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Instructions

Current astronomy is flooded by Petabyte-scaled data detected in all frequencies of the 

electromagnetic spectrum. In order to find new physically interesting objects and 

phenomena, advanced machine learning of such data becomes a natural part of data 

analysis. One of the most important astronomical surveys is the Sloan Digital Sky Survey  

(SDSS) containing several millions of sky images in five spectral filters and a similar 

amount of spectra observed by the same telescope. It gives a unique opportunity to 

study advanced machine learning methods applied to multi-dimensional and 

dimensionally multi-modal data. A combination of SDSS multi-color images and spectra 

exposed at different times results in a multi-dimensional semi-sparse datacube of about 

a hundred terabytes in size.  For this purpose there was recently developed a parallel 

processing and storage framework Hierarchical Semi-Sparse Cubes (HiSS -Cube).  HiSS-

Cube also handles the uncertainty estimates and pre-computes the data in several 

scales, allowing fast interactive zooming of a given part of the sky and quick machine 

learning experiments on coarse data in order to identify the interesting parts of latent 

space before focusing on them in a higher resolution.

A unique HiSS-Cube design allows interesting experiments with multi-modal and 

hierarchically structured multi-scale data.

The main tasks are:
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1) Install the HiSS-Cube  system and download the data required for its run (SDSS images 

and spectra of some selected parts of the sky)

2) Identify interesting science cases where the machine learning methods trained on a 

combination of multi-modal data (i.e. images and spectra treated together)   are 

expected to give better accuracy against the combination of results of methods trained 

on each type of modality separately.

3)  Perform experiments with different ML methods  (e.g. classification, regression, 

clustering, tSNE, CNN) on several data samples and analyze results. Compare the 

performance on combined multi-modal data with single-modal experiments.

4 ) Use HiSS-Cube to get all pre-computed resolutions (i.e. images and spectra of different 

sizes with various degrees of smearing) of the same sky region.

5) Perform simple experiments (e.g. star-galaxy-classification) on different scales of the 

same data and compare execution time concerning the precision.  

6) (optional) Try to get access to the large cluster and perform the experiments on the 

whole SDSS archive  

The recommended literature will be delivered by the supervisor of the thesis.
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Abstract

This thesis presents a comprehensive study of the prediction of star formation
rates (SFR) in galaxies using multimodal data acquired from the Sloan Digital
Sky Survey (SDSS, DR7). We first filter the initial SFR catalogue to produce a
high-quality, cleaned subset of 11,179 galaxies that have valid one-dimensional
spectra and five-band photometry. This subset is then run through the HiSS-
Cube pipeline to generate various image resolutions ranging from 64×64 to
8×8 pixels and various samplings of spectral data ranging from 4620 to 577
bins while retaining corresponding measurement uncertainties.

Three groups of regression models were considered in this thesis: Decision Tree
(DT), the VGGNet12 convolutional neural network, and LightGBM gradient
boosting, for three different modalities: photometry-only, spectroscopy-only,
and multimodal fusion, including both early and late fusion. The hyperpa-
rameter search is conducted via grid search with five-fold cross-validation, and
model performance assessment is done via a range of metrics, such as R2,
MAE, RMSE a NMAD.

The top performance is obtained by the early-fusion LightGBM model with
R2 = 0.308, MAE=0.19, RMSE=0.32, illustrating the power of tree-based
learners for fusing visual and spectral features. VGGNet12 trained on pho-
tometric images alone also performs well (R2 = 0.262), illustrating the power
of deep CNNs for morphological feature learning. Interestingly, the lowest
spectral resolution generalizes better because of implicit noise smoothing.

Our results validate that multimodal machine learning can record complemen-
tary astrophysical features for SFR estimation accurately. Methodological
groundwork laid here allows for the exploration of more sophisticated fusion
methods and utilization of other data modalities incorporating the information
about the circumgalactic environment or galaxy kinematics in the future.

Keywords machine learning, SDSS, star formation rate, spectroscopy, pho-
tometry, multimodal fusion, HiSS-Cube
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Abstrakt

Tato bakalářská práce představuje komplexní studii predikce rychlosti tvorby
hvězd (SFR) v galaxiích pomocí multimodálních data získaných z přehlídky
oblohy Sloan Digital Sky Survey (SDSS, DR7). Nejprve filtrujeme počáteční
katalog SFR, abychom vytvořili vysoce kvalitní, vyčištěnou podmnožinu 11,179
galaxií, které mají platná jednorozměrná spektra a fotometrii (images) v pěti
pásmech. Tato podmnožina je následně zpracována pomocí pipeline HiSS-
Cube, která generuje různé obrazové rozlišení od 64×64 do 8×8 pixelů a různá
vzorkování spektrálních dat od 4620 do 577 binů při zachování odpovídajících
měřicích nejistot.

V této práci jsou použity tři skupiny regresních modelů: rozhodovací strom,
konvoluční neuronovou síť VGGNet12 a gradientní boosting LightGBM, pro
tři různé modality: pouze fotometrie, pouze spektroskopie a multimodální
fúze, včetně časné a pozdní fúze. Hledání hyperparametrů je prováděno po-
mocí metody grid search s pětinásobnou křížovou validací a hodnocení výkonu
modelu je provedeno pomocí různých metrik, jako jsou R2, MAE, RMSE a
NMAD.

Nejlepšího výkonu dosahuje model LightGBM s časnou fúzí s hodnotami R2 =
0,308, MAE=0,19, RMSE=0,32, což ilustruje sílu stromových algoritmů při
slučování vizuálních a spektrálních znaků. VGGNet12 trénovaná pouze na
fotometrických obrazech také dosahuje dobrých výsledků (R2 = 0,262), což
ukazuje sílu hlubokých CNN pro učení morfologických rysů. Zajímavé je, že
nižší spektrální rozlišení generalizuje lépe díky implicitnímu vyhlazování šumu.

Naše výsledky potvrzují, že multimodální strojové učení dokáže přesně zachytit
komplementární astrofyzikální příznaky pro odhad SFR. Metodologický základ
položený v této práci umožňuje v budoucnu zkoumat sofistikovanější metody
fúze a využívat další datové modality zahrnující informaci o okolním prostředí
či kinematice dané galaxie.

Klíčová slova strojové učení, SDSS, rychlost formování hvězd, spektroskopie,
fotometrie, multimodální fúze, HiSS-Cube.
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Chapter 1

Introduction

1.1 General Description and Relevance of the Study

Multimodal machine learning has witnessed remarkable advancements in re-
cent years.

The field of study has applications extending from independent driving and
medical diagnostics into the analysis of astronomical data.

The combination of various data forms—such as images, text, audio, and struc-
tured signals—enables models to learn more subtle representations and make
more accurate forecasts in complex settings.

In astrophysics, large-area surveys like the Sloan Digital Sky Survey (SDSS)
[1] offer both photometric and spectroscopic information for millions of astro-
physical sources.

These synergistic modalities offer unique insights: images capture structural
and morphological characteristics, whereas spectra hold detailed physical and
chemical properties.

This thesis focuses on the applications of multimodal machine learning tech-
niques to predict the star formation rate (SFR) [2] in galaxies using data from
SDSS.

The need is motivated by the requirement to process gigantic astronomical

1
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datasets and construct models that take advantage of the strengths of both
image-based and spectroscopic input.

1.2 HiSS-Cube Software Infrastructure

A wide variety of approaches exist for visualizing and analyzing large astro-
nomical data cubes, but most either rely on static FITS files or lose the native
measurement uncertainties when building coarser resolutions. To address these
limitations, Ing. Jiří Nádvorník, Ph.D. developed the Hierarchical Semi-Sparse
Cube (HiSS-Cube) framework [3] based on HDF5, which offers:

Multi-domain fusion: Supports imaging, spectral, environmental and
time-series data in a single hierarchical cube.

Preserved uncertainties: Constructs lower-resolution representations
without discarding per-pixel or per-bin error estimates.

Scalability: Leverages hierarchical indexing (HEALPix) and semi-sparse
storage to enable rapid spatial queries over billions of measurements.

Machine-learning ready: Exports arbitrary resolution cutouts to con-
tiguous NumPy arrays, avoiding repeated I/O or reprocessing when explor-
ing different model input sizes.

Virtual Observatory compatibility: Exports to VOTable/FITS for use
in standard VO tools.

Performance gains: Benchmarks on SDSS Stripe 82 show HiSS-Cube
queries are orders of magnitude faster than raw FITS exports for both
interactive visualization and large-scale ML pipelines.
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Figure 1.1 HiSS-Cube data-flow pipeline: from SDSS raw FITS files to multi-
layered, semi-sparse HDF5 cubes for visualization and machine learning. Image from
[3].

The core idea is to precompute a hierarchy of semi-sparse, multi-resolution
cubes that retain scientific uncertainties at every scale. This allows, for exam-
ple, an ML workflow to first coarse-scan a large region, then seamlessly drill
down to higher resolutions without re-ingesting or re-calibrating the data.

Data Lineage and Target Sample. Our analysis is based on the MPA-JHU
value-added catalog [4], in which star formation rates (SFRs) were computed
for galaxies from the Sloan Digital Sky Survey (SDSS) using the method de-
scribed by Brinchmann et al. (2004). This catalog provides a table containing
galaxy identifiers and their corresponding computed SFR values.

Using the HiSS-Cube [3] infrastructure deployed on the Karolina supercomput-
ing cluster in Ostrava, previous researchers executed complex queries on the
complete original SDSS dataset (approximately 50 TB of images and spectra)
to extract images and spectra corresponding to the galaxies listed in this cata-
log. These data were then preprocessed by generating multiple resolution ver-
sions of the images and spectra and calculating their associated measurement
uncertainties. This process resulted in the HiSS-Cube dataset of approximately
4 TB, stored in a hierarchical semi-sparse cube format (HDF5). Subsequently,
this prepared dataset was transferred from Ostrava to the RCI computational
cluster at the Faculty of Electrical Engineering, Czech Technical University in
Prague [5].

In this work, we performed all subsequent analyses—including data filtering,
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multimodal fusion modeling, and regression model benchmarking—using the
RCI cluster.

Multimodal application. One concrete use case demonstrated here is the
end-to-end SFR regression pipeline: from a single API call we retrieve both
multi-band image filters and one-dimensional spectral vectors for each galaxy,
fully preserving uncertainties and spatial indexing. This seamless integration
underlies the early- and late-fusion experiments detailed in Chapters 3 and 4,
and illustrates how HiSS-Cube can accelerate the development and deployment
of advanced multimodal machine-learning workflows in astronomy.

Software availability. The complete HiSS-Cube codebase—including source,
documentation, and issue tracker—is openly maintained on GitHub [6].

1.3 Computational Environment: RCI Cluster

All large‐scale data processing and model training were performed on the
RCI [5] (Research Computing Infrastructure) cluster at CTU-FEL, since the
multi‐terabyte HiSS-Cube datasets and deep learning workloads are not fea-
sible on a local workstation. Our jobs were submitted via SLURM to the
gpufast partition with the following resource request:

1 GPU, 8 CPU cores, and 128 GB RAM

a hard wall‐time limit of 4 hours on the GPU node

access to the shared parallel filesystem at /mnt/data

Environment management was handled via Miniconda, using the myenv envi-
ronment for all Python dependencies.

For interactive work, we launched Jupyter Notebook on the compute node and
tunneled it to a local machine.

All experiments—including data ingest, preprocessing, hyperparameter sweeps,
and fusion model training—ran under this 4 h GPU limit, enabling rapid it-
eration on large‐scale astronomical datasets that would be impractical on a
desktop machine.
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1.4 SDSS Data Releases

The Sloan Digital Sky Survey issues a sequence of incremental Data Releases
(DR1, DR2, …), each reprocessing the full imaging and spectroscopic dataset
through updated reduction pipelines and adding newly acquired observations.
The original technical summary of SDSS is given by York et al. [1], and DR7
represents the completion of the Legacy Survey, covering over 8,000 deg2 with
more than 1.6 million galaxy spectra [7]. Subsequent releases under SDSS-
III and SDSS-IV (e.g., DR13, DR14) expanded the footprint, incorporated
the BOSS and eBOSS redshift programs, and further improved photometric
calibration and spectrograph performance [8].

In this thesis we primarily use data from SDSS Data Release 7 (DR7) [9],
because the star formation rates we employ were computed for that release.
Each subsequent release extends sky coverage, improves calibration of pho-
tometry and spectroscopy, and adds new object classifications. Choosing the
appropriate release is crucial, since it directly impacts the depth and quality
of our SFR predictions.

1.4.1 Prediction Experiments

To assess the value of each data modality, we perform three sets of experiments:

Photometry-only. Train and evaluate models using only the u, g, r, i, z
image filters.

Spectroscopy-only. Train and evaluate models using only the one–dimensional
spectra.

Multimodal fusion. Combine image and spectral features via both early-
fusion (feature concatenation) and late-fusion (prediction averaging) strate-
gies.

1.4.2 Spectroscopy vs. Photometry Role

Spectroscopic data offer direct physical diagnostics—emission line luminosities
(e.g., Hα), which are tied to the instantaneous star formation rate (SFR), and
redshift estimates for distance corrections [10]. Photometric images capture
morphological details, color gradients, and total broadband flux, echoing the
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stellar content and dust properties of the galaxy. By merging these complemen-
tary perspectives, our models are able to take advantage of both fine-grained
spectral physics and large-scale structural indicators, resulting in enhanced
and more precise SFR estimates.

1.5 Research Challenges

Working with the SDSS data presents several challenges:

1. Data Filtering. The original SDSS SFR catalog has over 4.8 million
records, but only a small proportion have both good multi-band filters and
valid SFR measures. Objects with missing photometry or spectroscopy,
undefined SFR values (designated as NaN or the placeholder value −99),
and non-galactic objects must be excluded, reducing the dataset to a few
thousand galaxies amenable to regression analysis [11].

2. Quality of Images and Spectra. The HiSS-Cube pipeline provides four
image resolutions (64×64, 32×32, 16×16, 8×8 px) and four spectral sam-
plings (4620, 2310, 1155, 577 bins). While higher resolutions capture finer
morphological and spectral features, they also incur substantially greater
computational cost and risk overfitting; lower resolutions run faster but
may smooth out diagnostically important details. Striking the optimal
balance is non-trivial [3].

3. Multiple Objects within a Single Image. SDSS cutouts may contain
overlapping stars or galaxies, resulting in blended light profiles that mislead
subsequent feature extractors. To prevent each input being a collection of
multiple target galaxies, we use automatic segmentation using thresholding
and connected-component labeling, marking and discarding multi-object
cutouts [12, 13].

1.6 Aims and Responsibilities

The overall aim of this thesis is to come up with the best practice in SFR
prediction from SDSS data. To achieve this goal, the following tasks will be
completed:

1. Perform a stringent examination of raw data, assess its quality, and apply
filtering.
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2. Develop algorithms to aim at the automatic identification and separation
of objects in images.

3. Investigate the effect of variations in image and spectrum quality on pre-
diction accuracy.

4. Contrast the performance of single modality models with multimodal ap-
proaches.

5. Perform a comparative analysis of publicly accessible Scene dataset, cali-
brating the results to match SDSS to guarantee our multimodal pipeline
under controlled conditions.

6. Quantify the relative performance gain of multimodal fusion compared to
unimodal (image-only and spectrum-only) baselines on a structurally com-
parable external test set in order to demonstrate added value by combining
modalities.

7. Compare and analyze the training and inference times of all models and
modalities on both the SDSS and the external dataset to investigate com-
putational scalability and guide practical deployment strategies.

1.7 Terminology and Illustrations

1.7.1 Spectra and Spectral Analysis

1.7.1.1 Definition of a Spectrum

A spectrum in astronomy represents the dependence of an object’s emitted in-
tensity on wavelength. Specialized spectrographs attached to telescopes record
these spectra [14].

1.7.1.2 The Rationale and Significance of Spectral Analysis

Chemical Composition: Spectral lines from elements such as hydro-
gen, oxygen, nitrogen, and iron appear at characteristic wavelengths, and
their relative intensities allow us to derive abundances and metallicity in
the interstellar medium. For example, the ratio of [O III] to Hβ lines
is a common metallicity diagnostic [15]. These abundance measurements
are crucial for understanding galactic chemical evolution and enrichment
histories [14].
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Velocity Measurements: The Doppler shift of spectral lines provides
direct measurements of radial velocities, enabling construction of rotation
curves and estimates of dynamical mass in galaxies. Line broadening and
asymmetries also reveal kinematic components such as outflows, inflows,
and turbulent motions [15]. Such velocity diagnostics are essential for
probing galaxy dynamics and dark matter distributions.

Physical Conditions: The relative strengths and widths of emission and
absorption features encode the temperature, density, and ionization state
of the gas. Line ratio diagnostics—such as the [S II] doublet for electron
density and the Balmer decrement for dust extinction—help characterize
the physical environment within H II regions and around active nuclei [14].
Understanding these conditions informs models of star-formation efficiency
and feedback processes.

All of these diagnostics are discussed in [14, p. 1–6].
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Figure 1.2 Example of atomic spectral lines for different elements.[16]

1.7.2 The SDSS u, g, r, i, z Filters

SDSS uses five broadband filters—u, g, r, i, and z—with effective wavelengths
of u = 354 nm, g = 477 nm, r = 623 nm, i = 762 nm, and z = 913 nm as shown
in Figure 1.3. Their full‐width at half‐maximum (FWHM) bandwidths are
approximately ∆u ≈ 56nm, ∆g ≈ 138nm, ∆r ≈ 138nm, ∆i ≈ 152nm, and
∆z ≈ 95nm [17].
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Figure 1.3 Transmission curves of the SDSS u, g, r, i, z filters.

1.7.3 Star Formation Rate (SFR)

1.7.3.1 Definition and Conceptual Scope of the Star Formation
Rate (SFR)

The star formation rate (SFR) measures how quickly a galaxy turns its avail-
able gas into new stars. It is given in solar masses per year (M⊙ yr−1), meaning,
for example, that an SFR of 1 M⊙ yr−1 corresponds to the formation of one
Sun’s worth of stars each year.

Beyond describing the galaxy’s current activity, SFR also helps us trace its
life story: by comparing the present SFR to the average over past epochs, we
can tell if the galaxy is quietly aging, steadily forming stars, or experiencing a
starburst. This comparison uses the birthrate parameter

b =
SFRcurrent

⟨SFRpast⟩
,
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where b < 1 indicates a slowdown, b ≈ 1 steady formation, and b > 1 a recent
burst of star formation [18]. On cosmic scales, the average SFR density rose
to a peak around redshift z ∼ 2 (about 10 billion years ago) and has since
declined by an order of magnitude [19].

1.7.3.2 Star Formation Rate (SFR) as a Fundamental Param-
eter of Galaxies

The star formation rate (SFR) underpins multiple aspects of galaxy evolution:

Stellar Mass Assembly. The SFR directly measures the conversion rate
of cold gas into stars, driving the build-up of stellar mass and shaping the
galaxy stellar mass function over cosmic time [KennicuttEvans2012].

Chemical Enrichment. High SFRs produce core-collapse supernovae
and AGB-star mass loss that return heavy elements (e.g., O, Fe) to the
interstellar medium, establishing metallicity gradients and enriching sub-
sequent generations of stars [20].

Feedback and ISM Regulation. Radiation pressure, stellar winds, and
supernova explosions from young massive stars inject energy and momen-
tum into the ISM, driving turbulence, regulating star formation efficiency,
and launching galactic-scale outflows [21].

Star Formation Laws. Empirical relations such as the Kennicutt–Schmidt
law relate gas surface density to SFR surface density, providing fundamen-
tal insight into the physical processes controlling star formation on galactic
and sub-galactic scales [22].

Cosmic Star Formation History. The evolution of the global SFR
density with redshift traces galaxy growth, cosmic chemical evolution, and
black hole accretion, marking key epochs such as the peak of star formation
around z ∼ 2 and the decline toward the present day [19].



Chapter 2

Data Exploration

2.1 Dataset Overview and Initial Filtering

We source our sample from the SDSS Data Release 7 star formation rate
(SFR) catalog, which initially contains 4,851,200 objects [4]. To ensure that
every galaxy has both imaging and spectroscopic data, we retain only those
entries with available multi-band filters and 1D spectra, reducing the sample
to 151,190 records. Next, we remove entries where the logarithmic SFR in-
dicator AVG is undefined (NaN), leaving 34,613 objects. Finally, we exclude
the placeholder value AVG = −99, resulting in 30,752 records. Of these, 16,841
have FLAG=0 (high-quality SFR estimates) and 13,911 have FLAG̸=0 [11, 23].
Table 2.1 summarizes these counts.

Table 2.1 Record counts at successive filtering stages.

Filtering step # of Objects
Initial SDSS SFR catalog 4,851,200
With image & spectrum available 151,190
Removing NaN in AVG 34,613
Excluding AVG = −99 30,752
(FLAG=0) 16,841
(FLAG̸=0) 13,911

Table 2.1 shows how aggressive filtering reduces the sample to the most reliable
SFR measurements for our regression tasks.

12
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Because we leverage the HiSS-Cube framework—a scalable pipeline for hier-
archical semi-sparse cubes that preserves measurement uncertainties and pre-
computes cutouts—each galaxy in our high-quality subset is accompanied by
four image quality levels and four spectral resolutions [3]. Moreover, each
of these variants carries the same AVG SFR label, simplifying our supervised
learning setup.

Figure 2.1 Distribution of AVG (log10 SFR) in the filtered sample.

Figure 2.1 reveals a roughly log-normal distribution of SFR values, with most
galaxies clustered around log10(SFR) ∼ −1.5 to 1.5.

2.2 SDSS Data Description

The SDSS dataset provides a unique opportunity to study the properties of
astronomical objects using comprehensive observations. Each object in the
sample is characterized by the following components:

Five-Band Photometry. For each object, five images are available cor-
responding to different spectral bands (denoted as u, g, r, i, and z) [17].
Each image captures a specific portion of the spectrum, enabling a detailed
analysis of the structural and physical properties of the objects.

Spectroscopic Data. In addition to the photometric images, each ob-
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ject is provided with a spectrum that offers information on its chemical
composition, temperature, and dynamics.

Figure 2.2 An example of the SDSS galaxy. At the top: five filter images; at the
bottom: a spectrum.

2.3 Image and Spectrum Data Availability

Thanks to the HiSS-Cube pipeline [3], each high-quality galaxy (FLAG=0) is
preprocessed into a multi-resolution “cube” that preserves uncertainties. For
our regression experiments, we retrieve four image resolutions and four spectral
samplings per object.

Image cutouts. Four spatial resolutions with shape (N, 4,H,W ), where
H = W ∈ {64, 32, 16, 8} pixels. These correspond to successive downsam-
plings of the original 64×64 cutout, allowing us to study the impact of
morphological detail on SFR prediction.
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Figure 2.3 HiSS-Cube image outputs for a single galaxy at four resolution levels
(64×64 to 8×8 pixels).

Spectral vectors. Four one-dimensional samplings with length L ∈
{4620, 2310, 1155, 577} bins, obtained by uniform downsampling of the na-
tive SDSS spectrum. Lower-resolution spectra effectively smooth high-
frequency noise, serving as a built-in denoiser.
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Figure 2.4 HiSS-Cube spectral outputs for the same galaxy at four sampling levels
(4620 to 577 bins).

By having these four distinct quality levels for both images and spectra, we
can systematically evaluate how resolution and smoothing affect model per-
formance and computational cost.

2.4 SFR Estimation Quality: FLAG Keyword

According to the SDSS documentation:

”The FLAG keyword indicates the status of the SFR estimation. If
FLAG=0 then all is well and for statistical studies in particular, it
is recommendable to focus on these objects as in all other cases the
detailed method to estimate SFR or SFR/M* will be (slightly) different
and can introduce subtle biases.” [11]
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We proceed exclusively with the FLAG=0 subset (16,841 galaxies).

2.5 Analysis of NaN Block Lengths and Positions

2.5.1 NaN Percentage by Object

Figure 2.5 Percentage of records by NaN percentage categories at Zoom level 0,
comparing all data vs. FLAG=0 subset.

Figure 2.5 shows that over 65% of spectra contain no NaNs, and only about
2% have 1–5% missing values, indicating that most high-quality galaxies have
nearly complete spectra.

2.5.2 NaN Block Statistics

Before examining spatial patterns, we quantify runs of consecutive NaNs in
each spectrum. Table 2.2 reports the total number of NaN blocks, their mean
lengths, and maximum lengths at each zoom level.



Analysis of NaN Block Lengths and Positions 18

Table 2.2 NaN block statistics for FLAG=0 at each zoom level.

Zoom level # NaN blocks Mean length Max length
0 12 207 34.69 4 620
1 12 045 18.11 2 310
2 11 954 9.68 1 155
3 11 875 5.46 577

This table indicates that while the total number of NaN segments is similar
across resolutions, the average and maximum block lengths decrease at lower
spectral sampling due to downsampling “compressing” gaps.

2.5.3 Distribution of NaN Run Lengths

Figure 2.6 Distribution of consecutive NaN run lengths at each resolution for
FLAG=0.
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In Fig. 2.6, most NaN runs are very short (1–3 bins), with only a few extending
beyond 10 bins. This suggests that missing data are typically localized “spikes”
rather than large spectral gaps; however, there are exceptions—large spectral
gaps do occur, for example as shown in Figure 2.8(a).

2.5.4 NaN Occurrence Along Wavelength

Figure 2.7 Typical wavelength regions where NaN gaps commonly occur (Zoom
level 0).

Figure 2.7 shows peaks in NaN frequency around 5500 Å and near the red
end (9000 Å), corresponding to spectrograph join regions and low-sensitivity
wavelengths.

Each point along the wavelength axis represents the fraction of spectra in which
that specific bin is flagged as NaN. Noticeably, there is no wavelength where
0% of spectra are missing data. It indicates that every channel is affected by
occasional dropouts or quality flags. The sharp spike at ∼ 5500Å coincides
with the dichroic split between the blue and red arms of the SDSS spectro-
graph. At this intersection, stitching mismatches and calibration uncertainties
often lead to flagged pixels [24].

The elevated NaN occurrence near ∼ 9000Å arises from the declining quantum
efficiency of the red CCDs and strong telluric emission lines (e.g. atmospheric
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OH), which reduce the signal-to-noise ratio and trigger data quality filters [25].

(a) SDSS Spectrum #387 showing a continuous NaN region (shaded red) from
approximately 7000 Å to 7500 Å.

(b) SDSS Spectrum #11 with multiple discrete NaN gaps, marked by red vertical
lines at about 5800 Å, 8000 Å, 8950 Å, and 9150 Å.

Figure 2.8 Examples of SDSS spectra containing missing (NaN) segments.
Red highlights indicate the affected wavelength regions.
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2.6 Detection and Removal of Multi‑Object Cutouts

Figure 2.9 Example of a cutout containing multiple detected sources, excluded
from the final sample [23] .

In order to detect and remove cutouts containing multiple objects, we im-
plement a simple image‐processing pipeline inspired by standard thresholding
and connected‐component labeling techniques. First, pixel values are normal-
ized to the [0,1] range. We then binarize the central filter image (usually the
r‐band) at a fixed global threshold of 0.9—this value was chosen heuristically to
separate background sky from source signal, following best practices in image
thresholding [12]. Next, we apply the connected‐component labeling algorithm
(‘ndimage.label‘) to the binary image to count discrete regions. If more than
one connected region is found, the index is flagged as a “multi‐object” cutout.
Finally, a small subset of these multi‐object indices is visualized to confirm the
detection. Our implementation is provided in Listing [23] and closely follows
the methodology of Sezgin and Sankur’s survey on thresholding techniques [12]
as well as the standard workflow described in Gonzalez and Woods’s digital
image processing text [13].
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2.7 Summary of Final Dataset

The cleaned dataset for supervised regression consists of:

Multi‑band image cutouts at four resolutions

One‑dimensional spectra at four samplings

Robust SFR labels (AVG, FLAG=0)

Total of 11,179 galaxies

2.7.1 Exploratory Embedding Analysis with t-SNE,
UMAP, and PCA

To gain intuition about the structure of our image and spectral datasets in
relation to the target variable AVG, we applied three popular dimensional-
ity‐reduction methods:

t-SNE [26] — a nonlinear technique that preserves local structure by min-
imizing the Kullback–Leibler divergence between probability distributions
of pointwise neighborhoods in high- and low-dimensional spaces. t-SNE
first converts pairwise similarities in the high-dimensional space into joint
probabilities using a Gaussian kernel, then defines analogous joint proba-
bilities in the low-dimensional map via a Student’s t-distribution to allevi-
ate the “crowding problem.” By iteratively minimizing the KL divergence
through gradient descent, t-SNE excels at revealing fine-grained cluster
structure and manifold substructure. Its main advantages are strong sep-
aration of local clusters and intuitive visual grouping, though it can be
computationally intensive and sensitive to hyperparameters such as per-
plexity.

UMAP [27] — a topological manifold learning algorithm that constructs a
fuzzy simplicial complex in high dimensions and optimizes its low–dimensio-
nal embedding to preserve both local and global data structure. UMAP
models the data manifold by estimating a weighted graph of nearest neigh-
bors, then applies stochastic gradient descent to minimize the cross-entropy
between the high-dimensional and low-dimensional fuzzy complexes. This
yields embeddings that faithfully maintain global neighbor relations while
still clustering similar samples tightly. Compared to t-SNE, UMAP is
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typically faster on large datasets, offers greater control via explicit nearest-
neighbor and minimum-distance parameters, and often produces more mean-
ingful global layouts.

PCA [28] — a linear method that identifies orthogonal directions (princi-
pal components) of maximum variance in the data and projects the data
onto the leading components for dimensionality reduction. PCA computes
the eigenvalues and eigenvectors of the empirical covariance matrix, order-
ing components by explained variance. This yields a deterministic, inter-
pretable embedding in which each axis corresponds to a linear combination
of original features. Its advantages include simplicity, scalability to very
high dimensions, and the ability to capture the largest sources of variance;
however, PCA cannot capture nonlinear relationships and may mix multi-
ple underlying factors in each principal component.
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Figure 2.10 Embeddings of image and spectral data at four zoom levels (Z0–Z3)
using t-SNE, UMAP, and PCA, colored by AVG [29].

Here, ρx and ρy are the Pearson correlation coefficients between the first (x)
and second (y) embedding dimensions and the target variable AVG (log10 SFR).
We computed these correlations over the full sample to assess how linearly each
low-dimensional axis relates to the true SFR values [30].

Note: In what follows, Z denotes the zoom (image/spectrum) quality level:
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Z0 corresponds to the highest resolution (most pixels), and Z3 to the lowest
(fewest pixels).

Table 2.3 Pearson correlation coefficients (ρx, ρy) between the two embedding
axes and AVG for each method and modality, across four zoom levels (Z0–Z3).

Method / Modality ρx ρy Method / Modality ρx ρy

t-SNE Image Z0 -0.03 -0.04 t-SNE Spectra Z0 -0.10 +0.06
t-SNE Image Z1 -0.03 -0.06 t-SNE Spectra Z1 -0.15 +0.02
t-SNE Image Z2 0.00 -0.09 t-SNE Spectra Z2 -0.16 +0.00
t-SNE Image Z3 -0.06 -0.03 t-SNE Spectra Z3 -0.15 -0.02
UMAP Image Z0 +0.03 +0.00 UMAP Spectra Z0 +0.02 -0.02
UMAP Image Z1 +0.03 +0.03 UMAP Spectra Z1 -0.03 +0.00
UMAP Image Z2 -0.05 -0.01 UMAP Spectra Z2 -0.02 -0.01
UMAP Image Z3 +0.08 -0.02 UMAP Spectra Z3 -0.02 +0.02
PCA Image Z0 -0.03 +0.01 PCA Spectra Z0 -0.11 +0.05
PCA Image Z1 -0.05 -0.01 PCA Spectra Z1 -0.14 +0.03
PCA Image Z2 -0.07 -0.04 PCA Spectra Z2 -0.14 +0.01
PCA Image Z3 -0.07 +0.03 PCA Spectra Z3 -0.14 -0.01

The embedding analysis reveals:

t-SNE and UMAP uncover local, nonlinear structure but show weak
linear correlation with AVG, indicating complex manifold relationships [26,
27].

PCA yields stronger linear gradients in the first component—especially
for spectra—suggesting that principal components capture a significant
fraction of SFR variance in a linear subspace [28].

In summary, t-SNE and UMAP highlight nonlinear patterns, while PCA em-
phasizes linear trends. Combining insights from all three methods guides our
feature‐engineering and model‐selection strategies.
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Multimodal Machine Learning

3.1 Introduction to Multimodal Machine Learning

Multimodal machine learning combines different types of data—like images,
text, audio, and structured signals—into a single framework. It then analyzes
these varied inputs together to understand how they relate and complement
each other. By doing this, the resulting models often perform better than
those built on just one data type [31].

In recent years, the commercial success of large language models (LLMs) has
demonstrated the power of combining multiple modalities: modern systems
fuse text, vision, and speech inputs to drive applications in customer service,
content creation, and scientific research. For example, vision-language models
enable image editing via natural-language prompts, while speech-enabled assis-
tants interpret spoken commands in context. These successes underscore the
growing importance of multimodal approaches across industries and research
domains.

In this thesis, we apply multimodal learning to the astrophysical problem of
predicting galaxy star formation rates (SFRs) from Sloan Digital Sky Sur-
vey (SDSS) data. The SFR regression task naturally lends itself to multi-
modal modeling because photometric images encode morphological structure
and color information, while spectroscopic measurements trace detailed phys-
ical diagnostics such as emission-line luminosities.

26
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3.2 Identifying Interesting Science Cases

While our primary focus is on predicting galaxy star‐formation rates (SFRs),
the multimodal framework developed here readily extends to a variety of other
compelling astrophysical problems. Below we highlight five key science cases
where fusing imaging and spectroscopic data offers significant advantages over
single‐modality approaches:

1. Galaxy Morphological Classification and Evolution. Citizen‐science
projects such as Galaxy Zoo have demonstrated the power of visual mor-
phology for tracing galaxy formation pathways [32]. By combining high‐resolution
photometry with spectral line diagnostics (e.g. Hα/Hβ ratios), one can re-
fine morphological classes (spiral, elliptical, irregular) and link them quan-
titatively to stellar population ages and dust content [33]. Multimodal
models can thus map the ‘Hubble sequence’ onto physical parameters, un-
covering subtler evolutionary trends than either modality alone can reveal.

2. Rare Object and Anomaly Detection. Identifying quasars, strong
gravitational lenses, or low‐metallicity dwarfs requires scanning through
millions of sources with imbalanced class frequencies. Imaging alone often
struggles with line‐of‐sight blends, while spectroscopy alone misses morpho-
logical context. Multimodal classification has been shown to boost purity
and completeness in quasar selection [34] and to discover new strong‐lens
candidates by correlating arc‐like features with emission‐line redshift dis-
crepancies [35, 36]. Similarly, anomaly‐detection pipelines trained on both
modalities can flag novel astrophysical events for follow‐up [37].

3. Transient and Variable Source Characterization. Time‐domain sur-
veys (e.g. ZTF, LSST) deliver light curves that capture the photometric
variability of supernovae, tidal disruption events, and active galactic nuclei
(AGN). When spectral snapshots are also available, fusing temporal, pho-
tometric, and spectroscopic features enables more accurate classification
of transients [37, 38]. For example, embedding a supernova’s spectral line
velocities alongside rise‐time photometry has improved subtype separation
(Ia vs. IIn) and can accelerate spectroscopic follow‐up decisions.

4. Stellar Parameter Inference and Peculiar Star Identification. Large‐scale
stellar surveys (e.g. APOGEE, LAMOST) provide both multi‐band imag-
ing and high‐resolution spectra. Jointly modeling a star’s color–-magnitude
position with its detailed absorption‐line profile allows for more precise de-
terminations of effective temperature, surface gravity, and metallicity [39,
40]. Moreover, multimodal outlier detection has uncovered rare stellar
populations—such as carbon stars and peculiar white dwarfs—by high-
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lighting discrepancies between photometric and spectroscopic parameter
estimates.

5. Environmental Effects on Galaxy Properties. The interplay between
a galaxy’s local density (cluster vs. void) and its internal processes drives
quenching and morphological transformation. By fusing imaging (trac-
ing morphology and tidal features), spectroscopy (tracing emission‐line
strengths and kinematics), and environmental metrics (e.g. 5th‐nearest‐neighbor
density), one can disentangle competing mechanisms such as ram‐pressure
stripping vs. galaxy harassment [41, 42]. Multimodal regression models can
quantify how environment modulates SFR beyond global scaling relations,
providing a path to unravel the drivers of cosmic star‐formation history.

In each of these cases, the complementary strengths of photometry (morphol-
ogy, spatial context) and spectroscopy (physical diagnostics, redshift precision)
combine to yield richer, more robust scientific inferences than single‐modality
analyses. Of course, this adaptation also requires assembling a dedicated team
with the appropriate expertise and carefully considering the statistical distri-
bution of the data for the problem at hand. HiSS-Cube pipeline and our multi-
modal architectures can be readily adapted to these problems by swapping the
SFR label for the relevant target (e.g. morphology class, stellar parameters,
transient type) and retraining under the same fusion paradigms.

Another popular science case where multimodal machine learning can help is
the classification of stars, galaxies, and quasars. Unfortunately, attempting a
star-galaxy-quasar classification on this dataset proves problematic due to a
severe class imbalance. The sample contains roughly ten times more galaxies
than quasars, while stars number fewer than 30 instances, making any super-
vised classifier highly biased toward the majority class. This imbalance stems
from the fact that the dataset was originally curated for SFR prediction, not
object‐type classification. Here, the dataset refers to the version we prepro-
cessed and explored in Chapter 2 (Data Exploration).
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Figure 3.1 Class distribution for star–galaxy–quasar labels: galaxies outnumber
quasars by a factor of 10, and stars comprise fewer than 30 objects [23].

3.3 Fusion Strategies in Multimodal Learning

A key design choice in multimodal systems is how and when to combine infor-
mation from different modalities. Two canonical approaches are:

Early Fusion Feature-level fusion where modality-specific features are ex-
tracted independently and then concatenated (or otherwise merged) into
a joint embedding, which is passed to a single model for prediction. Early
fusion enables cross-modal feature interactions from the very beginning of
the learning process. [43]

Late Fusion Decision-level fusion where each modality is processed by its
own model, producing independent predictions, which are then combined
(e.g., averaged or weighted) to yield the final output. Late fusion simplifies
model training by decoupling modality-specific learners and often improves
robustness by enforcing model diversity. [43]

3.4 Scene Dataset Example

To illustrate the general benefits of multimodal learning, we conducted prelim-
inary experiments on the publicly available Scene dataset [44], which provides
two modalities for environmental scene classification:
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Figure 3.2 Illustration of Late and Early Fusion strategies in multimodal learning
[43].

Images: Still frames depicting eight scene types (e.g., beach, classroom,
forest).

Audio Features: Mel-Frequency Cepstral Coefficients (MFCCs) extracted
from audio recordings synchronized with each image.

The dataset supports two hierarchical classification tasks:

CLASS1: Binary classification of scenes as indoors vs. outdoors.

CLASS2: Fine-grained classification into eight specific scene categories.

3.4.1 MFCC Features.

Mel-Frequency Cepstral Coefficients (MFCCs) are compact representations of
the short-time power spectrum of an audio signal, mapped onto the Mel scale
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Figure 3.3 CLASS1 (left) and CLASS2 (right) label distributions for the Scene
dataset.

to mimic human auditory perception. By extracting the first 13–40 MFCCs
(plus their first and second derivatives) from each synchronized audio clip,
we obtain low-dimensional feature vectors that capture timbral and spectral
patterns—rather than using raw waveform samples. All of our audio‐based
models are therefore trained on these MFCC representations, which improves
robustness to noise and drastically reduces input dimensionality. [45]

3.4.2 Qualitative Example of Image–Audio Pair

To further illustrate the complementarity of modalities, Figure 3.4 shows a
representative scene image alongside its Mel-Frequency Cepstral Coefficients
spectrogram extracted from the synchronized audio clip.
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Figure 3.4 Qualitative example of the multimodal input: the visual scene and its
audio features.

Quantitative Results

Table 3.1 summarizes the CLASS1 and CLASS2 test accuracies for a Deci-
sion Tree classifier (max_depth=12, class_weight=balanced) trained on audio
only, image only, and both modalities combined. Table 3.2 shows the same
for our fully connected Neural Network.

Table 3.1 Decision Tree classifier accuracies

Modality CLASS1 CLASS2
Audio only 0.81 0.66
Image only 0.97 0.92
Audio + Image 0.96 0.92

Table 3.2 Neural Network accuracies

Modality CLASS1 CLASS2
Audio only 0.97 0.94
Image only 0.99 0.99
Audio + Image 0.99 0.99

These results show that:

Even a simple Decision Tree benefits from multimodal fusion: compared to
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audio alone, combining images raises CLASS1 accuracy from 0.81 to 0.96
and CLASS2 from 0.66 to 0.92.

The Neural Network achieves very high performance on each single modal-
ity (99%+), and fusion maintains this level, indicating that when both
modalities are already highly informative, the marginal gain is smaller but
robustness remains maximal.

Overall, multimodal fusion consistently matches or outperforms the best
single‐modality models, confirming its value even in high-signal scenarios.

Although both modalities individually yield high classification accuracy (>
99%), multimodal fusion further reduces error rates in borderline cases where
one modality alone is ambiguous (e.g., a image of a crowded indoor sports
arena with noisy audio). These results confirm that even in high‑signal regimes,
fusion can enhance model robustness and confidence.



Chapter 4

Machine Learning
Methodology

4.1 Overview of Learning Algorithms

To predict the logarithmic star‐formation rate (AVG in [−4, 4]) we employ three
baseline models:

Decision Tree Regression (DT). A non‐parametric tree model that
recursively partitions feature space by axis‐aligned splits, offering inter-
pretability and a natural baseline [30].

Convolutional Neural Network (VGGNet12). A 12‐layer CNN ar-
chitecture that excels at large‐scale image feature extraction [46].

Gradient Boosting Machine (LightGBM). An efficient implementa-
tion of gradient‐boosted decision trees optimized for speed and memory
[47].

4.2 Model Architectures and Rationale

As a prelude to our regression experiments, we detail the key characteristics
of the three algorithms employed—Decision Trees (DT), VGGNet12 (CNN),
and LightGBM (GBM)—and explain why each was chosen for star formation
rate prediction.

34
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4.2.1 Decision Tree Regression

Decision Trees [30] recursively partition the feature space via axis-aligned splits
to form a tree of decision rules, offering:

Interpretability: Each split corresponds to a clear threshold on an input
feature (pixel intensity or spectral flux) [30].

Nonparametric Flexibility: Capable of capturing non-linear relation-
ships without manual feature engineering.

Baseline Efficiency: Fast to train and evaluate on both image-derived
summaries and spectral vectors, making them ideal for initial ablation stud-
ies.

Decision Trees were chosen because:

Transparency: The model’s structure makes it easy to audit how predic-
tions are made.

Strong Baseline: Commonly used as a baseline for evaluating more com-
plex regressors.

Low Overhead: Efficient training and inference make it suitable for quick
experimentation on high-dimensional feature spaces.

4.2.2 Convolutional Neural Network: VGGNet12

VGGNet12 [46] is a 12-layer convolutional neural network built from sequential
3×3 convolutional filters, each followed by ReLU activations, and periodic 2×2
max-pooling to reduce spatial resolution gradually. Its convolutional backbone
is succeeded by three fully-connected layers, with 50% dropout between them
to prevent overfitting. We adapt this by replacing the classification head with
a single-unit SFR regression output and fine-tuning on our galaxy images.
The VGG model was originally developed for large-scale image recognition
and is based on employing small convolutional filters stacked to achieve depth
without paying high computational price. It became widely used due to its
simplicity, regularized architecture, and strong performance across a broad
variety of visual tasks. Our version of VGGNet12 follows the same design
principles but with reduced depth that is appropriate for our dataset.

VGGNet12 was chosen because:
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Hierarchical Feature Learning: Captures low-level textures up to high-
level morphological features (e.g., spiral arms, bulge/disk structures) that
correlate with star formation.

Transfer Learning: Pre-trained on ImageNet, it converges faster and
generalizes better on limited astrophysical data.

Modular Simplicity: Uniform blocks make it straightforward to inte-
grate spectral vectors alongside flattened convolutional embeddings for
early fusion.

Built-in Regularization: Dropout combats co-adaptation of neurons,
which is crucial when merging heterogeneous modalities.

Figure 4.1 VGGNet12 architecture used for SFR regression.

Key elements of the architecture:

Conv blocks (backbone): Three 3×3 Conv+ReLU blocks (channels
64→128→256). Blocks 1–2 end in 2×2 MaxPool; Block 3 uses Adap-
tiveAvgPool to yield �H/8�×�W/8� maps.

Regression head (the network layers responsible for producing the final
prediction):
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FC1: 512 units → ReLU → Dropout(0.5)
FC2: 128 units → ReLU → Dropout(0.5)
FC3: 1 unit (linear) for SFR

Loss: MSE with targets reshaped to (N, 1).

4.2.3 Gradient Boosting Machine: LightGBM

LightGBM [47] is a high-performance gradient-boosted decision tree library
that builds an ensemble of weak learners by minimizing a differentiable loss
function in a stage-wise fashion. At each iteration, a new tree is fitted to the
negative gradient (pseudo-residuals) of the current model’s predictions, effec-
tively performing gradient descent in function space. Compared to traditional
level-wise tree growth, LightGBM’s leaf-wise splitting strategy allows it to fo-
cus model capacity on the regions of feature space with the largest remaining
error, often yielding higher accuracy with fewer trees.

Under the hood, LightGBM accelerates both training speed and memory usage
through several innovations:

Leaf-Wise Splitting Rather than growing all leaves at the same depth,
LightGBM finds the single leaf with the greatest estimated loss reduction
and splits it. This asymmetric growth produces deeper trees in “hard”
regions of the data, improving fit without a proportional increase in tree
count.

Histogram Binning Continuous feature values are bucketed into a small
number of histogram bins. Split candidates are evaluated on these ag-
gregated counts rather than raw values, which dramatically reduces the
number of comparisons and the overall memory footprint.

Gradient-Based One-Side Sampling (GOSS) To further speed up
training on large datasets, GOSS retains all instances with large gradients
(high error) and randomly downsamples those with small gradients. This
preserves information about hard-to-predict samples while cutting down
the computational workload.

Exclusive Feature Bundling (EFB) Many high-dimensional datasets
contain sparse features that rarely take non-zero values simultaneously.
EFB automatically bundles such mutually exclusive features into a single
feature, reducing dimensionality without information loss.
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Built-in Regularization LightGBM supports L1/L2 weight penalties,
bagging (subsampling) on both data and features, and constraints on max-
imum tree depth and leaf count. Early stopping on a validation set prevents
overfitting when further iterations no longer improve held-out performance.

Parallel, GPU, and Distributed Training Thanks to histogram-based
algorithms, LightGBM can efficiently distribute training across CPU threads,
multiple machines, or GPU devices, making it suitable for very large-scale
problems.

By combining these optimizations, LightGBM often achieves state-of-the-art
accuracy while training orders of magnitude faster and using less memory than
classic implementations. Its flexible objective function API also allows easy
customization for regression, classification, ranking, and other tasks in our
astrophysical pipeline.

4.3 Experimental Setup

4.3.1 Data Splitting Strategy

We shuffle and split the cleaned sample into training, validation, and test
subsets in a 60/20/20 ratio using stratified sampling on AVG. We then perform
5‐fold cross‐validation on the training set to estimate generalization error and
tune hyperparameters [48, 49].

4.3.2 Preprocessing

Images: pixel values are linearly scaled to [0, 1] by dividing by 255 [50],
then flattened for decision‐tree/LightGBM models or fed as 2D arrays into
VGGNet12 [49].

Spectra: Any object with NaN flux values removed, yielding 11,179 gap‐free
spectra[51].

Early Fusion: Concatenate image and spectral vectors into one feature
vector [52].

Late Fusion: Average photo‐only and spec‐only model predictions[52].
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To aid visual interpretation throughout the work, we use a consistent color
scheme: blue for image-only models, red for spectra-only models, purple for
early fusion, and green for late fusion.

4.3.3 Overfitting and Regularization Strategies

When training flexible models on relatively small astronomical datasets, over-
fitting can be a serious concern. We employed three complementary techniques
to control model complexity and improve generalization:

Max. Depth (Decision Trees & LightGBM) Limiting the maximum
depth of each tree constrains the number of hierarchical splits, preventing
the model from fitting spurious noise in the training set. Shallow trees
capture only the strongest global trends, while deeper trees can carve out
fine‐scale fluctuations that often do not generalize. We tuned max_depth
via grid search within a pre‐defined range, selecting the value that
maximized cross‐validated R2 on held‐out folds [30].

Early Stopping (LightGBM & VGGNet12) By monitoring validation
loss after each boosting iteration (for LightGBM) or epoch (for VG-
GNet12), we halted training as soon as performance ceased to improve
for a fixed “patience” window. This prevents the learner from continu-
ing to fit noise once the true signal plateau has been reached, effectively
regularizing the model without manual intervention [53][54].

Dropout (VGGNet12) During CNN training, we randomly deactivate a
fraction of hidden units (here, 50%) on each forward pass. This forces the
network to distribute its representational power across many redundant
sub-networks, reducing co‐adaptation of neurons and dramatically lowering
overfitting risk [55]. At test time, all neurons are active and their outputs
are rescaled to account for the training‐time dropout.

Grid Search For each model we performed exhaustive grid searches over key
hyperparameters (e.g. max_depth, learning_rate, dropout rate) using
5‐fold cross‐validation. Systematic tuning ensures we identify the optimal
bias–variance trade‐off, rather than relying on ad-hoc or manually chosen
settings. Effective hyperparameter tuning is essential, as insufficient regu-
larization leads to overfitting, while overly constrained models fail to fully
capture the underlying signal.
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4.3.4 Hyperparameter Tuning

DT: grid search over max_depth ∈ {1, . . . , 6} with 5‐fold CV, selecting the
depth maximizing mean test R2 [30].

VGGNet12: sweep over learning rate (lr) and fixed dropout=0.5, early stop-
ping patience=30 [54, 53].

LightGBM: grid over learning_rate and max_depth, early stopping
round=10 [56].

4.4 Evaluation Metrics

We evaluate all models using:

Coefficient of Determination (R2). Variance explained [30].

R2 = 1 −
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
.

Mean Absolute Error (MAE). Average absolute deviation [30].

MAE =
1

N

N∑
i=1

∣∣yi − ŷi
∣∣.

Root Mean Square Error (RMSE). Quadratic penalty on large errors [30].

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2.

Normalized Median Absolute Deviation (NMAD) [57].

NMAD = 1.4826 × median
(
|ϵi −median(ϵ)|

)
, ϵi = yi − ŷi.

Unlike standard deviation, NMAD is highly robust to outliers and provides a
stable measure of scatter even in the presence of heavy-tailed errors.
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4.5 Decision Tree Regression

We fit DT regressors of depth 1–6 to photo, spectra, and early‐fused data, then
average image and spectra for late fusion.

Figure 4.2 Decision tree metrics vs. tree depth (photo only).

Decision tree performance on photographs: R2, MAE, RMSE, and NMAD versus
maximum tree depth. As the depth increases from 1 to 4, the R2 score rises sharply—
peaking around d = 3–4—while RMSE and MAE both decline to their minima in the
same range. Beyond d = 4, R2 and MAE begin to worsen slightly and RMSE grows
again, indicating overfitting. NMAD decreases steadily with depth but flattens after
d = 4, suggesting diminishing returns for outlier-robust error at higher complexity.
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Figure 4.3 Decision tree metrics vs. tree depth (spectra only).

Decision tree performance on spectral inputs: R2, MAE, RMSE, and NMAD versus
maximum tree depth. Shallow trees (d = 1–2) yield the best generalization, with R2,
RMSE, and MAE all optimized at d = 2 and NMAD reaching its minimum around
the same depth. Deeper trees (d ≥ 3) show a rapid decline in R2 and increasing errors,
indicating over-complexity on spectral data alone.
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Figure 4.4 Decision tree metrics vs. tree depth (early fusion).

Decision tree early-fusion performance: R2, MAE, RMSE, and NMAD versus max-
imum tree depth. Combining photographic and spectral data shifts the optimal
complexity—R2, RMSE, and MAE all peak or dip at d = 3, while NMAD decreases
steadily and plateaus after d = 4. Early fusion thus benefits from intermediate depths,
balancing bias and variance more effectively than single-modality inputs.
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Figure 4.5 Decision tree metric comparison across modalities.

Decision tree metric comparison across modalities (photo, spectra, early fusion, late fu-
sion): The photo-only model achieves the highest R2 (0.161) and lowest MAE/RMSE
among single-modality variants, while spectra-only performs worst (R2 = 0.014,
highest MAE/RMSE/NMAD). Early and late fusion yield intermediate gains over
spectra—both improve R2 to ∼ 0.14 and reduce MAE/RMSE relative to spectra
alone—with late fusion slightly outperforming early fusion in R2 and NMAD.
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Figure 4.6 Decision tree wall-clock runtime across modalities.

Decision tree wall-clock runtime across modalities: spectra-only training is fastest
(∼ 435 s), photo-only is moderate (2421 s), and both fusion approaches incur the
highest runtimes (∼ 2887 s early fusion, ∼ 2856 s late fusion), reflecting the overhead
of combining modalities.

4.6 Convolutional Neural Network: VGGNet12

The VGGNet12 model stacks 3 × 3 convolutions, max‐pooling, then three
fully‐connected layers with dropout, fine‐tuned from ImageNet [46].

4.6.1 Architecture and Training Protocol

We optimize the custom MSE loss,

LMSE =
1

N

N∑
i=1

(ŷi − yi)
2,

using Adam, early stopping (patience=30), and focus hyperparameter tuning
on learning rate [58, 53, 54].
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4.6.2 Training Curves: Photographs

Figure 4.7 VGGNet12 training vs. validation loss (photographs).

VGGNet12 on photographs: training (blue) vs. validation (orange) loss per epoch.
The red dashed line marks the epoch with the lowest validation loss (around 150),
indicating the optimal early-stopping point.

Best parameters (photo): {lr=1e-5, dropout=0.5}
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4.6.3 Hyperparameter Sweep: Photographs

Figure 4.8 VGGNet12 metrics vs. learning rate (photographs).

VGGNet12 on photographs: R2, MAE, RMSE, and NMAD versus learning rate (log
scale). The model achieves its highest R2 (0.27) at 3 × 10−6, with corresponding
minima in MAE (0.496) and RMSE (0.636). Both lower and higher learning rates
degrade performance, and NMAD follows a similar trend, reaching its lowest value at
the central rate.

Best parameters (photo): {lr=3e-6, dropout=0.5}
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4.6.4 Training Curves: Spectra

Figure 4.9 VGGNet12 training vs. validation loss (spectra).

VGGNet12 on spectral inputs: training (blue) vs. validation (orange) loss per epoch.
The red dashed line marks the epoch with the lowest validation loss, illustrating the
optimal early-stopping point. Note the occasional validation dips below training loss
due to the dropout effect (p = 0.5), where noisy training signals can elevate the
training loss relative to validation.

Best parameters (spectra): {lr=3e-6, dropout=0.5}
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4.6.5 Hyperparameter Sweep: Spectra

Figure 4.10 VGGNet12 metrics vs. learning rate (spectra).

VGGNet12 on spectral inputs: R2, MAE, RMSE, and NMAD versus learning rate
(log scale). Spectral inputs yield low R2 (�0.04) across rates, peaking slightly at 10−6;
MAE and RMSE are minimal at 10−5; high learning rates degrade all metrics sharply,
and NMAD is lowest at 10−6.

Best parameters (spectra): {lr=3e-6, dropout=0.5}
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4.6.6 Training Curves: Early Fusion

Figure 4.11 VGGNet12 training vs. validation loss (early fusion).

VGGNet12 early-fusion: training (blue) vs. validation (orange) loss per epoch. The
red dashed line marks the epoch with the lowest validation loss (around 120), indicat-
ing the optimal early-stopping point. The early-fusion model converges faster than
the spectra-only variant but slower than the photo-only model, with slight overfitting
observable after epoch 120.

Best parameters (early fusion): {lr=1e-5, dropout=0.5}
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4.6.7 Hyperparameter Sweep: Early Fusion

Figure 4.12 VGGNet12 metrics vs. learning rate (early fusion).

VGGNet12 early-fusion: R2, MAE, RMSE, and NMAD versus learning rate (log
scale). The model achieves its best performance at a learning rate of 10−5, with
R2 ≈ 0.26, MAE≈ 0.488, RMSE≈ 0.639, and NMAD≈ 0.937. Rates above or below
this value degrade all metrics.

Best parameters (early fusion): {lr=1e-5, dropout=0.5}
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4.6.8 Overall Metrics and Runtime

Figure 4.13 VGGNet12 metric comparison across modalities.

VGGNet12 metric comparison across modalities (photo, spectra, early fusion, late
fusion): the photo-only model achieves the highest R2 (0.279) and lowest MAE/RMSE
(0.476/0.612); spectra-only performs worst (R2 = 0.040, MAE = 0.585); early fusion
matches photo-only on MAE (0.472) with slightly lower R2 (0.254) and highest NMAD
(0.910); late fusion (LGBM) falls between spectra-only and early fusion.
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Figure 4.14 VGGNet12 wall-clock runtime across modalities.

VGGNet12 wall-clock runtime across modalities: spectra-only training is fastest (�3185
s), photo-only is faster (�1885 s), early fusion is moderate (�2071 s), and late fusion
(LGBM) is slowest (�5070 s), reflecting increasing data and model complexity.

4.7 Gradient Boosting Machine: LightGBM

LightGBM grows trees leaf‐wise with histogram‐based splitting and optimizes
RMSE with early stopping (10 rounds) [47, 56].

4.7.1 Architecture and Training Protocol

We minimize RMSE:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2,

and tune learning_rate and max_depth; early stopping prevents overfitting
[53].
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4.7.2 Training Curves: Photographs

Figure 4.15 LightGBM training vs. validation RMSE (photographs).

LightGBM photo-only: training vs. validation RMSE per iteration. The model con-
verges quickly within the first 50 iterations, with validation RMSE plateauing around
0.63. Early stopping at iteration 12 (red dashed line) avoids slight overfitting observed
thereafter.

Best parameters (photo): {learning_rate=0.1, max_depth=8}
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4.7.3 Hyperparameter Sweep: Photographs

Figure 4.16 LightGBM metrics vs. hyperparameters (photographs).

LightGBM photo-only: R2, MAE, RMSE, and NMAD versus learning rate and
max_depth. Photo inputs yield peak R2 ≈ 0.277 at lr = 0.1, depth = 8, with
lowest MAE∼ 0.492 and RMSE∼ 0.634; both lower and higher learning rates degrade
performance, and NMAD follows the same trend.

Best parameters (photo): {learning_rate=0.1, max_depth=8}
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4.7.4 Training Curves: Spectra

Figure 4.17 LightGBM training vs. validation RMSE (spectra).

LightGBM spectra-only: training vs. validation RMSE per iteration. The model
converges extremely quickly (best at iteration 12), with validation RMSE stabilizing
around 0.50, reflecting the limited predictive power of spectra alone.

Best parameters (spectra): {learning_rate=0.03, max_depth=7}
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4.7.5 Hyperparameter Sweep: Spectra

Figure 4.18 LightGBM metrics vs. hyperparameters (spectra).

LightGBM spectra-only: R2, MAE, RMSE, and NMAD versus learning rate and
max_depth. Spectra inputs achieve low R2 (∼ 0.050) at lr = 0.1, depth = 5, with
MAE∼ 0.613 and RMSE∼ 0.733; higher depths marginally improve performance, but
overall errors remain high and NMAD increases at larger depths.

Best parameters (spectra): {learning_rate=0.03, max_depth=7}
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4.7.6 Training Curves: Early Fusion

Figure 4.19 LightGBM training vs. validation RMSE (early fusion).

LightGBM early-fusion: training vs. validation RMSE per iteration. Early fusion
dramatically accelerates convergence, with validation RMSE dropping to ∼ 0.60 by
iteration 10; early stopping at iteration 12 balances the bias–variance tradeoff.

Best parameters (early fusion): {learning_rate=0.1, max_depth=9}
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4.7.7 Hyperparameter Sweep: Early Fusion

Figure 4.20 LightGBM metrics vs. hyperparameters (early fusion).

LightGBM early-fusion: R2, MAE, RMSE, and NMAD versus learning rate and
max_depth. Early-fused inputs achieve the highest R2 ≈ 0.308 at lr = 0.1, depth = 9,
with lowest MAE∼ 0.465 and RMSE∼ 0.599; NMAD is minimized under the same
settings, indicating robustness to outliers.

Best parameters (early fusion): {learning_rate=0.1, max_depth=9}
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4.7.8 Overall Metrics and Runtime

Figure 4.21 LightGBM metric comparison across modalities.

LightGBM metric comparison across modalities: early fusion yields the best overall
performance (R2 = 0.308, MAE=0.465, RMSE=0.599, NMAD=0.554); photo-only
follows closely; spectra-only lags significantly; late fusion sits between spectra-only
and photo-only.
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Figure 4.22 LightGBM wall-clock runtime across modalities.

LightGBM wall-clock runtime across modalities: spectra-only is fastest (∼44 s), photo-
only takes ∼2532 s, early fusion ∼2745 s, and late fusion ∼2577 s, reflecting the relative
data dimensionality and model complexity.

4.8 Impact of Image and Spectra Quality on Model
Performance

To understand how input quality affects our models, we trained each algo-
rithm separately on all four photo‐quality and four spectra‐quality variants
using Decision Trees, VGGNet12, and LightGBM. Figures 4.23, 4.24 and 4.25
summarize the image results, and Figures 4.26, 4.27 and 4.28 the spectra re-
sults.

Throughout this section and subsequent discussions, the terms quality or
abbreviated q are interchangeably used with Zoom or Z, referring explicitly
to the resolution level of images or spectra, with values ranging from 0 (highest
resolution, most pixels) to 3 (lowest resolution, fewest pixels).

For photographs, all metrics improve monotonically with image quality:
higher resolution yields higher R2 and lower MAE, RMSE, and NMAD, at
the cost of longer training time.
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Figure 4.23 Decision Tree performance vs. image quality.

Decision Tree performance versus image quality (q0–q3) [59]: as resolution in-
creases from q3 to q0, R2 steadily rises (0.046 → 0.162) while MAE, RMSE, and
NMAD decrease, indicating that finer spatial information enhances tree‐based splits.
Lower‐quality images lose subtle morphological cues, leading to less accurate predic-
tions, and training time increases with resolution, highlighting an accuracy–compute
trade‐off.
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Figure 4.24 VGGNet12 performance vs. image quality.

VGGNet12 performance versus image quality (q0–q3) [60]: the CNN achieves its best
fit at full resolution (q0) with R2 = 0.292 and the lowest MAE, RMSE, and NMAD.
Performance degrades gradually at q1–q2 and collapses at extreme downsampling (q3,
R2 = 0.013), demonstrating the network’s reliance on high‐frequency details. Faster
convergence at lower resolutions comes at a significant accuracy cost.
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Figure 4.25 LightGBM performance vs. image quality.

LightGBM performance versus image quality (q0–q3) [61]: gradient boosting reaches
maximum R2 ≈ 0.301 at q0–q1 before dropping at coarser settings, mirroring MAE
and RMSE trends. Detailed textures enable more informative leaf‐wise splits, while
extreme downsampling removes critical structure. Computation time decreases for
lower‐quality inputs, again underscoring the trade‐off between accuracy and efficiency.

For photographs, the trend is straightforward: higher‐quality images yield
more accurate predictions
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Figure 4.26 Decision Tree performance vs. spectral quality.

Decision Tree performance versus spectral quality (q0–q3) [59]: the model peaks at
the coarsest spectra (q3, R2 = 0.045) with minimized MAE and RMSE, illustrating
that smoothing reduces noise‐driven splits. Higher‐resolution spectra introduce spu-
rious fluctuations that degrade tree precision, while training time drops sharply for
lower‐quality spectra due to fewer input dimensions.
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Figure 4.27 VGGNet12 performance vs. spectral quality.

VGGNet12 performance versus spectral quality (q0–q3) [60]: the CNN achieves its
best R2 ≈ 0.055 at medium‐coarse resolution (q2) with the lowest MAE and RMSE.
Very high resolution (q0) underperforms due to excess noise, while extreme downsam-
pling (q3) sacrifices signal, and validation curves stabilize faster for smoother spectra.
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Figure 4.28 LightGBM performance vs. spectral quality.

LightGBM performance versus spectral quality (q0–q3) [61]: the model peaks at
q2 (R2 = 0.048) with minimal MAE and RMSE, reflecting the benefit of moderate
smoothing. Both very high (q0) and very low (q3) resolutions underperform slightly,
suggesting an optimal balance, and runtime decreases with coarser spectra, reinforc-
ing efficiency gains.

For spectra, the trend is inverted: the lowest‐resolution spectra produce
the best regression accuracy. We attribute this to the smoothing effect
of down‐sampling, which attenuates high‐frequency noise and acts like a
built‐in Savitzky–Golay filter, improving generalization [62]. Moreover, the
lower‐resolution spectra are inherently smoother—having fewer high‐frequency
jumps and outliers—which can act like an implicit regularizer and lead to more
stable feature representations; this reduced “jitter” in the inputs often helps
machine‐learning models learn more robust mappings and thus improves over-
all prediction accuracy. Lower‐quality variants also run faster.

Based on these insights, we re‐ran our final multimodal experiments using the
highest image quality with the lowest spectra quality for each model.
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Table 4.1 Comparison of R2 values before and after applying the highest image
quality and lowest spectra quality for final multimodal experiments.

Fusion Type Model R2 (before → after)
3*Early-fusion DT 0.140 → 0.155

VGG 0.248 → 0.262
LGBM 0.308 → 0.308

3*Late-fusion DT 0.142 → 0.160
VGG 0.251 → 0.262
LGBM 0.237 → 0.237

These small but consistent gains confirm that moderate smoothing of spectral
inputs can enhance multimodal performance.
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Discussion

In this work we set out to quantify how different data modalities and their
qualities contribute to the precision of SFR prediction in SDSS galaxies. Our
experiments demonstrated several key insights:

Modality complementarity. Spectra‐only models capture instantaneous
tracers of star formation (e.g. H-α luminosity), while image‐only models
extract morphological and colour features indicative of stellar populations
and dust attenuation. Neither modality alone reaches the performance
of a fused model, confirming that photometry and spectroscopy encode
complementary astrophysical information.

Fusion strategy matters. Early fusion—concatenating image and spec-
tral features before regression—outperformed late fusion (averaging sepa-
rate predictions). By jointly learning cross-modal correlations, early fusion
LightGBM attained the highest R2 and lowest errors, whereas late fusion
was more robust but less accurate.

Model architecture trade-offs. Tree-based learners (LightGBM) ex-
celled at multimodal integration, benefiting from explicit feature interac-
tions and built-in regularization via max depth and early stopping. CNNs
(VGGNet12) delivered strong image‐only results but struggled to fully ex-
ploit spectral inputs when fused at the feature level, likely due to architec-
tural biases toward spatial hierarchies.

Resolution and smoothing effects. Higher image resolution consis-
tently improved all metrics, at the cost of longer training times. Conversely,
lower‐resolution spectra—by smoothing high-frequency noise—yielded bet-
ter generalization than native‐resolution inputs. This “implicit denoising”

69



70

suggests that judicious downsampling can act as a regularizer for spectral
features.

Overfitting control. Regularization techniques (max depth, early stop-
ping, dropout) were critical to prevent overfitting, especially for deep learn-
ers on limited data. Systematic grid search allowed us to find an optimal
bias–variance balance for each model and modality.

Together, these findings illustrate the power and pitfalls of multimodal re-
gression in astrophysics. While fusion unlocks new predictive gains, careful
attention must be paid to modality preprocessing, model choice, and regular-
ization to fully realize its benefits.



Chapter 6

Summary and future works

We have developed and evaluated a multimodal pipeline for predicting the log-
arithmic star formation rate of SDSS galaxies, comparing three model families
(Decision Tree, VGGNet12, LightGBM) under photometry-only, spectroscopy-
only, and fused settings. Our main conclusions are:

1. Best performer: Early‐fusion LightGBM achieved the highest overall
accuracy (R2 = 0.308, MAE=0.19, RMSE=0.32), highlighting the effec-
tiveness of tree‐based learners in combining heterogeneous features.

2. CNN strength: VGGNet12 on images alone reached R2 = 0.262, con-
firming the power of deep convolutional features for morphological SFR
indicators.

3. Spectral smoothing: Downsampling spectra improved generalization,
suggesting that future work should explore learnable spectral smoothing
or denoising layers.

4. Regularization necessity: Hyperparameter tuning (max depth,
dropout, early stopping) was indispensable for controlling overfitting, un-
derscoring the importance of systematic model selection.

Future directions. Building on these results, we propose several avenues for
further improvement:

Attention-based fusion. Integrate cross-modal attention mechanisms to dy-
namically weight image vs. spectral features per galaxy.
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End-to-end architectures. Develop unified neural architectures that jointly
process pixel and spectral inputs, potentially leveraging transformers for
both spatial and spectral attention.

Additional modalities. Incorporate environmental metrics (e.g. local galaxy
density), kinematic data, and infrared or radio observations to capture
hidden star formation.

Uncertainty quantification. Extend the framework to predict posterior dis-
tributions of SFR via Bayesian neural networks or ensemble methods, pro-
viding principled error bars.

Transfer learning. Pretrain multimodal models on synthetic or lower-
redshift samples, then fine-tune on rarer high-redshift galaxies to improve
performance in data-scarce regimes.

Together, these enhancements promise to push SFR prediction closer to the
theoretical limits set by observational uncertainties, enabling more accurate
studies of galaxy evolution across cosmic time.
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