
Optimal & fast Wiener filtering of CMB maps without preconditioning

<u>Doogesh Kodi Ramanah</u>^{1,2}, Guilhem Lavaux^{1,2}, Benjamin D. Wandelt^{1,2}

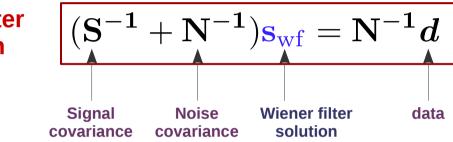
¹IAP/CNRS, ²ILP

Optimal & fast Wiener filtering of CMB maps without preconditioning

•

<u>Doogesh Kodi Ramanah</u>^{1,2}, Guilhem Lavaux^{1,2}, Benjamin D. Wandelt^{1,2}

¹IAP/CNRS, ²ILP


WIENER FILTER

- Signal reconstruction from noisy data
- Optimal data analysis solution for Gaussian Random Fields
 ≈ Cosmic density field

Conventional Methods

- Preconditioned Conjugate Gradient (PCG)
 - Preconditioner, **X** Problem-dependent **X** Ill-conditioning issue **X** Numerically expensive & unstable
- High level of complexity
- Difficulties in dealing with CMB polarization

★ DUAL MESSENGER ALGORITHM

- Fast & efficient preconditioner-free algorithm
- Deals effectively with CMB polarization data, while PCG fails to converge to a sensible solution
- Unconditionally stable & trivial numerical implementation
- Relevant for current & next-generation CMB experiments.
 - Algorithm can be augmented to deal with more complex & realistic noise models
 - Exact global Bayesian analyses (Gibbs sampling) for optimal separation of pure E- & B-modes

(DKR, Lavaux & Wandelt 2017, MNRAS) → arXiv:1702.08852