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Introduction 
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Data Deluge in Sky surveying 

Gaia mission, ESA 

 Tens of billions of 
objects 

 Data Volume -> 15PB 
for the catalog  

 >2020 ->+ 10 years 
 

 The largest and most 
precise 3D map of the 
Galaxy 

 1 billion stars observed 
over 5 years  

 Data Volume ->1PB 
 Dec. 2013- 2020 

LSST project 

How to efficiently manage such Big Data in astronomy ? 
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• Astronomical Surveys are mostly 
accessed using SQL Dialect 
By integrating a library of geometrical 

functions to SQL (eg. ADQL) 

And spatial indexing techniques to 
optimize the query execution 

• Mainly implemented within relational 
DBMSs 
• SkyServer for SDSS 

• Postgres Q3C & Pgsphere 

• … 

 

 

• Popular Big Data platforms propose a 
distributed frameworks 
Most tend to implement SQL 

Allow user-defined functions 

 

Apache Spark is among the most popular 
frameworks 
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Today’s Situation 

 But  do not scale with the expected data 
volume 

 But  do not support astronomical data 
access and manipulation 
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Objective 
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• Combining the best of two worlds: 

• Expressivity of the declarative query language 

• We choose ADQL as a basis for the SQL dialect 
 

• Scalability of distributed frameworks 

• We choose Apache Spark as a cluster computing ptatform 

 

 

 

 

Astronomical Data Query 
Language 

(ADQL)

SELECT alpha, delta, sourceID 
FROM gums 

WHERE CONTAINS(POINT(‘ICRS’,alpha,delta),  
CIRCLE('ICRS', 10, 5, 1)) = 1;

IVOA

1. How to allow the support of ADQL within SPARK SQL ? 

2. How to optimize the query processing in this context ?  
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Why SPARK ? 
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• Up to 100× faster than Hadoop MapReduce 

• thanks to its execution engine that supports acyclic data flow  

• and in-memory computing. 

• Improves usability (2 to 10 less code) through: 

• Rich APIs in Java, Scala, Python 

• Interactive shell, SQL 

• Works with any Hadoop-supported storage system (HDFS, Amazon S3, Avro, Parquet…) 

• Provides 2 types of Operations: 

• Transformations (e.g. map, filter, groupBy, join) -> Lazy operations to build RDDs from other RDDs 

• Actions (e.g. reduce, count, collect, save) -> Return a result or write it to storage 

 

Karine Zeitouni AstroSPARK 



Outline 

 Introduction 

 AstroSpark Architecture 

 Data Patitioning Algorithm 

 Cross-Matching  

 Experimental Evaluation 

 Conclusion 

 
6 Karine Zeitouni AstroSPARK 



Towards AstroSpark 

 

We propose a distributed framework specifically tailored for data intensive 

applications in astronomy 

 This  leads to revisit the optimization techniques in this perspective : 

  Physical organization of data: Partitioning 

  Logical and physical query optimization and processing 

  Using a Cost model (I/O, CPU, Communication, Coordination, …) in the query evaluation  

  Multi-query optimization: caching techniques  
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Observations & Design Principle 

 Specificity of the data 
 Astrometric data are typically big spatial data 

 Use spherical coordinates (e.g. International Celestial Reference System - ICRS) 

Data organization matters 

 

 Specificities of the queries 
 Frequent use of distance-based filtering, joins and top-k: Cone Search, Cross-Matching, 

Nearest Neighbors 

 Complex data processing due to large volume of data and the variety of the queries 

Algorithms and query plan should be adapted 
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Observations & Design Principle 

 Principle 1: Reuse proven methods and tools  
 Spatial indexing techniques are widely used in sky surveying  

Reuse HEALPIX index & library  

 

 Principle 2: leverage the power of the target framework 
 Add the the strictly necessary extension 

To support the query syntax of ADQL 

To evaluate and optimize the queries 
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AstroSpark Architecture 
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Storage 
(HDFS)

Querying system

Query Language (ADQL)

Query Parser

Query Optimizer (extended 
Catalyst)

SPARK Core

Healpix
library
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Partitioning 

• Definition 
• Partitioning is the process of dividing data into subgroups 

• Partitions are processed in parallel with different nodes 

• One node can process many partitions 

• Importance 
• Enables query processing in parallel 

• Reduces computer resources  

• Improves query performances 
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Partitioning Requirements in AstroSpark 

1. Data locality 
• Points that are located close to each other should be in the same partition. 

• Adapt to the spherical space 
 

2. Load balancing  
• Avoid imbalanced partitions  

• Partitioning should be adaptive to the data distribution 
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Spherical 
partitioning 

Grid 
partitioning 
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Partitioning in Spark 

• Hash partitioning 
• Partitions data quasi-randomly 

• No data locality => not adapted to proximity queries  

• Range partitioning 
• Partitions data into roughly equal ranges 

• Partition key is only one dimensional 
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 But, our target is multi-dimensional… 

NODES

QUASI-
RANDOMLY 
PARTITIONS 

INPUT FILE
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Healpix Based Range Partitioning  

• Healpix: Hierarchical Equal Area isoLatitude Pixelization of a sphere [NASA] 
• A structure for hierarchical pixelization of the data on the sphere  

• Assigns a 1D index to each pixel in a way it keeps data locality  

• NSIDE = the amount of subdivision of base pixels 

• Use spark range partitioner with Healpix as partition key 
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Healpix partition 
(NSIDE = 2) 

Healpix partition 
 (NSIDE = 1) 
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Partitioning Algorithm 
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hdfs://path/to/input hdfs://path/to/output 

Convert to DataFrame 

&  Add Healpix 

DataFrame 
partitions 

BoundaryList 
metatdata 

Idx 0 ,Range = 0-10000 

Idx 1,Range = 10001-15000 

Idx n, Range = 50000-80000 

Sort & range partition 

(#partitions) 

HDFS 
blocks 

Organized 
DataFrames 

partitions 

Shuffle 

#partitions = (InputSize/PartitionSize)(1+α) 

Add partition 

number 
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Partitioning Result 
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Node 1 

Node 2 

Node 3 

Range = 5001-

10000 

Range = 10001-

12000 

Range = 0-5000 

Partition Visualization with Aladin* 

(*) http://aladin.u-strasbg.fr 
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Cross-Matching 
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• Identify and correlate objects belonging to different observations  

• Given two sets, R and S, of data points 

• Find all pairs (r,s) є RxS, such that sphericalDistance(r,s) ≤ ε.  

 
 


 ),(tan|),( srceissphericalDSRsrSR xmatch

Points of R  
Points of S 

ɛ 
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Cross Matching using Spark SQL 

 

 
  
Spark: Cartesian product of two input tables 

Then filters from the Cartesian product based on the distance predicate 

• Producing the Cartesian product is costly in Spark  

 

• The execution time of a cross-match between 5 millions of Gaia and all records of Tycho-2 
is more than 300 hours (12 days) 
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SELECT *  

FROM R JOIN S ON (2 * ASIN(SQRT(SIN(($DEC_2-DEC)/2) * 

SIN(($DEC_2-DEC)/2) + COS($DEC_2) * COS(DEC) * 

SIN(($RA_2 - RA)/2) * SIN(($RA_2 - RA)/2))) <= ɛ) 
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Cross Matching using AstroSPARK 
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Challenge: Comparing vast amount of 
astronomical objects with low latency 
 
 Limit the comparison to the objects 

according to their healpix index 
 
 But objects on the border of different cells 

could match.  
 => Join should be extended to neighbors ! 
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 We propose HX-Match - A Healpix based cross(X)-match 
 



HX-Match - Algorithm 

1. Partitioning the two input datasets R and S using healpix and range partitioning  

2. Duplicate all objects in S and assign these duplicates the healpix index of 
each neighbor cell  -> Let’s call it  S’  

=> comparing candidate objects of S’ with R is reduced to a basic equi-join. 

3. Equi-join (R, S’) on Healpix indices  

4. Filter joined results on the Harvesine formula 
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HX-MATCH Functioning 

S 

R 

S0 

R0 

3. Equi-join with R0 
4. Filter joined results on 
the Harvesine formula 

S0 

3. Augment S0 with 
neighbors  

S’0 with neighbors 

 

How to deal with objects along 
the borders? 
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Implementing HX-Match using SPARK tools 

 

Mainly 3 ways : 

1. Extend the DataFrame API  

2. Use spark strategies to extend the spark catalyst optimizer 

3. SQL Query rewriting  
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Solution 1 - Extending DataFrame API 

• DataFrame is a distributed collection of data organized into named columns. 

• DataFrame API is extended to support HX-MATCH 

 

 

 

 This function will match the current dataframe DF1 with another dataframe 
DF2 using radius= 2/3600 
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DF1.HXMatch(DF2, 2/3600) 
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Solution 2 -  Using Spark Strategies 

• Extend the query plan optimizer 

• Transform a spark logical plan to an optimized physical plan 

• AstroSpark converts the spark join logical plan to a list of internal 
catalyst operations (SortMergeJoinExec, …) using strategies 
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SELECT * FROM gaia 
JOIN tycho2 ON 1=CONTAINS ( 
POINT(’ICRS’, gaia.ra, gaia.dec), 

CIRCLE(’ICRS’, tycho2.ra, tycho2.dec, 2/3600)) 

SQL DataFrame 

LogicalPlan PhysicalPlan RDDs 

AstroSpark 
Optimizer 
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Solution 3 -  Query rewriting 

• AstroSpark rewrites the ADQL query to an SQL query 

• The ADQL query is parsed, and translated into a Spark SQL expression 
• Explode is a built)in spark function and Neighbours is a user-defined function 
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SELECT * FROM gaia JOIN  
tycho2  

ON 1=CONTAINS ( 
POINT(’ICRS’, gaia.ra, gaia.dec), 

CIRCLE(’ICRS’, tycho2.ra, tycho2.dec, 2/3600)) 

SELECT * FROM gaia JOIN  
(SELECT *,explode(Neighbours(ipix)) As ipix_nei FROM tycho2 )  

ON (ipix=ipix_nei) WHERE 
(SphericalDistance(gaia.ra,gaia.dec,tycho2.ra,tycho2.dec) <2/3600) 
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Experimental Setup 

• Environmnent 
• 6 nodes / 180 GB spark main memory/ Partition size: 256 MB 

• Spark 2.0.1 / Hadoop 2.7.2 

 

• Dataset 
• GAIA DR1  

• More than 1 billion records, 57 attributes 

• Tycho-2  

• 2,5 millions records.  
 

 Radius chosen for the cross-match: 2 arc-seconds 
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Performance of Cross-Matching 

29 

HX-Match outperforms SIMBA, a state-of-the-art approach 
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HX-MATCH HX-MATCH with Strategy SIMBA

GAIA DR1 <-> TYCHO2  
Cross-match Radius : 2 arc-second 

HX-Match is also 
6000 X faster than 
“plain” Spark SQL 
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Conclusion and Future Work  

  Contributions 
• Design of AstroSpark, a distributed system based on Spark to process astronomical data.  

• Data partitioning with Healpix to speed up query processing 

• Implement a cross-matching algorithm based on Spark and Healpix  

• Extend the spark 2.0 Catalyst optimizer to implement the query optimizer 

  Future Work 
• Propose other algorithms for NN queries, NN join, histograms, … with ADQL 

• Explore other techniques of optimization  
• Cost based optimisation, multi-query (workload) execution , … 

 

 Do not hesitate to challenge us ! 
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