
Large Scale Data Management of Astronomical
Surveys with AstroSpark

Computer Science Dept, University of Versailles (UVSQ), France

(*) PhD co-funded by UVSQ & CNES Toulouse

Astroinformatics Symposium - From Big Data to Understanding the Universe at Large

Karine Zeitouni Mariem Brahem* Laurent Yeh

Introduction

2

Data Deluge in Sky surveying

Gaia mission, ESA

 Tens of billions of
objects

 Data Volume -> 15PB
for the catalog

 >2020 ->+ 10 years

 The largest and most
precise 3D map of the
Galaxy

 1 billion stars observed
over 5 years

 Data Volume ->1PB
 Dec. 2013- 2020

LSST project

How to efficiently manage such Big Data in astronomy ?

Karine Zeitouni AstroSPARK

• Astronomical Surveys are mostly
accessed using SQL Dialect
By integrating a library of geometrical

functions to SQL (eg. ADQL)

And spatial indexing techniques to
optimize the query execution

• Mainly implemented within relational
DBMSs
• SkyServer for SDSS

• Postgres Q3C & Pgsphere

• …

• Popular Big Data platforms propose a
distributed frameworks
Most tend to implement SQL

Allow user-defined functions

Apache Spark is among the most popular
frameworks

3

Today’s Situation

 But do not scale with the expected data
volume

 But do not support astronomical data
access and manipulation

Karine Zeitouni AstroSPARK

Objective

4

• Combining the best of two worlds:

• Expressivity of the declarative query language

• We choose ADQL as a basis for the SQL dialect

• Scalability of distributed frameworks

• We choose Apache Spark as a cluster computing ptatform

Astronomical Data Query
Language

(ADQL)

SELECT alpha, delta, sourceID
FROM gums

WHERE CONTAINS(POINT(‘ICRS’,alpha,delta),
CIRCLE('ICRS', 10, 5, 1)) = 1;

IVOA

1. How to allow the support of ADQL within SPARK SQL ?

2. How to optimize the query processing in this context ?

Karine Zeitouni AstroSPARK

	

Why SPARK ?

5

• Up to 100× faster than Hadoop MapReduce

• thanks to its execution engine that supports acyclic data flow

• and in-memory computing.

• Improves usability (2 to 10 less code) through:

• Rich APIs in Java, Scala, Python

• Interactive shell, SQL

• Works with any Hadoop-supported storage system (HDFS, Amazon S3, Avro, Parquet…)

• Provides 2 types of Operations:

• Transformations (e.g. map, filter, groupBy, join) -> Lazy operations to build RDDs from other RDDs

• Actions (e.g. reduce, count, collect, save) -> Return a result or write it to storage

Karine Zeitouni AstroSPARK

Outline

 Introduction

 AstroSpark Architecture

 Data Patitioning Algorithm

 Cross-Matching

 Experimental Evaluation

 Conclusion

6 Karine Zeitouni AstroSPARK

Towards AstroSpark

We propose a distributed framework specifically tailored for data intensive

applications in astronomy

 This leads to revisit the optimization techniques in this perspective :

 Physical organization of data: Partitioning

 Logical and physical query optimization and processing

 Using a Cost model (I/O, CPU, Communication, Coordination, …) in the query evaluation

 Multi-query optimization: caching techniques

7 Karine Zeitouni AstroSPARK

Observations & Design Principle

 Specificity of the data
 Astrometric data are typically big spatial data

 Use spherical coordinates (e.g. International Celestial Reference System - ICRS)

Data organization matters

 Specificities of the queries
 Frequent use of distance-based filtering, joins and top-k: Cone Search, Cross-Matching,

Nearest Neighbors

 Complex data processing due to large volume of data and the variety of the queries

Algorithms and query plan should be adapted

8 Karine Zeitouni AstroSPARK

Observations & Design Principle

 Principle 1: Reuse proven methods and tools
 Spatial indexing techniques are widely used in sky surveying

Reuse HEALPIX index & library

 Principle 2: leverage the power of the target framework
 Add the the strictly necessary extension

To support the query syntax of ADQL

To evaluate and optimize the queries

9 Karine Zeitouni AstroSPARK

AstroSpark Architecture

10

D
at

a
P

a
rt

it
io

n
in

g

Input Data

Storage
(HDFS)

Querying system

Query Language (ADQL)

Query Parser

Query Optimizer (extended
Catalyst)

SPARK Core

Healpix
library

Karine Zeitouni AstroSPARK

Partitioning

• Definition
• Partitioning is the process of dividing data into subgroups

• Partitions are processed in parallel with different nodes

• One node can process many partitions

• Importance
• Enables query processing in parallel

• Reduces computer resources

• Improves query performances

11 Karine Zeitouni AstroSPARK

Partitioning Requirements in AstroSpark

1. Data locality
• Points that are located close to each other should be in the same partition.

• Adapt to the spherical space

2. Load balancing
• Avoid imbalanced partitions

• Partitioning should be adaptive to the data distribution

12

Spherical
partitioning

Grid
partitioning

Karine Zeitouni AstroSPARK

Partitioning in Spark

• Hash partitioning
• Partitions data quasi-randomly

• No data locality => not adapted to proximity queries

• Range partitioning
• Partitions data into roughly equal ranges

• Partition key is only one dimensional

13

 But, our target is multi-dimensional…

NODES

QUASI-
RANDOMLY
PARTITIONS

INPUT FILE

Karine Zeitouni AstroSPARK

Healpix Based Range Partitioning

• Healpix: Hierarchical Equal Area isoLatitude Pixelization of a sphere [NASA]
• A structure for hierarchical pixelization of the data on the sphere

• Assigns a 1D index to each pixel in a way it keeps data locality

• NSIDE = the amount of subdivision of base pixels

• Use spark range partitioner with Healpix as partition key

14

Healpix partition
(NSIDE = 2)

Healpix partition
 (NSIDE = 1)

Karine Zeitouni AstroSPARK

Partitioning Algorithm

15

hdfs://path/to/input hdfs://path/to/output

Convert to DataFrame

& Add Healpix

DataFrame
partitions

BoundaryList
metatdata

Idx 0 ,Range = 0-10000

Idx 1,Range = 10001-15000

Idx n, Range = 50000-80000

Sort & range partition

(#partitions)

HDFS
blocks

Organized
DataFrames

partitions

Shuffle

#partitions = (InputSize/PartitionSize)(1+α)

Add partition

number

Karine Zeitouni AstroSPARK

Partitioning Result

16

Node 1

Node 2

Node 3

Range = 5001-

10000

Range = 10001-

12000

Range = 0-5000

Partition Visualization with Aladin*

(*) http://aladin.u-strasbg.fr
Karine Zeitouni AstroSPARK

Outline

 Introduction

 AstroSpark Architecture

 Data Patitioning Algorithm

 Cross-Matching

 Experimental Evaluation

 Conclusion

17 Karine Zeitouni AstroSPARK

Cross-Matching

18

• Identify and correlate objects belonging to different observations

• Given two sets, R and S, of data points

• Find all pairs (r,s) є RxS, such that sphericalDistance(r,s) ≤ ε.

),(tan|),(srceissphericalDSRsrSR xmatch

Points of R
Points of S

ɛ

Karine Zeitouni AstroSPARK

Cross Matching using Spark SQL

Spark: Cartesian product of two input tables

Then filters from the Cartesian product based on the distance predicate

• Producing the Cartesian product is costly in Spark

• The execution time of a cross-match between 5 millions of Gaia and all records of Tycho-2
is more than 300 hours (12 days)

19

SELECT *

FROM R JOIN S ON (2 * ASIN(SQRT(SIN(($DEC_2-DEC)/2) *

SIN(($DEC_2-DEC)/2) + COS($DEC_2) * COS(DEC) *

SIN(($RA_2 - RA)/2) * SIN(($RA_2 - RA)/2))) <= ɛ)

Karine Zeitouni AstroSPARK

Cross Matching using AstroSPARK

20

Challenge: Comparing vast amount of
astronomical objects with low latency

 Limit the comparison to the objects

according to their healpix index

 But objects on the border of different cells

could match.
 => Join should be extended to neighbors !

Karine Zeitouni AstroSPARK

 We propose HX-Match - A Healpix based cross(X)-match

HX-Match - Algorithm

1. Partitioning the two input datasets R and S using healpix and range partitioning

2. Duplicate all objects in S and assign these duplicates the healpix index of
each neighbor cell -> Let’s call it S’

=> comparing candidate objects of S’ with R is reduced to a basic equi-join.

3. Equi-join (R, S’) on Healpix indices

4. Filter joined results on the Harvesine formula

21 Karine Zeitouni AstroSPARK

22

HX-MATCH Functioning

S

R

S0

R0

3. Equi-join with R0
4. Filter joined results on
the Harvesine formula

S0

3. Augment S0 with
neighbors

S’0 with neighbors

How to deal with objects along
the borders?

Karine Zeitouni AstroSPARK

Implementing HX-Match using SPARK tools

Mainly 3 ways :

1. Extend the DataFrame API

2. Use spark strategies to extend the spark catalyst optimizer

3. SQL Query rewriting

23 Karine Zeitouni AstroSPARK

Solution 1 - Extending DataFrame API

• DataFrame is a distributed collection of data organized into named columns.

• DataFrame API is extended to support HX-MATCH

 This function will match the current dataframe DF1 with another dataframe
DF2 using radius= 2/3600

24

DF1.HXMatch(DF2, 2/3600)

Karine Zeitouni AstroSPARK

Solution 2 - Using Spark Strategies

• Extend the query plan optimizer

• Transform a spark logical plan to an optimized physical plan

• AstroSpark converts the spark join logical plan to a list of internal
catalyst operations (SortMergeJoinExec, …) using strategies

25

SELECT * FROM gaia
JOIN tycho2 ON 1=CONTAINS (
POINT(’ICRS’, gaia.ra, gaia.dec),

CIRCLE(’ICRS’, tycho2.ra, tycho2.dec, 2/3600))

SQL DataFrame

LogicalPlan PhysicalPlan RDDs

AstroSpark
Optimizer

Karine Zeitouni AstroSPARK

Solution 3 - Query rewriting

• AstroSpark rewrites the ADQL query to an SQL query

• The ADQL query is parsed, and translated into a Spark SQL expression
• Explode is a built)in spark function and Neighbours is a user-defined function

26

SELECT * FROM gaia JOIN
tycho2

ON 1=CONTAINS (
POINT(’ICRS’, gaia.ra, gaia.dec),

CIRCLE(’ICRS’, tycho2.ra, tycho2.dec, 2/3600))

SELECT * FROM gaia JOIN
(SELECT *,explode(Neighbours(ipix)) As ipix_nei FROM tycho2)

ON (ipix=ipix_nei) WHERE
(SphericalDistance(gaia.ra,gaia.dec,tycho2.ra,tycho2.dec) <2/3600)

Karine Zeitouni AstroSPARK

Outline

 Introduction

 AstroSpark Architecture

 Data Patitioning Algorithm

 Cross-Matching

 Experimental Evaluation

 Conclusion

27 Karine Zeitouni AstroSPARK

Experimental Setup

• Environmnent
• 6 nodes / 180 GB spark main memory/ Partition size: 256 MB

• Spark 2.0.1 / Hadoop 2.7.2

• Dataset
• GAIA DR1

• More than 1 billion records, 57 attributes

• Tycho-2

• 2,5 millions records.

 Radius chosen for the cross-match: 2 arc-seconds

 28 Karine Zeitouni AstroSPARK

Performance of Cross-Matching

29

HX-Match outperforms SIMBA, a state-of-the-art approach

0

50

100

150

200

250

0 200000000 400000000 600000000 800000000 1E+09 1,2E+09

Ex
ec

u
ti

o
n

 T
im

e(
m

n
)

#Lines GAIA (Milions)

HX-MATCH HX-MATCH with Strategy SIMBA

GAIA DR1 <-> TYCHO2
Cross-match Radius : 2 arc-second

HX-Match is also
6000 X faster than
“plain” Spark SQL

Karine Zeitouni AstroSPARK

Conclusion and Future Work

 Contributions
• Design of AstroSpark, a distributed system based on Spark to process astronomical data.

• Data partitioning with Healpix to speed up query processing

• Implement a cross-matching algorithm based on Spark and Healpix

• Extend the spark 2.0 Catalyst optimizer to implement the query optimizer

 Future Work
• Propose other algorithms for NN queries, NN join, histograms, … with ADQL

• Explore other techniques of optimization
• Cost based optimisation, multi-query (workload) execution , …

 Do not hesitate to challenge us !

30 Karine Zeitouni AstroSPARK

References

Brahem, M., S.Lopes, L.Yeh and K.Zeitouni. AstroSpark - Towards a Distributed Data Server for Big
Data in Astronomy. ACM SIGSPATIAL PhD Workshop’16.

Brahem, M., L.Yeh and K.Zeitouni , HX-MATCH: In-Memory Cross-Matching Algorithm for
Astronomical Big Data, to appear in International Symposium on Spatial and Temporal Databases
(SSTD’17).

Dong, X. & al. Simba: Efficient In-Memory Spatial Analytics. SIGMOD 2016.

Eldawy, A., & Mokbel, M. F. A demonstration of SpatialHadoop: an efficient mapreduce framework
for spatial data. VLDB 2013.

Gorski, K.M., & al. HEALPix: a framework for high-resolution discretization and fast analysis of data
distributed on the sphere. The Astrophysical Journal 622.2 (2005): 759.

Nishimura, S., & al MD-HBase: design and implementation of an elastic data infrastructure for
cloud-scale location services. Distributed and Parallel Databases 31.2 (2013): 289-319.

Yu, J., & al. Geospark: A cluster computing framework for processing large-scale spatial data. In
Proceedings of the 23rd SIGSPATIAL International, page 70. ACM, 2015.

31 Karine Zeitouni AstroSPARK

