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Digital Sky Surveys
➔ As large and as deep as possible
➔ Sky surveys designed to provide statistical samples of celestial objects.
➔ Spatial overview, completeness, homogeneous datasets;
➔ Base for general conclusions about objects;
➔ Rare and/or unusual objects;



  

Data avalanche
➔ SDSS: ~115 TB in total
➔  Zwicky Transient Facility (ZTF; start 2017)1 PB of image data ~1 billion objects
➔ Large Synoptic Survey Telescope (LSST; first light ~2020); 30 TB PER NIGHT
➔ The Square Kilometer Array (SKA) ~4.6 Zetabytes  
➔ Need of automated tools to detect, characterize and classify gathered information

https://www.lsst.org/lsst
SKA; South Africa



  

The deepest and widest so 
far: Widefield Infrared 
Survey Explorer (WISE)

➔ All-Sky survey in IR 
➔ Detected over 747 mln sources(15 PB of data; tables + images)
➔ Publicly available (position, photometry in 4 bands (3.6-22 um))
➔ Low angular resolution (~6”)
➔ No redshift information so far          (http://wise2.ipac.caltech.edu/docs/release/allsky/)



  

Objectives

➔ Create as complete and as deep catalogues of stars, galaxies and quasars as possible  (with as little effort as possible) to get a better understanding of the formation and evolution of the Universe
➔ WISE: largest and deepest → perfect for testing efficient methods of fast and effective catalogue creation for further studies



  

Exploration of parameter 
spaces

The usual approach to 
selection of desired 
sources: CC diagrams

BUT! With simple approach 
much information is lost/unseen 
by human eye

● A computer can be more 
precise and deal with a lot of 
data at once; not restricted to 
three dimensions

→ Machine learning!



  

Best algorithm?

➔ http://peekaboo-vision.blogspot.cl/2013/01/machine-learning-cheat-sheet-for-scikit.html



  

Best algorithm for WISE?



  

Support Vector Machines 
(SVM): a supervised approach

SVM: segregate data into 2 (or more) categories based on training examples
➔ Use kernel functions to map input data into higher dimensional feature space
➔ Find a hyperplane separating two classes in the feature space
➔ New data: class assigned based on their relative position from the boundary



  

WISE: first attempt at 
source classification

AllWISE x SDSS (α,δ) parameter space: W1, W1-W2, w1mag13  

W1mag13 == w1mpro(5”) -w1mpro(11”)
Compactness 

parameter



  

WISE: first attempt at 
source classification

Galaxies well recognized QSO not so much



  

WISE: what caused the 
algorithm to fail



  

Oneclass SVM enhancement

➔ Create one ‘known’ class (mix of AllWISE x SDSS galaxies, stars, QSOs)
➔ Hypersurface hugging the expected sources
➔ Anything with ‘unknown’ patterns falls outside the hypersurface => anomalies



  

Results
~650,000 anomalous sources



  

Spurious sources
➔ W1-W2 ~ -1 ; 80%
➔ Spitzer GLIMPSE: IRAC I1 [3.6 um], IRAC I2 [4.5 um]
➔ Low WISE resolution (6”) in crowded fields => blends
➔ OCSVM: good tool for selecting hiddenartefacts

                         Solarz et al. 2017 



  

Mix of galaxies 
and stars?

                         Solarz et al. 2017 



  

AGN candidates?
➔ 40,000 sources
➔ W1 ~ 16 [Vega mag], W3 [12 um] ~ 10 [Vega mag]
➔  no starlight can be redshifted to this channel 
➔ Warm dust emission/PAH emission lines 
➔ From theoretical predictions: AGN colours (Jarrett et al. 2011)
➔ Galactic Plane: mostly blends; 

                         Solarz et al. 2017



  

Obscured/Unobscured AGNs

➔ 7000 found in photometric SDSS, but no spectrum
➔ => all sky extrapolation (to full depth of WISE): 40% with no optical counterpart
➔ Two populations of AGNs: obscured and unobscured
➔ No other counterparts in any publicly available cataloguesTo confirm:
➔ Follow-up optical photometry needed (future SDSS releases?)
➔ Spectroscopy would be best 

                         Solarz et al. 2017



  

Summary

➔ We need to deal with unusual patterns in the data
➔ i.e. search for ‘unknown unknowns’
➔ Anomaly detection: 
➔  OCSVM => efficient selection of interesting and previously unclassified objects → cleaning the data of unexpected/unaccounted for artifacts
➔ Verify nature of selected AGN candidates + correlation function calculations

➔ http://www.R-project.org
➔ https://cran.r-project.org/web/packages/doParallel/index.html
➔ https://cran.r-project.org/web/packages/caret/index.html

Special thanks to Mark Taylor for the TOPCAT (Taylor 2005) and STILTS (Taylor 2006) software



  

FIN (?)Backup slides

https://cran.r-project.org/web/packages/caret/index.html


  



  

Why (OC)SVM?

➔ Domain-based methods: location of the novelty boundary based on nearest points
➔ Do not make any assumptions about the data distribution 
➔ distance-based methods, e.g. NN; clustering: require definition of the distance metrics, distance measures in many dimensions lose ability to differentiate between normal and outlying data points; lack the flexibility of parameter tuning => unsuitable for full automatisation
➔ Great review of different anomaly dtection schemes: Pimentel et al. 2014 



  

Best algorithm?

Credit: http://scikit-learn.org



  

Variety of AGN sources
➔ Seyfert galaxies (spirals)
➔ Quasars (Nuclear emission dominates host galaxy light.)
➔ Blazars (violetnly variable,
➔ Radio galaxies (ellipticals)
➔ Etc.

➔                                                                                            



  

Obscured/unobscured AGNs:
unified modelwhy such variety of observed   phenomena → different objects?Unified models: 

➔ different classes of AGN  => different orientations of intrinsically similar systems to the observer’s line of sight.



  

Obscured/unobscured AGNs:
evolutionary differencesAccording to clustering measurements obscured/unobscured AGNs => separate populations evolving in different way

➔ If we get photo/spec redshifts we can weigh in on this discussion
Hickox et al. 2011
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