [N.d.]. Available also from: https://www.elastic.co/elasticsear
ch. [Online; accessed 2025-05-14].

19. MAZEL, Tomáš. Cloud-Based Platform for Active Learning of Astronom-
ical Spectra [online]. 2020. Available also from: https://dspace.cvut.c
z/bitstream/handle/10467/88254/F8-BP-2020-Mazel-Tomas-the
sis.pdf?sequence=-1&isAllowed=y. Bachelor’s thesis, Czech Techni-
cal University in Prague, Faculty of Information Technology. [Accessed
2025-05-12].

https://imagine.gsfc.nasa.gov/science/toolbox/spectra1.html
https://imagine.gsfc.nasa.gov/science/toolbox/spectra1.html
https://fits.gsfc.nasa.gov/fits_primer.html
https://fits.gsfc.nasa.gov/fits_primer.html
https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5
https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5
https://www.neonscience.org/resources/learning-hub/tutorials/about-hdf5
https://dr2.lamost.org/doc/data-production-description
https://dr2.lamost.org/doc/data-production-description
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://jupyter.org/
https://jupyter.org/
https://www.w3.org/MarkUp/
https://flatfile.com/blog/what-is-a-csv-file-guide-to-uses-and-benefits/
https://flatfile.com/blog/what-is-a-csv-file-guide-to-uses-and-benefits/
https://www.elastic.co/elasticsearch
https://www.elastic.co/elasticsearch
https://dspace.cvut.cz/bitstream/handle/10467/88254/F8-BP-2020-Mazel-Tomas-thesis.pdf?sequence=-1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/88254/F8-BP-2020-Mazel-Tomas-thesis.pdf?sequence=-1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/88254/F8-BP-2020-Mazel-Tomas-thesis.pdf?sequence=-1&isAllowed=y

Bibliography 34

20. vodev/vocloud-active-learning: Active learning worker for vo-cloud. 2020.
Available also from: https://github.com/vodev/vocloud-active-lea
rning. [Online; accessed 2025-05-14].

21. SAUZAY, Armand. Which Data Format to Use For Your Big Data
Project? | Towards Data Science. 2023. Available also from: https://to
wardsdatascience.com/which-data-format-to-use-for-your-big-
data-project-837a48d3661d/. [Online; accessed 2025-05-14].

22. BECKER, Pablo; TEBES, Guido; PEPPINO, Denis; OLSINA SANTOS,
Luis Antonio. Applying an improving strategy that embeds functional
and non-functional requirements concepts. Journal of Computer Science
& Technology. 2019, vol. 19.

23. MARTÍN ABADI; ASHISH AGARWAL; PAUL BARHAM; EUGENE
BREVDO; ZHIFENG CHEN; CRAIG CITRO; GREG S. CORRADO;
ANDY DAVIS; JEFFREY DEAN; MATTHIEU DEVIN; SANJAY GHE-
MAWAT; IAN GOODFELLOW; ANDREW HARP; GEOFFREY IRV-
ING; MICHAEL ISARD; JIA, Yangqing; RAFAL JOZEFOWICZ; LUKASZ
KAISER; MANJUNATHKUDLUR; JOSH LEVENBERG; DANDELION
MANÉ; RAJATMONGA; SHERRYMOORE; DEREKMURRAY; CHRIS
OLAH; MIKE SCHUSTER; JONATHON SHLENS; BENOIT STEINER;
ILYA SUTSKEVER; KUNAL TALWAR; PAUL TUCKER; VINCENT
VANHOUCKE; VIJAY VASUDEVAN; FERNANDA VIÉGAS; ORIOL
VINYALS; PETEWARDEN; MARTINWATTENBERG; MARTINWICKE;
YUAN YU; XIAOQIANG ZHENG. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. 2015. Available also from: https:
//www.tensorflow.org/. Software available from tensorflow.org.

24. tf.keras.Sequential | TensorFlow v2.16.1 [online]. 2024. Available also
from: https://www.tensorflow.org/api_docs/python/tf/keras/Seq
uential. [Accessed 2025-05-04].

25. tf.keras.callbacks.EarlyStopping | TensorFlow v2.16.1 [online]. 2024.
Available also from: https://www.tensorflow.org/api_docs/pyth
on/tf/keras/callbacks/EarlyStopping. [Accessed 2025-05-04].

26. HARRIS, Charles R.; MILLMAN, K. Jarrod; WALT, Stéfan J. van der;
GOMMERS, Ralf; VIRTANEN, Pauli; COURNAPEAU, David; WIESER,
Eric; TAYLOR, Julian; BERG, Sebastian; SMITH, Nathaniel J.; KERN,
Robert; PICUS, Matti; HOYER, Stephan; KERKWIJK, Marten H. van;
BRETT, Matthew; HALDANE, Allan; RÍO, Jaime Fernández del; WIEBE,
Mark; PETERSON, Pearu; GÉRARD-MARCHANT, Pierre; SHEPPARD,
Kevin; REDDY, Tyler; WECKESSER,Warren; ABBASI, Hameer; GOHLKE,
Christoph; OLIPHANT, Travis E. Array programming with NumPy. Na-
ture. 2020, vol. 585, no. 7825, pp. 357–362. Available from doi: 10.1038
/s41586-020-2649-2.

https://github.com/vodev/vocloud-active-learning
https://github.com/vodev/vocloud-active-learning
https://towardsdatascience.com/which-data-format-to-use-for-your-big-data-project-837a48d3661d/
https://towardsdatascience.com/which-data-format-to-use-for-your-big-data-project-837a48d3661d/
https://towardsdatascience.com/which-data-format-to-use-for-your-big-data-project-837a48d3661d/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Bibliography 35

27. What is NumPy? — NumPy v2.2 Manual [online]. 2024. Available also
from: https://numpy.org/doc/2.2/user/whatisnumpy.html. [Ac-
cessed 2025-04-15].

28. PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.;
THIRION, B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.;
WEISS, R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.; COUR-
NAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Re-
search. 2011, vol. 12, pp. 2825–2830.

29. scikit-learn: machine learning in Python — scikit-learn 1.6.1 documen-
tation [online]. [N.d.]. Available also from: https://scikit-learn.org
/stable/. [Accessed 2025-04-15].

30. What is Angular? • Angular [online]. 2025. Available also from: https:
//angular.dev/overview. [Accessed 2025-05-04].

31. WAITE, Robin. Angular Framework: Advantages and Disadvantages Elab-
orated [online]. 2024. Available also from: https://www.robinwaite.co
m/blog/pros-and-cons-of-angular-framework-you-need-to-know.
[Accessed 2025-05-04].

32. Introduction to the DOM - Web APIs | MDN [online]. 2025. Available
also from: https://developer.mozilla.org/en-US/docs/Web/API/Do
cument_Object_Model/Introduction. [Accessed 2025-05-16].

33. React [online]. [N.d.]. Available also from: https://react.dev/. [Ac-
cessed 2025-04-18].

34. Next.js vs. React: The difference and which framework to choose | Con-
tentful [online]. [N.d.]. Available also from: https://www.contentful.c
om/blog/next-js-vs-react/. [Accessed 2025-05-02].

35. JONNA, Vaishnavi. Advantages and Disadvantages of React js - ellow.io
[online]. 2024. Available also from: https://ellow.io/advantages-and
-disadvantages-of-react-js/. [Accessed 2025-05-08].

36. TRUE. Next.js by Vercel - The React Framework. 2025. Available also
from: https://nextjs.org/. [Online; accessed 2025-05-04].

37. EMADAMERHO-ATORI, Nefe. Next.js Pros and Cons compared [on-
line]. 2024. Available also from: https://www.altexsoft.com/blog/ne
xtjs-pros-and-cons/. [Accessed 2025-05-08].

38. Getting Started | Vite [online]. [N.d.]. Available also from: https://vit
e.dev/guide/. [Accessed 2025-05-04].

39. Tailwind CSS - Rapidly build modern websites without ever leaving your
HTML. [Online]. 2025. Available also from: https://tailwindcss.com/.
[Online; accessed 2025-05-04].

https://numpy.org/doc/2.2/user/whatisnumpy.html
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://angular.dev/overview
https://angular.dev/overview
https://www.robinwaite.com/blog/pros-and-cons-of-angular-framework-you-need-to-know
https://www.robinwaite.com/blog/pros-and-cons-of-angular-framework-you-need-to-know
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://react.dev/
https://www.contentful.com/blog/next-js-vs-react/
https://www.contentful.com/blog/next-js-vs-react/
https://ellow.io/advantages-and-disadvantages-of-react-js/
https://ellow.io/advantages-and-disadvantages-of-react-js/
https://nextjs.org/
https://www.altexsoft.com/blog/nextjs-pros-and-cons/
https://www.altexsoft.com/blog/nextjs-pros-and-cons/
https://vite.dev/guide/
https://vite.dev/guide/
https://tailwindcss.com/

Bibliography 36

40. TypeScript: JavaScript With Syntax For Types. [Online]. [N.d.]. Available
also from: https://www.typescriptlang.org/. [Accessed 2025-05-15].

41. IBM. What Is a REST API (RESTful API)? | IBM [online]. 2025. Avail-
able also from: https://www.ibm.com/think/topics/rest- apis.
[Accessed 2025-05-16].

42. An overview of HTTP - HTTP | MDN [online]. 2025. Available also from:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Ove
rview. [Accessed 2025-05-16].

43. React plotly.js in JavaScript [online]. 2025. Available also from: https:
//plotly.com/javascript/react/. [Accessed 2025-05-15].

44. Docker Compose | Docker Docs [online]. 2025. Available also from: http
s://docs.docker.com/compose/. [Accessed 2025-05-16].

https://www.typescriptlang.org/
https://www.ibm.com/think/topics/rest-apis
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Overview
https://plotly.com/javascript/react/
https://plotly.com/javascript/react/
https://docs.docker.com/compose/
https://docs.docker.com/compose/

Contents of the attachment

/
readme.txt brief description of content
src

modules..analysis modules
ml-job-client.............................. front-end source code
ml-job-manager............infrastructure with integrated modules
thesis.......................source form of thesis in LATEX format

text...thesis text
thesis.pdf.............................thesis text in PDF format

datasets
training_data.h5...................................training data
pool_data.h5...pool data

B6001............directory containing some LAMOST DR2 FITS files
F5902............directory containing some LAMOST DR2 FITS files

37

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Analysis
	Astronomical data
	Astronomical spectroscopy
	Astronomical spectrum
	Electromagnetic spectrum

	Storage format
	FITS
	HDF5

	LAMOST data

	Active deep learning
	Deep learning
	Convolutional neural networks
	Class balancing
	Active learning
	Query Strategy

	Performance estimation

	Spectra preprocessing
	Dimensionality reduction
	VO-CLOUD
	Active deep learning job

	Requirements
	Functional requirements
	Non-functional requirements

	Design
	Analysis modules
	Active deep learning module
	Configuration file

	Preprocessing module
	Configuration file

	dimensionality reduction module
	Configuration file

	Front-end
	Angular
	React
	Next.js
	Considerations

	Implementation
	Modules
	Code modification
	Active deep learning
	Output

	Preprocessing
	Output

	Dimensionality reduction
	Output

	Integration

	Front-end
	Styling
	Communication with infrastructure
	Pages
	Job listing
	Job creation
	Job Detail
	File system

	Workflow
	Launching

	Discussion
	Performance
	Future improvements

	Conclusion
	Launching the programs
	Contents of the attachment

