

Adaptive Learning for SN photometric classification

EWASS – Prague, June/2017

Emille E. O. Ishida

Laboratoire de Physique de Clermont - Université Clermont-Auvergne Clermont Ferrand, France

Spectroscopy X Photometry

Spectroscopy x Photometry

Supernovae Typing

How are spectroscopic sets constructed?

How are spectroscopic sets constructed?

Take spectra for learning and determine everything else

As a consequence ...

The problem with text-book ML: Representativeness

Representativeness

Supernovae Typing

Pro-active approach to the construction of spectroscopic samples

Active Learning

Simple logistic regression + AL

Alternative approach Landmark selection + Active Learning

Alternative approach Landmark selection + Active Learning

Sometimes,

There will be a group without a minimum necessary number of labels ...

Sometimes,

There will be a group without a minimum necessary number of labels ...

Ask!

Automated Supernova Ia Classification Using Adaptive Learning Techniques

Kinjal Dhar Gupta*, Renuka Pampana*, Ricardo Vilalta*, Emille E. O. Ishida[†], Rafael S. de Souza[‡]

Dhar Gupta et al. (incl. Ishida), 2016 IEEE Symposium in Computational Intelligence, Greece

1. Use simulations to identify the ideal spectroscopic sample:

- redshift range
- errors
- colors

Use simulations to identify the ideal spectroscopic sample:
redshift range

- errors
- colors

2. Use partial light curves (pre-max)

Use simulations to identify the ideal spectroscopic sample:
redshift range

- errors
- colors

2. Use partial light curves (pre-max)

The COIN Residence Program - CRP

Annual meetings

Conference

Workshop

Hackathon

The COIN Residence Program - CRP

Annual meetings

The COIN Residence Program - CRP Annual meetings

John Johnson/HBO

https://www.theroadtosiliconvalley.com/moving/comparing-sydney-silicon-valley/

The COIN Residence Program - CRP

A non-profit start-up?

Annual meetings

John Johnson/HBO

https://www.theroadtosiliconvalley.com/moving/comparing-sydney-silicon-valley/

CRP #3, Budapest, 2016

CRP #2, UK, 2015

CRP #2, UK, 2015

https://iaacoin.wixsite.com/crp2017

#coinCF2017

Home About

Organizers

Location

Conduct Participants

ts 🛛 🖌 Sponsors

COIN Residence Program #4

20-27 August 2017 Clermont Ferrand, France

IAA facebook page

COIN on twitter

@iaa_coin FOLLOWS YOU

COIN promotes the development of novel statistical tools for astronomy. #rstats #astrostatistics #cosmology #python #datascience #astronomy #bigdata

Vorldwide

Tweet to Tweet to

Extra slides

Background: Active Learning in Astronomy

ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION

Joseph W. Richards^{1,2}, Dan L. Starr¹, Henrik Brink³, Adam A. Miller¹, Joshua S. Bloom¹, Nathaniel R. Butler¹, J. Berian James^{1,3}, James P. Long², and John Rice²

supervised classification

THE ASTROPHYSICAL JOURNAL, 744:192 (19pp), 2012 January 10

