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Motivation

Occurrence of IMBHs

How can black holes of 102-105M⊙ form?
Stellar black holes upper limit ≲ 50M⊙, given by the
pair-instability (upper) mass gap (stars of ∼ 130− 250M⊙)
heavier black holes or intermediate-mass black holes (IMBHs)
were proposed based typically on indirect arguments
(a) heavy IMBHs: in low-luminosity AGN (NGC 4395, QPE sources);

∼105M⊙ (constrained by RM, predictions from M•-σ⋆)
(b) lighter IMBHs ULXs, globular clusters, Galactic center sources

(dynamically not well constrained, often excluded with more
precise measurements)

first precise measurement of the IMBH mass was performed for
the LIGO-VIRGO event GW190521 – merger of two
pair-instability mass gap black holes of 85 and 66M⊙, final black
holes mass of 142 M⊙
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Motivation

Formation channels

1. primordial/cosmological origin: at high z from Pop III stars
(Madau & Rees 2001) or the direct gas cloud collapse
(Begelman+2006)

2. consecutive merger of stellar black holes in globular clusters
(e.g. Gültekin+2004, Miller & Hamilton 2002)→ a problem with
the escape due to recoiling velocity kicks, unless the seed is
heavier than 50M⊙

3. runaway collisions and mergers of massive stars in dense star
clusters, a collapse into the IMBH (Portegies Zwart & McMillan
2002)

For a review, see Greene, Strader, Ho (2020)
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Motivation

Formation of SMBH-IMBH pairs
infall of massive stellar clusters hosting an IMBH (Fragione,
2022)
stellar black hole - main-sequence star collisions (Rose+2022);
more frequent than BH-BH or BH-NS/WD mergers;
MIMBH ≲ 104M⊙
black hole - black hole mergers: no problem with a recoiling kick
velocity in NSCs, most merger products will be retained
(Fragione+2022); MIMBH ∼ 103 − 104M⊙

Cluster infall BH-BH merger  BH-star collision

SMBH
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Motivation

Formation of SMBH-IMBH pairs: Cluster infall
IMBHs in (globular, dense) stellar clusters - based on the old concept
of the cluster core collapse - Spitzer (1969), Vishniac (1978),
Portegies Zwart & McMillan (2002), Hansen & Milosavljevic (2003)

SMBH-IMBH merger rates by Fragione (2022)
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Motivation

IMBH in globular clusters

IMBHs in globular clusters - highly uncertain, except for G1 globular
cluster in the halo of M31, other cases are rather hypothetical

Courtesy of M. Rich (UCLA) M31 G1 (STIS HST)
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Motivation

IMBH in the Galactic center? Candidate 1 – IRS 13E
∼ 3.5′′ = 0.13 pc from Sgr A*
based on the theory that young stars are dragged inwards by the
IMBH (Hansen & Milosavljevic 2003)
IMBH of ∼ 103 − 104M⊙ (Maillard+2004, Schödel+2005)
X-ray emission due to wind-wind collisions (Zhu+2020)

NACO L’-band
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Motivation

IMBH in the Galactic center? Candidate 1 – IRS 13E
∼ 3.5′′ = 0.13 pc from Sgr A*
a compact cluster of early WR stars

NACO K-band

NACO H-band
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Motivation

IMBH in the Galactic center? Candidate 1 – IRS 13E
X-ray emission
Chandra image 1-9 keV (Wang et al. 2020)
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Motivation

IMBH in the Galactic center? Candidate 1 – IRS 13E

signs of rotating ionized gas revealed by H30α emission
rotation around source E3 with the velocity of ∼ 130 km s−1

with the angular radius of 0.1′′ ∼ 825AU

Peissker et al., in prep.; Tsuboi et al. 2019
Mvir = Rv2R/G ∼ 16 000M⊙
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Motivation

IMBH in the Galactic center? Candidate 1 – IRS 13E
broad-band SED consistent with the hot flow–ADAF with the
relative accretion rate of 2× 10−6 < ṁ < 10−4 for
MIMBH ∼ 30 000M⊙
peak in the mid-IR domain close to 28µm

Peissker, Zajaček, Labaj et al., in prep.
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Motivation

IMBH in the Galactic center? Candidate 2 – IRS 1W

∼ 4.6′′ = 0.18 pc NE from Sgr A*
29 sources, including the bow shock IRS 1W
the required binding mass: ∼ 103 − 105M⊙
both IRS 1W and IRS 13E associations could be caused by the
projection of the disk-like stellar configuration (Hosseini, Eckart,
Zajaček+, in prep.)
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Motivation

IMBH in galactic disks?
spiral galaxy HCG 97b hosts 2 ULXs, X1 and X2
(LX = 3.78× 1039, 1.80× 1040 erg s−1)

Hu, Zajaček, Werner, et al. (2024)
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Motivation

IMBH in galactic disks?
localized feedback: ram-pressure stripping induced by a ULX?

Hu, Zajaček, Werner, et al. (2024)
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Motivation

IMBH in galactic disks?
X2 source is a candidate for an actived IMBH encountering
denser molecular gas in the galactic plane

Hu, Zajaček, Werner, et al. (2024); see also Seepaul, Pacucci, & Narayan
(2022)
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Motivation

Curious case of GW 190521
first confirmed IMBH of 142M⊙ formed by merging two smaller
black holes, with one of them in the pair-instability gap as well
(85 and 66M⊙, z ∼ 0.82+0.28−0.34, Abbott+2020, rate
∼ 0.13+0.30−0.11Gpc−3 yr−1)
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Motivation

Curious case of GW 190521

associated with a potential delayed electromagnetic signal
detected by the Zwicky Transient Facility (Graham+2020)–
putative association with the accretion disc around the SMBH in
the galaxy J1249+3449 (z = 0.438)
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Motivation

Curious case of GW 190521
the optical outburst consistent with the constant temperature
shock as the merger product – IMBH – received a recoiling
velocity kick and it collided with the surrounding accretion flow

Courtesy of R. Hurt (IPAC/CALTECH)
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Model predictions

Modelling perturber-accretion flow interaction

SMBHinclined IMBH flare

UV satellitespin

accretion disk direction

counter-orbiting

IMBH

coorbiting IMBH
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Model predictions

Modelling perturber-accretion flow interaction

perturbation of the accretion flow by an orbiting object with the
influence radius R - both embedded and highly inclined
radiatively inefficient accretion flows (geometrically thick,
optically thin), radiative cooling not included
GRMHD simulations of the perturbed flow: modification of the
HARM code – HARMPI (Gammie+2003; Tchekhovskoy+2016)
ideal MHD: no resistivity, magnetic field frozen in gas
thick, extended torus (90-300 rg) as a source of material and
magnetic field that follows density equipotentials→ MRI
magnetohydrodynamic equations numerically solved on the
fixed Kerr background, “inert” perturber drags gas along it inside
the cylinder of R
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Model predictions

Modelling perturber-accretion flow interaction

Initial conditions - Exemplary case in 2D
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Model predictions

Modelling perturber-accretion flow interaction

Different set-ups with inclined and embedded perturbers at
different distances and with different radii
Density log ρ, Lorentz factor Γ, and outflow rate ṁout maps
Inflow/outflow rate versus time

RUN A: Click - video
Results published in Suková, Zajaček, Witzany, Karas 2021
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Model predictions

Modelling perturber-accretion flow interaction
inflow/outflow temporal behavior depends on the perturber’s
inclination, eccentricity, and the influence radius
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Candidates

New candidate source

optical flare ASASSN-20qc/Gaia21alu/AT2020adgm
galaxy at redshift z = 0.056 (250 Mpc)
discovered on Dec. 20, 2020 (ASAS-SN)
spectroscopy and broad-band photometry: M• = 3+5−2 × 107M⊙
eROSITA upper limits January and July 2020:
LX ≲ 6× 1040 erg s−1 → η ≲ 2× 10−5, low-luminosity AGN
52 days after the first ASASSN detection, Swift detected X-ray
emission
high-cadence NICER observations started on February 13, 2021
XMM-Newton took the first spectrum on March 14, 2021
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Candidates

Optical and X-ray light curve

X-ray and optical light curve; X-ray outburst follows the optical
one
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Candidates

Ultrafast Outflow (UFO) detection
soft X-ray spectrum is dominated by the thermal disc emission
with kTbb = 0.085 keV
ratio of the observed spectrum to the best-fit thermal model
leaves a broad absorption feature between 0.75 and 1 keV
ultrafast outflow ∼ 0.33c

ODR= ratio of the flux in the outflow (0.75− 1 keV) to the
inflow band (0.30− 0.55 keV)
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Candidates

Periodic behavior in the ODR
ODR exhibits a significant periodicity of 8.5 days
lower ODR implies stronger outflow
12 recurrent ODR minima detected
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Candidates

Periodic behavior in the ODR

ODR exhibits a significant periodicity of 8.5 days
periodicity can also be recovered using the phase dispersion
minimization (PDM) and the weighted wavelet Z-transform
(WWZ)
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Candidates

Periodic behavior in the ODR
ODR exhibits a significant periodicity of 8.5 days
driven by the outflow band (red-noise plus periodicity)
inflow band has a red-noise behaviour with no periodic
behaviour
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Candidates

Properties of the recurrent ultrafast absorber
ODR minima (stronger outflow) vs. ODR maxima (weaker outflow)

larger column density (logN ∼ 22) in ODR minima, while a
smaller column density (logN ∼ 21) in ODR maxima
larger ionization parameter in ODR minima
LOS velocity is constant between the minima and the maxima
(∼ 0.35c)
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Candidates

Possible interpretations

1. inner disk precession x changes in continuum flux

2. clumpy wind x stochastic absorption variability
3. X-ray reflection x missing harder power-law component
4. Magnetically Arrested Disk x higher outflow velocities
5. QPEs x profound changes in continuum flux
6. Repeating partial TDE x continuum variability, longer period
7. Radiation-pressure driven outflows x low accretion
8. Orbiting perturber: perturber-induced ultrafast QPOuts
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Candidates

Perturber-induced outflow model

Based on the original GRMHD simulations by Suková, Zajaček,
Witzany, Karas (2021)
Source-frame period of the perturber (8.05 days), highly inclined

RUN ASASSN-20qc: Click - video
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Candidates

Perturber-induced outflow model

based on the ratio ṁout/ṁin we constrain the perturber’s
influence radius to R ≃ 3 gravitational radii
R ≃ 3→ mper > 100M⊙
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Candidates

Perturber-induced outflow model
Optical outburst+ delayed X-ray flare likely caused by the TDE
(stream-stream collisions and flow circulalization)
≳ 1TDE, SMBH-IMBH merger timescale ≳ 104 years→
mper ≲ 104M⊙

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

log (mper [M�])

101

102

103

104

105

106

107

m
er

ge
r

ti
m

es
ca

le
[y

r]

≥ 1 TDE

M• = 107M�

M• = 107.5M�

M• = 108M�

M. Zajaček · IMBHs in galactic nuclei · January 9, 2024 35 / 47



Candidates

Perturber-induced outflow model
Basic picture:
(a) inclined IMBH orbiting SMBH+ unrelated TDE
(b) IMBH-star binary that disrupts (Hills-like mechanism): causal

connection between the TDE and the IMBH perturbation of the
outflow; the IMBH could increase the likelihood of the TDE
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Candidates

Perturber-induced outflow model: Main pros

1. it can capture quasiperiodic UFO/absorption

3D RUN ASASSN-20qc: Click - video
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Candidates

Perturber-induced outflow model: Main pros
2. For the distance of 100 rg, there is no significant variability in
the inflow rate – exemplary elliptical 2D run
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Candidates

Summary
IMBHs still a mystery
very few confirmed cases (mostly at the lowest and highest
IMBH mass values)
we may see their indirect signatures
quasiperiodic ultrafast outflows (QPOuts) - a new type of
transients with a significant perturbation of the outflow rate
ASASSN-20qc - a period of 8.5 days suggests a perturber with
the mass in the IMBH mass range (Science Advances, submitted)
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Till the end of January



Back-up

Soft X-ray spectrum
soft X-ray spectrum is dominated by the thermal disc emission
with kTbb = 0.085 keV (X-ray analysis by D. Pasham)
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Back-up

Soft X-ray spectrum
soft X-ray spectrum is dominated by the thermal disc emission
with kTbb = 0.085 keV (X-ray analysis by D. Pasham)
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Back-up

X-ray fitting
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Back-up

BPT and WHAN diagrams

(a) (b)
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Back-up

Broad-band photometry
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Back-up

Optical spectra
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Back-up

White noise test
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