

Astroinformatics Symposium - From Big Data to Understanding the Universe at Large

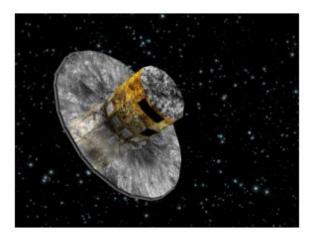
Large Scale Data Management of Astronomical Surveys with AstroSpark

Karine Zeitouni Mariem Brahem* Laurent Yeh

Computer Science Dept, University of Versailles (UVSQ), France (*) PhD co-funded by UVSQ & CNES Toulouse

Introduction

Data Deluge in Sky surveying



Gaia mission, ESA

- The largest and most precise 3D map of the Galaxy
- 1 billion stars observed over 5 years
- Data Volume ->1PB
- Dec. 2013- 2020

LSST project

- Tens of billions of objects
- Data Volume -> 15PB for the catalog
- >2020 ->+ 10 years

→ How to efficiently manage such Big Data in astronomy ?

Today's Situation

- Astronomical Surveys are mostly accessed using SQL Dialect
 - ✓ By integrating a library of geometrical functions to SQL (eg. ADQL)
 - ✓ And spatial indexing techniques to optimize the query execution
- Mainly implemented within relational DBMSs
 - SkyServer for SDSS
 - Postgres Q3C & Pgsphere
 - •

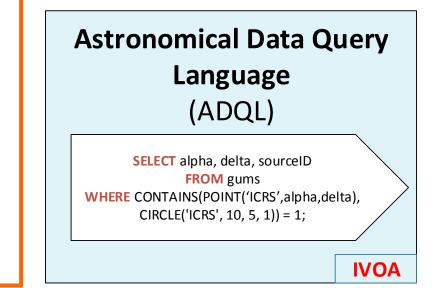
But do not scale with the expected data volume

- Popular Big Data platforms propose a distributed frameworks
 - ✓ Most tend to implement SQL
 - ✓ Allow user-defined functions
- Apache Spark is among the most popular frameworks

But do not support astronomical data access and manipulation

Objective

- Combining the best of two worlds:
 - Expressivity of the declarative query language
 - We choose ADQL as a basis for the SQL dialect
 - Scalability of distributed frameworks
 - We choose Apache Spark as a cluster computing ptatform



- 1. How to allow the support of ADQL within SPARK SQL?
- 2. How to optimize the query processing in this context?

Why SPARK ?

- Up to 100× faster than Hadoop MapReduce
 - thanks to its execution engine that supports acyclic data flow
 - and in-memory computing.
- Improves usability (2 to 10 less code) through:
 - Rich APIs in Java, Scala, Python
 - Interactive shell, SQL
 - Works with any Hadoop-supported storage system (HDFS, Amazon S3, Avro, Parquet...)
- Provides 2 types of Operations:
 - Transformations (e.g. map, filter, groupBy, join) -> Lazy operations to build RDDs from other RDDs
 - Actions (e.g. reduce, count, collect, save) -> Return a result or write it to storage

Outline

- Introduction
- AstroSpark Architecture
- Data Patitioning Algorithm
- Cross-Matching
- Experimental Evaluation

Conclusion

Towards AstroSpark

➢We propose a distributed framework specifically tailored for data intensive applications in astronomy

- This leads to revisit the optimization techniques in this perspective :
 - ✓ Physical organization of data: Partitioning
 - ✓ Logical and physical query optimization and processing
 - ✓ Using a Cost model (I/O, CPU, Communication, Coordination, ...) in the query evaluation
 - ✓ Multi-query optimization: caching techniques

Observations & Design Principle

Specificity of the data

- Astrometric data are typically big spatial data
- Use spherical coordinates (e.g. International Celestial Reference System ICRS)
 Data organization matters

> Specificities of the queries

- Frequent use of distance-based filtering, joins and top-k: Cone Search, Cross-Matching, Nearest Neighbors
- **Complex** data processing due to large volume of data and the variety of the queries
- \Rightarrow Algorithms and query plan should be adapted

Observations & Design Principle

Principle 1: Reuse proven methods and tools

Spatial indexing techniques are widely used in sky surveying
 Reuse HEALPIX index & library

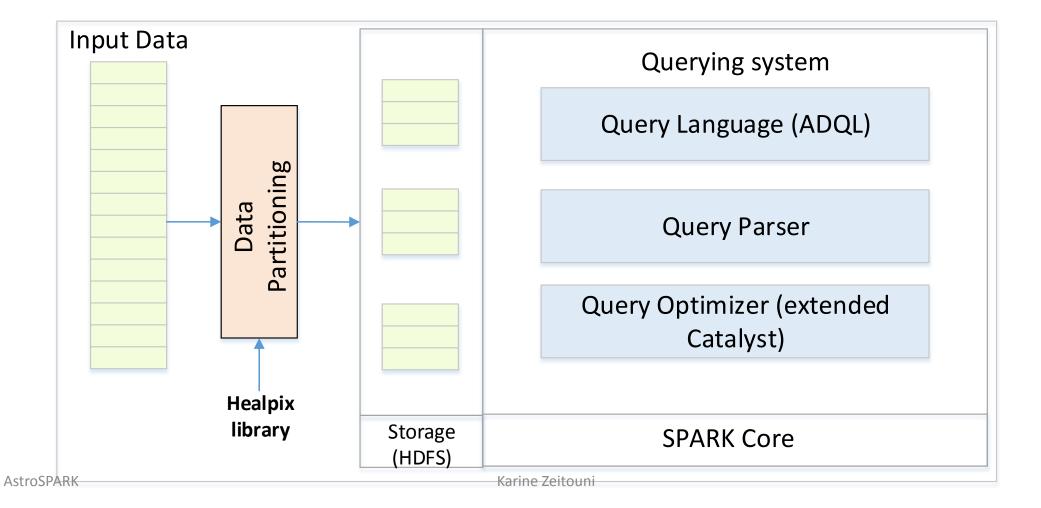
***** Principle 2: leverage the power of the target framework

Add the the strictly necessary extension

✓ To support the query syntax of ADQL

✓ To evaluate and optimize the queries

AstroSpark Architecture

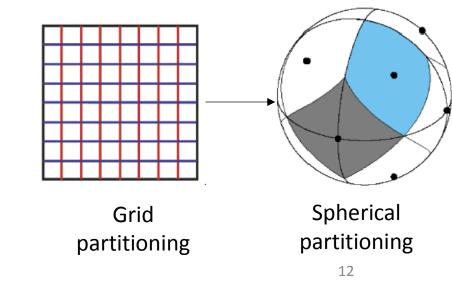


Partitioning

- Definition
 - Partitioning is the process of dividing data into subgroups
 - Partitions are processed in parallel with different nodes
 - One node can process many partitions
- Importance
 - Enables query processing in parallel
 - Reduces computer resources
 - Improves query performances

Partitioning Requirements in AstroSpark

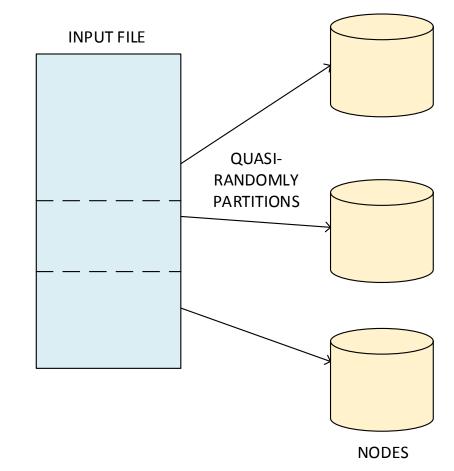
- 1. Data locality
 - Points that are located close to each other should be in the same partition.
 - Adapt to the spherical space
- 2. Load balancing
 - Avoid imbalanced partitions
 - Partitioning should be adaptive to the data distribution



Partitioning in Spark

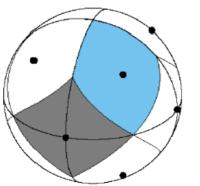
- Hash partitioning
 - Partitions data quasi-randomly
 - No data locality => not adapted to proximity queries
- Range partitioning
 - Partitions data into roughly equal ranges
 - Partition key is only one dimensional

→ But, our target is multi-dimensional...

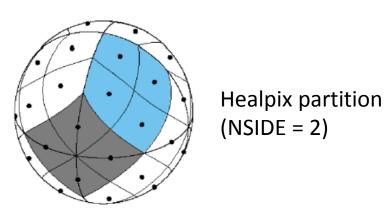


Healpix Based Range Partitioning

- Healpix: Hierarchical Equal Area isoLatitude Pixelization of a sphere [NASA]
 - A structure for hierarchical pixelization of the data on the sphere
 - Assigns a **1D** index to each pixel in a way it keeps data locality
 - NSIDE = the amount of subdivision of base pixels
- Use spark range partitioner with Healpix as partition key

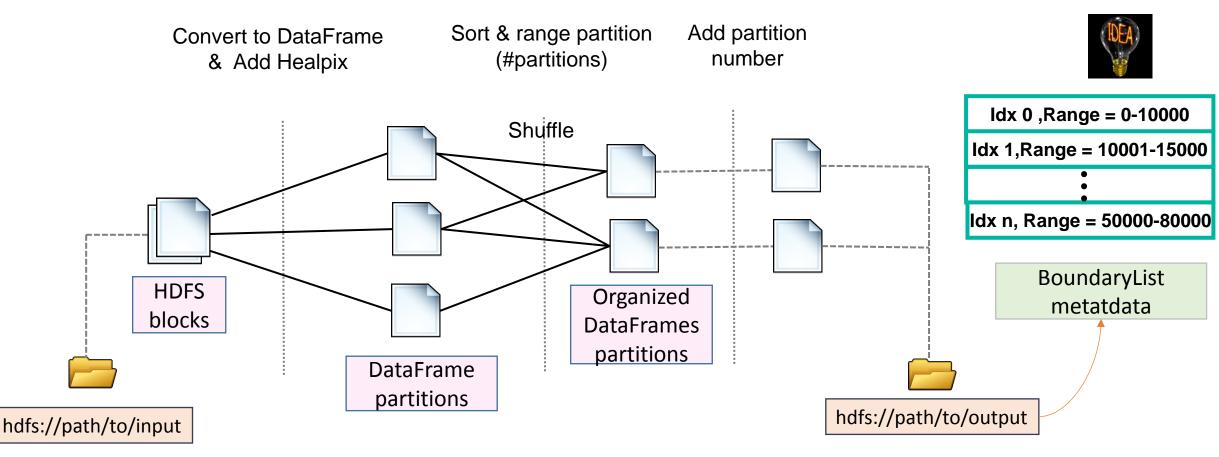


Healpix partition (NSIDE = 1)



Karine Zeitouni

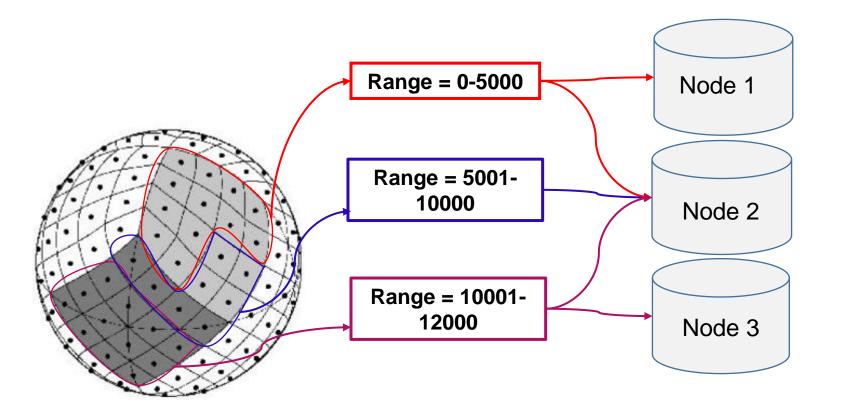
Partitioning Algorithm

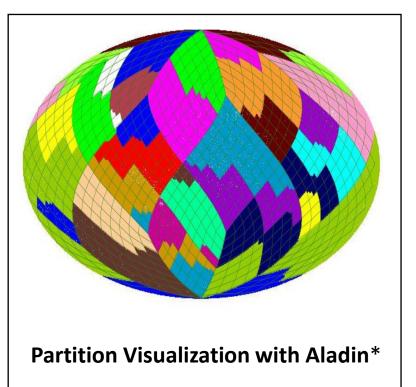


AstroSPARK

#partitions = (InputSize/PattitionSize)(1+ α)

Partitioning Result





(*) http://aladin.u-strasbg.fr 16

Outline

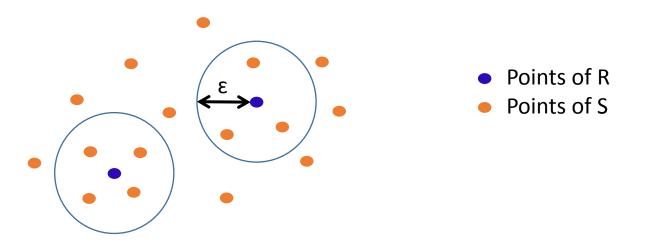
- Introduction
- AstroSpark Architecture
- Data Patitioning Algorithm
- Cross-Matching
- Experimental Evaluation

Conclusion

Cross-Matching

- Identify and correlate objects belonging to different observations
- Given two sets, R and S, of data points
- Find all pairs (r,s) $\in RxS$, such that sphericalDistance(r,s) $\leq \epsilon$.

 $R \ xmatch_{\varepsilon} S = \{ \forall (r,s) \in R \times S \mid sphericalDis \tan ce(r,s) \leq \varepsilon \}$



Cross Matching using Spark SQL

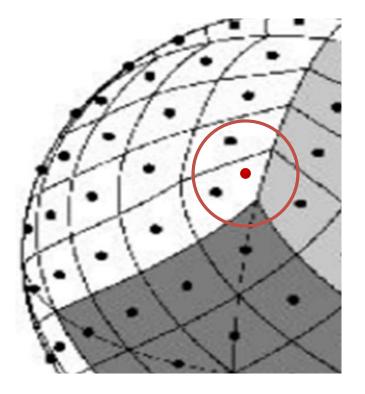
SELECT * FROM R JOIN S ON (2 * ASIN(SQRT(SIN((\$DEC_2-DEC)/2) * SIN((\$DEC_2-DEC)/2) + COS(\$DEC_2) * COS(DEC) * SIN((\$RA_2 - RA)/2) * SIN((\$RA_2 - RA)/2))) <= ε)</pre>

Spark: Cartesian product of two input tables

→Then filters from the Cartesian product based on the distance predicate

- Producing the Cartesian product is **costly** in Spark
- The execution time of a cross-match between 5 millions of Gaia and all records of Tycho-2 is more than 300 hours (12 days)

Cross Matching using AstroSPARK



<u>Challenge</u>: Comparing vast amount of astronomical objects with low latency

Limit the comparison to the objects according to their healpix index

- ♦ But objects on the border of different cells could match.
- => Join should be extended to neighbors !

We propose HX-Match - A Healpix based cross(X)-match

HX-Match - Algorithm

1. Partitioning the two input datasets R and S using healpix and range partitioning

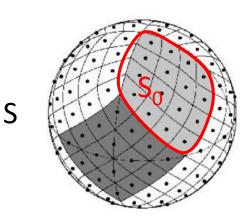
2. Duplicate all objects in S and assign these duplicates the healpix index of each neighbor cell -> Let's call it S'

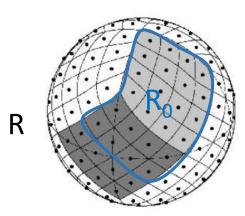
IDEA.

=> comparing candidate objects of S' with R is reduced to a **basic equi-join**.

- 3. Equi-join (R, S') on Healpix indices
- 4. Filter joined results on the Harvesine formula

HX-MATCH Functioning



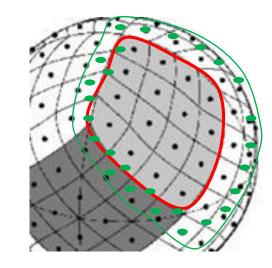


S₀

How to deal with objects along the borders?

3. Augment S₀ with neighbors

S'_0 with neighbors



Implementing HX-Match using SPARK tools

Mainly 3 ways :

- 1. Extend the **DataFrame API**
- 2. Use spark strategies to extend the **spark catalyst optimizer**
- 3. SQL Query rewriting

Solution 1 - Extending DataFrame API

- DataFrame is a distributed collection of data organized into named columns.
- DataFrame API is extended to support HX-MATCH

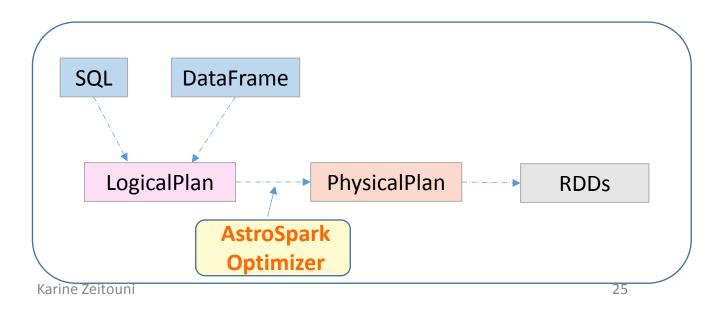
DF1.HXMatch(DF2, 2/3600)

This function will match the current dataframe DF1 with another dataframe DF2 using radius= 2/3600

Solution 2 - Using Spark Strategies

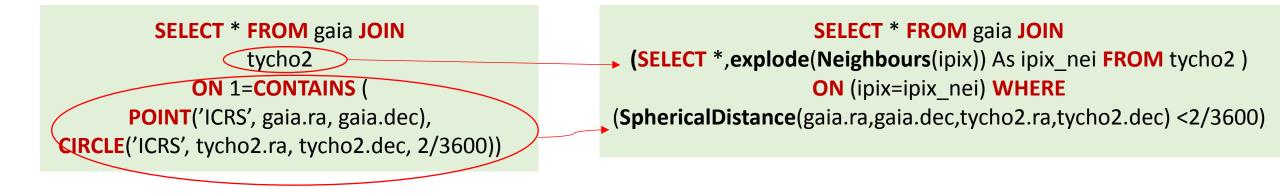
- Extend the query plan optimizer
- Transform a spark logical plan to an optimized physical plan
- AstroSpark converts the spark join logical plan to a list of internal catalyst operations (SortMergeJoinExec, ...) using strategies

SELECT * FROM gaia JOIN tycho2 ON 1=CONTAINS (POINT('ICRS', gaia.ra, gaia.dec), CIRCLE('ICRS', tycho2.ra, tycho2.dec, 2/3600))



Solution 3 - Query rewriting

- AstroSpark rewrites the ADQL query to an SQL query
- The ADQL query is parsed, and translated into a Spark SQL expression
 - Explode is a built) in spark function and Neighbours is a user-defined function



Outline

- Introduction
- AstroSpark Architecture
- Data Patitioning Algorithm
- Cross-Matching
- **Experimental Evaluation**

Conclusion

Experimental Setup

- Environmnent
 - 6 nodes / 180 GB spark main memory/ Partition size: 256 MB
 - Spark 2.0.1 / Hadoop 2.7.2
- Dataset
 - GAIA DR1
 - More than 1 billion records, 57 attributes
 - Tycho-2
 - 2,5 millions records.

Radius chosen for the cross-match: 2 arc-seconds

Performance of Cross-Matching

HX-Match outperforms SIMBA, a state-of-the-art approach



HX-Match is also 6000 X faster than "plain" Spark SQL

Karine Zeitouni

Conclusion and Future Work

Contributions

- Design of AstroSpark, a distributed system based on Spark to process astronomical data.
- Data partitioning with Healpix to speed up query processing
- Implement a cross-matching algorithm based on Spark and Healpix
- Extend the spark 2.0 Catalyst optimizer to implement the query optimizer

Future Work

- Propose other algorithms for NN queries, NN join, histograms, ... with ADQL
- Explore other techniques of optimization
 - Cost based optimisation, multi-query (workload) execution , ...

> Do not hesitate to challenge us !

References

- Brahem, M., S.Lopes, L.Yeh and K.Zeitouni. AstroSpark Towards a Distributed Data Server for Big Data in Astronomy. ACM SIGSPATIAL PhD Workshop'16.
- Brahem, M., L.Yeh and K.Zeitouni , **HX-MATCH: In-Memory Cross-Matching Algorithm for Astronomical Big Data,** to appear in International Symposium on Spatial and Temporal Databases (SSTD'17).
- Dong, X. & al. Simba: Efficient In-Memory Spatial Analytics. SIGMOD 2016.
- Eldawy, A., & Mokbel, M. F. A demonstration of SpatialHadoop: an efficient mapreduce framework for spatial data. VLDB 2013.
- Gorski, K.M., & al. HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. The Astrophysical Journal 622.2 (2005): 759.
- Nishimura, S., & al **MD-HBase: design and implementation of an elastic data infrastructure for** cloud-scale location services. Distributed and Parallel Databases 31.2 (2013): 289-319.
- Yu, J., & al. **Geospark: A cluster computing framework for processing large-scale spatial data.** In Proceedings of the 23rd SIGSPATIAL International, page 70. ACM, 2015.