

Deep leaning for galaxy surface brightness profile fitting

(extremely) brief history of deep learning neural networks

(extremely) brief history of deep learning neural networks

star-galaxy separation Kim & Brunner (2017)

automated spectral feature extraction

Wang, Guo & Luo (2017)

SDSS - CANDELS galaxy classification

Strong Lens Finding

Lanusse et al. (2017)

Classification Radio Galaxies

Vesna Lukic

here

Dieleman, Willett & Dambre (2015)

Huertas-Company et al. (2015)

Galaxy photometrical brightness profiles

Kennedy et al. 2016

(Shen et al. 2003, Lange et al. 2016).

Suited for future large are surveys?

http://www.euclid-ec.org/?page_id=2581

LSST

Large Synoptic Survey Telescope

SKA

Peng words: "they require some degree of

CNN for Profiling 1-component galaxies

total of 6 convolutional layers, 3 max pooling layers and 2 dropout layers.

total of 8 convolutional layers, 4 max pooling layers and 2 dropout layers.

<u>Sersic index</u> <u>Ellipticity</u> <u>Position Angle</u>

7

Diego Tuccillo, Observatoire de Paris

Simulated Data

200,000 stamps

Single Sersic HST/CANDELS

REAL PSF CANDELS

EVVASS 2017, 26-30 June, Praga

PIXEL scale 0.06"

 0<RADIUS (arcsec)<1.9</td>
 18< MAG<23</td>
 0.2<ELLIPTICITY<0.8</td>

 0.3<SERSIC INDEX<6.3</td>
 0<Position Angle (degree)<180</td>

<u>Diego Tuccillo, Observatoire de Paris</u>

Simulated Data

200,000 stamps

Single Sersic HST/CANDELS

Diego Tuccillo, Observatoire de Paris

Predictions on Simulated Data

5000 stamps

Diego Tuccillo, Observatoire de Paris

Predictions on Simulated Data

5000 stamps

Diego Tuccillo, Observatoire de Paris

Predictions on Simulated Data

5000 stamps

Diego Tuccillo, Observatoire de Paris

Predictions on Simulated Data

5000 stamps

Diego Tuccillo, Observatoire de Paris

Summary of predictions on simulation

	R^2 simulated data		
Parameter	Architecture 1	Architecture 2	GALFIT
Magnitude	0.947	0.995	0.986
Radius	0.892	0.955	0.738
Sérsic index	0.887	0.348	0.292
Ellipticity	0.755	0.603	0.896
Position Angle	0.941	nc	0.825

$$\frac{\text{coefficient of determination}}{R^2 = 1 - \frac{\sum_i (y_i - f_i)^2}{\sum_i (y_i - \bar{y})^2}}$$

Summary of predictions on simulation

	R^2 simulated data		
Parameter	Architecture 1	Architecture 2	GALFIT
Magnitude	0.947	0.995	0.986
Radius	0.892	0.955	0.738
Sérsic index	0.887	0.348	0.292
Ellipticity	0.755	0.603	0.896
Position Angle	0.941	nc	0.825

$$\frac{coefficient of determination}{R^2 = 1 - \frac{\sum_i (y_i - f_i)^2}{\sum_i (y_i - \bar{y})^2}}$$

Predictions on Real Data

• Direct application

Diego Tuccillo, Observatoire de Paris

Traditional ML

Domain adaptation

Diego Tuccillo, Observatoire de Paris

Magnitude

3000 CANDELS galaxies ground truth: Van Der Wel +12

Diego Tuccillo, Observatoire de Paris

<u>EWASS 2017, 26-30 June, Praga</u>

3000 CANDELS galaxies ground truth: Van Der Wel +12

Diego Tuccillo, Observatoire de Paris

Sersic index

3000 CANDELS galaxies ground truth: Van Der Wel +12

Diego Tuccillo, Observatoire de Paris

3000 CANDELS galaxies ground truth: Van Der Wel +12

Diego Tuccillo, Observatoire de Paris

	R^2 Real data	ı	
Parameter	Before TL	After TL	2 GALFIT
Magnitude	0.788	0.982	0.985
Radius	-1.639	0.856	0.860
Sérsic index	-0.768	0.718	0.735
Ellipticity	0.256	0.897	0.904
Position Angle	0.132	0.893	0.863

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - f_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

Is it needed domain adaptation?

magnitude

how many real galaxy do we need?

Do we need training on <u>simulations?</u>

Diego Tuccillo, Observatoire de Paris

Next steps

release of the code

Ideas for the name?

Names 2 words:

DEEP LEGATO = Deep Learning Galaxy Analysis Tool DELIGHT ProFit = Deep Light Profile Fitting GAIN Profit = Galaxy Artificial Intelligence Profile Fitting Brain Profit = Brain Profile Fitting GAIN FIT = Galaxy Artificial Intelligence Fitting

Names 1 word: CONGA = convolutional network galaxy analyzer DeLGaP = deep learning galaxy profiling DELEGA = Deep Learning Galaxy Analyzer DELIGHT = Deep Light (Fitting) DeepFit = Deep (learning) Fit

2-component fit

28

First results 2 components galaxies Double Sersic HST galaxies WITH REAL NOISE 18< MAG<24 **REAL PSF CANDELS** VARIABLE BULGE/DISK RADIUS VARIABLE PIXEL SCALE 0.06" VARIABLE B/T SERCICS 23.0 22.5 22.0

Diego Tuccillo, Observatoire de Paris

First results 2 components galaxies

Bulge magnitude

B/1

Summary

Developed a CNN code for galaxy profile fitting

On simulations perform similarly or better than GALFIT, but about 400 times faster

On real galaxies, after domain adaptation, perform similar to GALFIT fits

The code will be public available for domain adaptation on your set of fits

EWASS 2017, 26-30 June, Praga

27

Summary

• Developed a CNN code for galaxy profile fitting

On simulations perform similarly or better than GALFIT, but about 400 times faster

On real galaxies, after domain adaptation, perform similar to GALFIT fits

• The code will be public available for domain adaptation on your set of fits

Thanks for listening!

28

Marc Huertas-Company

DNN methods for

Galaxy Profiling **Galaxy** Classification Strong lensing detection Deblending

Helena Domínguez Sánchez Etienne Decenciere

Diego Tuccillo