The Virtual Observatory. A new framework for new science Enrique Solano Centro de Astrobiología (INTA-CSIC), Madrid, Spain

Spanish Virtual Observatory

Astronomy ESFRI & Research Infrastructure Cluster ASTERICS - 653477

Advances in Astrophysics

Hanford, Washington (H1)

Livingston, Louisiana (L1)

VO. A new framework for new science

Not only new instrumentation

Thursday 25 June 2015 12.09 BST

Big universe, big data, astronomical opportunity

The future of astronomy is not in acquiring new data, but in mining the old

Star cluster Messier 39 in the constellation Cygnus. New breakthroughs in astronomy may come about by looking at old data. Photograph: Alan Dyer/Alan Dyer/Stocktrek Images/Corbis

VO. A new framework for new science

Data sharing

- Astronomy has been a pioneer in scientific data sharing:
 - A common data format since the 70s (FITS).
 - Open data (in general after a proprietary period).
 - Services driven by community needs (on-line archives).

NETWORKING

Networking is not enough

INTEROPERABILITY

The VO roadmap

VO-tools

VO. A new framework for new science

• "I have a list of objects, I want to get the (G-Ks) colour ."

Gaia DR1 (1142679769 sources)

TOPCAT _ U X	CDS Upload X-Match _ 🗆 X
TOPCAT _ I x Eile Yiews Graphics Joins Windows YO Interop Help Image:	CDS Upload X-Match
r SAMP r SAMP Messages: Clients: • ఈ 🗖 GMO	Rename columns: Duplicates V Suffix: _x Block size: 50000 V () Go Stop

VO. A new framework for new science

International Virtual Observatory

Alliance

HiPS – Hierarchical Progressive Survey

Version 1.0 IVOA Recommendation 19th May 2017

VO. A new framework for new science

• "I want to estimate the effective temperatures of thousands of objects from SED fitting."

• Discovery of information: Observational photometry and theoretical models.

Infrared			
✓ 2MASS All-Sky Point Source Catalog 2MASS has unformly scanned the entire sky in three near-infrared bands to detect and characterize point sources brighter than about 1 mJy in each band, with signal-to-noise ratio (Si R) greater than 1 More Info. Fitters: @ MASS/2MASS.J @ 2MASS/2MASS.H @ 2MASS/2MASS.Ks Search radius:5 arcsec Show magnitude limits	DENIS Catalogue This catalogue is the latest incremental release of the DEI/IS project. It consists of a set of 355,220,325 point sources detected by the DEI/IS survey in 3662 strips (covering each 30 degrees in declination and 12 arcmin in right ascension) More Info. Filters: DENIS/DENIS.I DENIS/DENIS.J DENIS/DENIS.K Search radius:5 arcsec Show magnitude limits	AMES-Dusty 2000 The AMES-Dusty Model grid of theoretical spectra. Brown divard/ewtrasiler anders atmosphere, models without irradiation but	AMES-Cond 2000 The AMES-Cond Model grid of theoretical spectra. Brow dwarfs extransic hardes atmnshere models without tradition at
 IRAS Catalog of Point Sources, Version 2.0 This is a catalog of some 250,000 well-confirmed infrared point sources observed by the Infrared Astronomical Satellite, i.e., sources with angular extents less than approximately 0.5, 0.5, 1.0, and 2.0 arcmin in the in-scan direction at 12, 25, 60, and 1 More Info. Filters: Image Info. Filters: Image Info. Filters: Image Info. Filters: Image Info. 	✓ IRAS Faint Source Catalog The Faint Source Survey (FSS) is the definitive Infrared Astronomical Satellite data set for faint point sources. More Info. Filters: ◎IRAS/IRAS.12mu ◎IRAS/IRAS.25mu ◎IRAS/IRAS.00mu ◎IRAS/IRAS.100mu	Kurucz ODFNEW /NOVER models ATLAS9 Kurucz ODFNEW /NOVER models ATLAS9 Kurucz ODFNEW /NOVER models	In a log of the second paint of a second provide second of the seco
Search radius:20 arcsec Show flux limits	Search radius: <u>20</u> arcsec Show flux limits	BT-Settl-CIFIST The BT-Settl Model grid of theoretical spectra. With a cloud model, valid across the entire parameter range and using the Caffau et al. (2011) solar abundances. Wavelengths have been converted to air wavelengths.	 BT-Settl The BT-Settl Model grid of theoretical spectra; With a cloud model, vai across the entire parameter range. Wavelengths have been converte to air wavelengths.
MSX6C Infrared Point source Catalog Version 2.3 of the Middourse Space Experiment (MSX) Point Source Catalog (PSC), which supersedes the version (1.2) that was released in 1999 (cat. V/107), contains over 100,000 more sources than the previous version. More Info. Filters: MIMSXA MSXA MMSX.C	 AKARI/IRC mid-IR all-sky Survey (ISAS/JAXA, 2010) The AKARI/IRC Point Source Catalogue Version 1.0 provides positions and fluxes for 870,973 sources observed with the InfraRed Camera (IRC) More Info. Filters: @AKARI/IRC.S9W @AKARI/IRC.L18W Search radius: a creece 	BT-COND The BT-COND Model grid of theoretical spectra. Brown dwarfs/extrasolar planets atmosphere models without irradiation and no dust opacity (no dust setting) but updated abundances. Wavelengths have been converted to air wavelengths.	BT-DUSTY The BT-DUSTY Model grid of theoretical spectra. Brow dwarfs/extrasolar planets atmosphere models without irradiation bu including dust opacity (fully efficient dust setting) and update abundances. Wavelengths have been converted to air wavelengths.
Search radius:5 arcsec Show flux limits	Show flux limits	BT-NextGen (AGSS2009) The lextGen Model grid of theoretical spectra; Gas phase only, valid for Teff > 2700 K. Updated opacities. Wavelengths have been converted to air wavelengths.	BT-NextGen (GNS93) The NextGen Model grid of theoretical spectra; Gas phase only, valid fi Teff > 2700 K. Updated opacities. Wavelengths have been converted a air wavelengths.
AKARI/FIS All-Sky Survey Point Source Catalogues (ISAS/JAXA, 2010) The ArARI/FIS All-Sky Survey Bright Source Catalog Version 1.0 provides positions and fluxes for 427071 point sources in the 4 far- infrared wavelengths centered at 65, 90, 140 and 160µm	C2D Spitzer and Ancillary Data C2D Fall '07 Full (LOUDS Catalog (CHA_II, LUP, OPH, PER, SER) Filters: Spitzer/IRAC.11 Spitzer/IRAC.12 Spitzer/IRAC.13 Spitzer/IRAC.14 Scitzer/INDS 24mu Scitze	Black Body Black Body flux. Teff from 10 to 200000 K	 Koester The NextGen Model grid of theoretical spectra. Only for solar metallicity.
Filters: CAKARI/FIS.N60 AKARI/FIS.WIDE-S CAKARI/FIS.WIDE-L CAKARI/FIS.N160 Search radius: 5 arcsec Show flux limits	Search radius:5 arcsec Show flux limits	NextGen The I-lextGen Model grid of theoretical spectra.	DRIFT-PHOENIX Drift-Phoenix is a computer code that simulates the structure of a atmosphere including the formation of clouds. The code is part of th Phoenix-code family. Drift describes the formation of mineral cloud and allows to predict cloud details, like the size of the cloud particle and their composition
		Morley 2012 Morley et al. 2012 T/Y dwarf models	Morley 2014 Morley et al. 2014 Y dwarf and exoplanet models
		Saumon 2012 Saumon et al. 2012 T dwarf models	TMAP (Grid 1) TMAP. Hydrogen+Helium IVLTE Models
		TMAP TMAP, Hydrogen+Helium I/LTE Models	TMAP - Tubingen Tubingen I/LTE Model Atmosphere Package

VO. A new framework for new science

EWASS. Prague Jun 2017

13/20

Data Manipulation: From magnitudes to fluxes

VO. A new framework for new science

Data Manipulation: From theoretical spectra to synthetic photometry

VO. A new framework for new science

EWASS. Prague Jun 2017

16/20

VO-science

VO. A new framework for new science

VO-schools

- Goal:
 - Teach participants on how to efficiently use the VO tools for their own research.
- Methodology:
 - Tutorials based on real science cases.
- Ample experience.

- Madrid. Dec'15
- Strasbourg. Nov'16
- Madrid. Nov'17
- Strasbourg. 2018

- Not restricted to project's partners.
- Open to all European institutes.

VO-projects

Hide highlights Show abstracts	35 selected × clear all
2017MNRAS.466.2983G2017/04Image: Constraint of the second s	Years Citations Reads
Gálvez-Ortiz, M. C.; Solano, E.; Lodieu, N. and 1 more	refereed non refereed
Discovery of wide low and very low-mass binary systems using Virtual Observatory tools theoretical models. Taking advantage of the virtual observatory capabilities, we looked for comoving low	6
2017A&A598A92L 2017/02	
New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R. <i>and 4 more</i>	4
New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools as part of the Virtual Observatory tools. We considered different photometric and proper motion criteria	2
2017A&A597C3L 2017/01	
New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools	
Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R. and 3 more	2005 2008 2009 2013 2013 2013 2014 2013 2015 2015 2015
New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools	
2016MNRAS.457.3396P 2016/04	
A search for new hot subdwarf stars by means of virtual observatory tools II	Limit results to papers from
Pérez-Fernández, E.; Ulla, A.; Solano, E. and 2 more	2007 to 2017 Apply

Summary

