

Machine Learning Approach for the Search of High-Confidence Blazar Candidates and their Multiwavelength Counterparts

Sabrina Einecke, Dominik Elsässer, Wolfgang Rhode

European Week of Astronomy and Space Science

Prague June 29th, 2017

Third *Fermi*-LAT Source Catalog (3FGL)

- → Information about fluxes, variability, ...
- → 3033 point sources

Sources **associated** with source types:

- 1745 AGNs
- 279 non-AGNs

Third *Fermi*-LAT Source Catalog (3FGL)

- → Information about fluxes, variability, ...
- → 3033 point sources

Sources **associated** with source types:

- 1745 AGNs
- 279 non-AGNs
- → 1010 unassociated
- → 573 associated to AGNs of uncertain type

Third *Fermi*-LAT Source Catalog (3FGL)

- → Information about fluxes, variability, ...
- → 3033 point sources

Sources **associated** with source types:

- 1745 AGNs
- 279 non-AGNs
- → 1010 unassociated
- → 573 associated to AGNs of **uncertain** type

Idea:

- Learn from associated sample
- Apply to unassociated and uncertain sample

ACTIONS

ECOGNITIO

Additional Task

Which are the corresponding counterparts in other wavelengths?

Motivation

Idea

- Extension to MWL properties
 - → Additional source class-specific characteristics
 - → Perfectly suited for machine learning
- Determination of most likely corresponding counterpart at same time

Aim

- Assign AGN classes to unassociated sources (2 classes: AGN / non-AGN)
- Assign blazar classes to unassociated and uncertain sources (3 classes: BLL / FSRQ / non-blazar)
- Link counterparts to unassociated sources

Improve knowledge of population of gamma-ray emitting objects

Motivation

Idea

- Extension to MWL properties
 - → Additional source class-specific characteristics
 - → Perfectly suited for machine learning
- Determination of most likely corresponding counterpart at same time

Aim

- Assign AGN classes to unassociated sources (2 classes: AGN / non-AGN)
- Assign blazar classes to unassociated and uncertain sources (3 classes: BLL / FSRQ / non-blazar)
- Link counterparts to unassociated sources

Improve knowledge of population of gamma-ray emitting objects

Classification procedure

Creation of Training Dataset

Example: Combination of *Fermi* with *WISE* sources

Search for all WISE sources within *Fermi* uncertainty region

Creation of Training Dataset

Example: Combination of *Fermi* with *WISE* sources

- Search for all WISE sources within *Fermi* uncertainty region
- Choose WISE source next to associated source (< 6 arcsec)
 → Source type class (BLL, FSRQ)
- Remaining WISE sources → Background class

Creation of Training Dataset

Example: Combination of *Fermi* with *WISE* sources

- Search for all WISE sources within *Fermi* uncertainty region
- Choose WISE source next to associated source (< 6 arcsec)
 → Source type class (BLL, FSRQ)
- Remaining WISE sources → Background class

<i>Fermi</i> name	WISE name	<i>Fermi</i> features	WISE features	Combined features	Class
Fermi #1	WISE #1				BLL
Fermi #1	WISE #2				Non-Blazar
Fermi #1	WISE #3				Non-Blazar
Fermi #1	WISE #4				Non-Blazar
Fermi #2	WISE #10				FSRQ
Fermi #2	WISE #11				Non-Blazar

Machine learning

- **Multiclass** problem: BLL vs. FSRQ vs. non-Blazar
- Classification based on several features: spectral index, spectral curvature, variability, hardness ratio, flux, ...

Feature Selection:

- Removal of correlated features (Spearman's rank corr.)
- Recursive feature elimination (Mean AUC as score)
- Cross validation: Calculation of performance values, e.g. AUC, purity, efficiency, with One-Vs-Rest strategy

Classification of Training Set

Combination of *Fermi* with *WISE* sources

ALLWISE source catalog

- 3.4, 4.6, 12 and 22 μm
- 747 634 026 sources

Performance Estimation

Purity: Ratio of correctly and falsely classified BLLs

Efficiency: Ratio of correctly classified BLLs and all BLLs

Choice of Score Cut

- Considering one additional waveband (Gamma+Infrared):
 High score threshold for large purity
- Considering multiple additional wavebands (Gamma+Infrared, Gamma+X-ray, Gamma+Radio, ...):
 Low score threshold for large efficiencies

Classification of AGNs of Uncertain Type

- BLL score > 0.3
- Precision ~80%
- → 229 candidates

- FSRQ score > 0.5
- Precision ~80%
- → 43 candidates

Classification of Unassociated Sources

- BLL score > 0.3
- Precision ~80%
- → 243 candidates

- FSRQ score > 0.5
- Precision ~80%
- → 28 candidates

Conclusion and Prospects

- Development of new method to assign blazar classes and link multiwavelength counterparts
- BLL / FSRQ / non-blazar and AGN / non-AGN model creation and performance evaluation
- Individual models for particular catalogs
- Combination of multiple models from different wavelengths and instruments
- Application of models to unassociated sources and AGNs of uncertain type
- Prospects:
 - Dark matter searches
 - Populations studies

→ Very Promising!

Backup

Classification of Training Set

Combination of *Fermi* with *Swift* X-ray sources

Swift point source catalog 1SXPS

- Energy range: 0.3 10 keV
- 151 524 point sources

Classification of Unassociated Sources

- BLL score > 0.4
- Precision ~80%
- → 36 candidates

- FSRQ score > 0.5
- Precision ~80%
- → 2 candidates

Sabrina Einecke | EWASS

Classification of AGNs of Uncertain Type

- BLL score > 0.4
- Precision ~80%
- → 90 candidates

- FSRQ score > 0.5
- Precision ~80%
- → 23 candidates

Combination of Results

Uncertain:

- BLL: 71 high-confidence candidates from 90 (1SXPS) and 229 (ALLWISE) low-confidence candidates
- FSRQ: 17 high-confidence candidates from 23 (1SXPS) and 43 (ALLWISE) low-confidence candidates

Unassociated:

- BLL: 32 high-confidence candidates from 36 (1SXPS) and 243 (ALLWISE) low-confidence candidates
 17 candidates with distance < 20 arcsec
- FSRQ: 0 high-confidence candidates from 2 (1SXPS) and 28 (ALLWISE) low-confidence candidates → 0 candidates

→ Precision of 90% by combination of multiple catalogs!