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Chapter 1

Introduction

1.1 Motivation
There is a lot of data everywhere, on the internet, in science etc. Take as-
tronomy as an exemplary scientific domain with a lot of observational data.
For example, the archives of the Large Sky Area Multi-Object Fiber Spectro-
scopic Telescope (LAMOST) (Gang et al. 2012) and Sloan Digital Sky Survey
(SDSS) (Blanton et al. 2017) contain millions of astronomical spectra, the
Gaia mission (Gaia Collaboration et al. 2016) will survey more than billion
stars, and Vera C. Rubin Observatory (Ivezić et al. 2019) will observe about
40 billion galaxies and stars. We see that there are and will be so many as-
tronomical observations that most of them will never be seen by astronomers
because it would take ages, so it is simply infeasible.

However, large data sets themselves are of little value if they are only
stored on some storage devices. We have to process them to gain value. It
is usually valuable to annotate all samples from a data set with some anno-
tations, e.g. measure a particular physical property of astronomical objects.
Then, we can filter the data set and select a subset of interest for further
detailed analysis, e.g. only astronomical objects that belong to a particular
category based on the measured physical property. How do we annotate
samples from a data set? We imagine that humans can annotate all sam-
ples only if the given data set is small enough. However, this is infeasible
anymore in the case of large data sets that, for example, comprise millions
of astronomical observations, as the examples above illustrate. Therefore,
we must rely on automatic methods to process large data sets without much
human intervention.

The general situation is that we have an unannotated large data set of
samples we want to annotate. We see that we cannot rely on human anno-
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tators anymore. We, as humans, usually want to focus on more important
tasks and leave the process of annotation to methods that we develop to
save time. Human interventions can potentially only support these meth-
ods. Now, suppose that we have a suitable method for our task at hand.
The method outputs annotations that we call predictions in the context of
this dissertation. On the other hand, for each sample, there is the true an-
notation. The closer the predictions of a method are to corresponding true
annotations, the better the method is. Unfortunately, any method, as well
as humans or their combination, can make errors, i.e. annotate samples in-
correctly. How can we identify such incorrectly annotated samples in a large
data set?

Firstly, some methods can associate their prediction with uncertainty,
i.e. their confidence in a prediction, which is called predictive uncertainty.
Then, someone can check only the predictions associated with high predictive
uncertainty. However, we have to ensure that these predictive uncertainties
are reliable and that there are ways to verify that. Secondly, we can perform
a consistency check, i.e. we can employ more than one method to check if
their predictions are consistent for the same samples. Then, we are more
confident that the predictions are correct. Therefore, we have to develop
a diverse set of methods because a larger and more diverse set means more
confidence in predictions (assigned annotations).

We see active deep learning as a set of such suitable methods that ef-
fectively combine deep learning (a set of data-driven methods) with active
learning (the assistance of humans) to save humans as much time as possible
while outputting reliable predictions. What are deep learning, active learn-
ing, and active deep learning? Why do we see active deep learning as a set
of such suitable methods?

First, both active and deep learning are subfields of machine learning.
Therefore, active deep learning, as the synergy of those two, is also its sub-
field. Machine learning methods usually train models using an annotated
data set (called traininǵ set) consisting of inputs with corresponding true
annotations so that the model can solve a given task.

Deep learning methods train complex (i.e. deep) models by composing
them from several processing layers. These methods are based on repre-
sentational learning, which desires to extract a suitable representation that
makes the task trivial to solve. A deep model is trained to create a hierar-
chical representation of an input fed into the first layer. Each layer extracts
a representation for the next layer. The final layer outputs a prediction.
Therefore, we think of deep models as internally producing a representation
in the next-to-last layer processed by the last layer. The most straightfor-
ward architecture of a deep model is a feedforward fully connected neural
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network (FCNN), a composition of matrix multiplications, bias additions,
and non-linear activation functions. Such deep architectures are trained with
backpropagation and variants of stochastic gradient descent algorithms. Due
to representational learning and these training algorithms, deep learning is
very powerful and solves tasks that have resisted human attempts for years.
However, deep learning models will work adequately only if two conditions
are met: 1. there is a sufficiently large human-annotated training set, and
2. the training set is representative of the target data set (i.e. the data set
we want to process).

It could be problematic to satisfy these conditions. For example, as-
tronomical data sets mainly do not satisfy both conditions. First, large
human-annotated data sets that we could use as training sets are scarce in
astronomy. Of course, some astronomical observations are manually anno-
tated. However, this applies only to smaller data sets or subsets preselected
based on predictions of some methods. However, the performance of machine
learning methods depends on human-annotated training sets. Otherwise, if
we trained them with predictions of some methods, they would only replicate
the methods with all their errors. Overall, in astronomy, we are in a situ-
ation where we commonly have only small human-annotated training sets.
Moreover, the scarce and small human-annotated training sets are diverse
due to different instruments, scientific goals, or observations from different
sky parts and depths. Therefore, they are usually not representative of the
target data set.

Active learning can solve the problem of the lack of a large and repre-
sentative human-annotated training set. Active learning is based on the idea
that a model will achieve better performance with a smaller training set if
samples in its training set are chosen based on the needs of the model itself.
Active learning approaches this situation by querying a batch of unannotated
samples. Humans manually annotate this batch. Selecting an informative
batch for annotation is crucial as it can speed up obtaining a satisfactory
model and save time and expenses spent on manual annotation. We want
a batch that will improve the performance of the model as much as possible.
That means we need a batch that 1. contains samples problematic for the
model (i.e. samples with high predictive uncertainty), 2. is diverse, 3. but
not redundant. Having an annotated batch, the training set of the model
is extended with it, and the model is retrained. This whole process repeats
until we are satisfied with the performance of the model.

Now, we know what active deep learning is and why it is a suitable set
of methods to approach the general situation described above. It combines
deep learning that solves tasks that have resisted human attempts for years
and active learning that can bring in human knowledge in an efficient way.
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1.2 Goals
The general goal of this dissertation was to improve active deep learning to
effectively and reliably annotate large data sets with a particular emphasis
on large data sets of astronomical spectra. Active deep learning was not
applied to astronomical spectra prior to the first publication included in this
dissertation, i.e. Škoda, Podsztavek, and Tvrdík (2020a). Therefore, the
first goal was to verify that active deep learning is a suitable set of methods
for large data sets of astronomical spectra.

In Section 1.1, we saw that the performance of active deep learning meth-
ods depends on batches selected for annotation. First, among others, the
batches have to contain samples with high predictive uncertainty. Next, we
focused on this point. Therefore, the second goal was to develop methods
that allow us to select samples with high predictive uncertainty. This in-
cluded research in methods for predictive uncertainty quantification on tasks
related to astronomical spectra.

Nevertheless, how do we know that models produced by the methods
quantify predictive uncertainties reliably? The machine learning community
has developed many scalar scores to evaluate the reliability of predictive
uncertainties. However, scalar scores express only the degree of reliability of
predictive uncertainties and give us no clue what is wrong if there are some
problems. Therefore, the third goal was to develop a method that can help
us identify problems with the reliability of predictive uncertainties, if there
are some.

1.3 Contributions
The first contribution is the first application of an active deep learning
method in astronomical spectroscopy (Škoda, Podsztavek, and Tvrdík 2020a).
To clarify contributions to the publication of the method, its first author,
my co-supervisor Dr Petr Škoda, worked mainly on the astronomical part of
the publication while I (with the help of my supervisor Prof. Pavel Tvrdík)
worked mainly on the active deep learning part.

The second contribution is a method for probabilistic prediction of spec-
troscopic redshift (Podsztavek, Škoda, and Tvrdík 2022) based on Monte
Carlo (MC) dropout (Gal and Ghahramani 2016a). Here, probabilistic pre-
diction means that we do not only produce point predictions (e.g. a single
real number), but we also produce predictive uncertainties. Therefore, the
method contributes to predictive uncertainty quantification. It contributes
to astronomical spectroscopy as the spectroscopic redshift is predicted from
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astronomical spectra.
The third contribution is a method for probabilistic prediction of the at-

mospheric properties of exoplanets (Yip et al. 2022a) based on deep ensem-
bles (Lakshminarayanan et al. 2017). This method was a winning solution
to the Ariel Data Challenge 2022 competition. The method is published as
part of the publication by Yip et al. (2022a), which describes the results and
outcomes of the competition. I, as a co-author of the publication, also de-
scribe the method in the publication. Again, this is a contribution specific to
astronomical spectroscopy because the properties are predicted mainly from
astronomical spectra plus some other auxiliary data.

The fourth contribution is a method for automatic miscalibration diag-
nosis of probabilistic prediction (Podsztavek et al. 2024). This is a con-
tribution to predictive uncertainty evaluation and is general to probabilistic
models that produce predictive probabilistic distributions.

1.4 Structure
First, to contextualise this dissertation, we will review the literature in Chap-
ter 2. Second, we will develop the active deep learning method for the dis-
covery of astronomical objects of interest in Chapter 3. Third, we research
two promising deep learning methods for predictive uncertainty quantifica-
tion and their applications in astronomy in Chapter 4 and Chapter 5. Then,
we develop a method for automatic evaluation of predictive uncertainties
that automatically identifies a problem of a model if it has one in Chapter 6.
Finally, we summarise the results and make conclusions for future research
and implementation in practice in Chapter 7.
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Chapter 2

Literature Review

2.1 Active deep learning
The first goal (see Section 1.2) was to verify that active deep learning is
a suitable set of methods for large data sets of astronomical spectra. We set
the goal because active deep learning was not applied to astronomical spectra
prior to our publication, i.e. Škoda, Podsztavek, and Tvrdík (2020a). In
astronomy, on active deep learning, only the publication by Walmsley et
al. (2020) was published during the peer-review process of our publication.
Walmsley et al. (2020) used active deep learning to classify the morphology
of galaxies from their images.

We have briefly introduced active deep learning through a description
of deep learning and active learning in Section 1.1. More information on
active deep learning and its application can be found in surveys by Ren et al.
(2021), Liu et al. (2022), M. Wu et al. (2022), and Wan et al. (2023) that
were all published after our publication. Next, we review relevant literature
concerning deep learning to select an appropriate deep model and active
learning applications in astronomy.

2.1.1 Deep learning
Throughout this dissertation, we experiment with two kinds of deep models,
specifically feedforward neural networks: 1. fully connected neural networks
(FCNNs) and 2. convolutional neural networks (CNNs). FCNNs were de-
scribed in Section 1.1. CNNs are introduced next after two general para-
graphs on machine learning.

In machine learning (see Bishop 2006), we usually want to train model
parameters θ using an annotated data set {(xi, yi)}Ni=1 consisting of N pairs
of input vectors {xi}Ni=1 with corresponding target values {yi}Ni=1 so that the
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model can solve a given task. There are two fundamental types of tasks:
1. classification tasks where a target value has a value from a finite set of C
discrete classes, i.e. yi ∈ {1, . . . , C}; and 2. regression tasks where a target
value is a real number, i.e. yi ∈ R.

To properly train, validate, and test a model, we split a given data set
into training, validation, and test sets. Usually, we iteratively show the
training set to the model during training to train its model parameters. The
model (that depends on its parameters) yθ takes the input vector xi and
outputs a prediction ŷi = yθ(xi). We want the prediction ŷi to be equal
to its target value yi. The validation set is used to optimise the model
complexity controlled by hyperparameters. Finally, the performance of the
trained model is evaluated on the test set. At this phase, model parameters
and hyperparameters are fixed. The test set represents new data to which
the model will be applied in the future, so it tests the ability of the model
to generalise to unseen input vectors.

CNNs (LeCun et al. 1989) are state-of-the-art deep models for many (es-
pecially computer vision) tasks. They started to be recognised when a CNN
named AlexNet (Krizhevsky et al. 2012) won the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) 2012 (Russakovsky et al. 2015). They
usually consist of convolutional, pooling, and fully connected layers and are
mainly designed to process images. However, CNNs can process any data
with a grid structure. Therefore, we can take advantage of CNNs because
spectra have a grid structure. An astronomical spectrum can be viewed
as a 1-dimensional array of flux values, whereas a typical image is a 3-
dimensional array of RGB channels. A typical CNN consists of two parts:
convolutional layers with pooling layers followed by fully connected layers.

Convolutional layers perform mathematical convolution, i.e. they con-
volve their inputs with trained kernels. They leverage three essential proper-
ties of CNNs: 1. sparse interactions (a kernel, i.e. a convolutional layer, has
fewer parameters than a fully connected layer); 2. parameter sharing (rather
than having a separate set of parameters for each possible location of a given
object, a convolutional layer has one set for all locations); and 3. equivari-
ance to translation (if an object shifts in the input, its corresponding output
shifts by the same distance vector). The output of each convolutional layer
is passed through a non-linear activation function. Nowadays, the most used
non-linear activation function is the rectified linear function (ReLU):

ReLU(a) = max(a, 0).

A series of convolutional layers might alternate with pooling layers. The
pooling layers make the representation invariant to small translations and
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rotations in the input. Moreover, they reduce the size of the representation,
and therefore, they reduce the number of model parameters of fully con-
nected layers. In this dissertation, we use max pooling layers that reduce
the representation by applying a filter to it that selects only the maximal
value from a predefined set of adjacent pixels. The representation from the
convolutional and pooling part is passed through the fully connected part.
In regression, the last layer usually does not perform any non-linear activa-
tion function and only produces predictions. In classification, the last layer
usually performs the softmax function:

softmax(zi)j =
exp(zj)∑C
k=1 exp(zk)

,

where zi = (z1, . . . , zC) is an input to the last layer. Then, the output vector
softmax(zi) of the layer can be interpreted as a probability vector, i.e. a vector
with non-negative elements that sum up to one. The matching prediction ŷi
equals to the index of maximal value of the output vector softmax(zi):

ŷi = argmaxj∈{1,...,C}softmax(zi)j.

CNNs were successfully applied to many astronomical tasks. For exam-
ple, Aniyan and Thorat (2017), Domínguez Sánchez et al. (2018), and Al-
hassan et al. (2018) used CNNs to automate the morphological classification
of radio sources. Alger et al. (2018) localised host galaxies for a given radio
component with a CNN using data from experts and crowdsourced training
data. Furthermore, George and Huerta (2018) applied two CNN time-series
data to the detection and parameter estimation of gravitational waves from
binary black hole mergers. The two CNNs achieved a similar performance
as previous advanced methods but were much faster, thus allowing real-time
processing.

For all these reasons, we decided to employ CNNs as deep models for the
astronomical tasks in this dissertation.

2.1.2 Active learning
Active learning with shallow models (i.e. not deep models) has also been
successful in astronomy. It was applied to estimate the parameters of stellar
population synthesis models (Solorio et al. 2005) or the classification of light
curves of variable stars (Richards et al. 2012). Astronomers used active learn-
ing to learn a model for photometric data classification from spectroscopic
data (Gupta et al. 2016; Vilalta et al. 2019) and to minimise the number of re-
quired spectroscopically confirmed annotations in preparing training sets for
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the photometric classification of supernova light curves (Ishida et al. 2019a).
Furthermore, active learning was shown to perform well in anomaly detection
in light curves of supernovae (Ishida et al. 2019b). These applications prove
the potential of active learning for astronomy. We take a step forward and
use a deep model instead of a shallow one, which brings new challenges.

2.2 Predictive uncertainty quantification
The second goal (see Section 1.2) was to develop methods that allow us to
select samples with high predictive uncertainty.

Deep models (i.e. FCNNs and CNNs) in their simple forms do not provide
predictive uncertainties. Therefore, there is no way to distinguish whether
a model produces reasonable predictions or random guesses. For example,
suppose there is an input vector insufficiently represented in the training
set. Therefore, there will be uncertainty if model parameters were trained
correctly. This type of uncertainty is model or epistemic uncertainty. It can
be reduced using more training data. We want the model to try to gener-
alise to the insufficiently represented input vector, but, at the same time,
we expect that the model will indicate this by producing a higher predictive
uncertainty. Furthermore, there is another source of uncertainty in machine
learning. Noisy input vectors or target values cause data or aleatoric uncer-
tainty. Data uncertainty cannot be reduced even if we enlarge the training
set with more data. Ideally, we should incorporate both model uncertainty
and data uncertainty into the predictive uncertainties of the model.

In the machine learning community, there is a significant amount of work
to develop methods to train probabilistic deep models, i.e. models that pro-
duce predictive uncertainty. The fundamental probabilistic deep models are
density networks (DNs) (Nix and Weigend 1994) and mixture density net-
works (MDNs) (Bishop 1994). A DN outputs a Gaussian distribution, i.e. its
mean and variance. An MDN usually outputs a mixture of Gaussian distribu-
tions, i.e. their means, their variances and weights of the mixture. Advanced
methods are well summarised in a survey by Gawlikowski et al. (2023).

We chose to base our methods (for predictive uncertainty quantification
on astronomical spectra) on two methods that are promising in terms of
calibration improvement (Gawlikowski et al. 2023, p. S1557)1 while both are
relatively simple to implement, which is an important for further practical

1In 2021, the survey by Gawlikowski et al. (2023) was initially released on arXiv. In
2023, it was published again in Artificial Intelligence Review. Therefore, we had access
to the survey before our publications on predictive uncertainty quantification (i.e. Pod-
sztavek, Škoda, and Tvrdík 2022; Yip et al. 2022b).
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implementations in astronomy:

• a Bayesian method based on Monte Carlo dropout (Gal and Ghahra-
mani 2016a), and

• an ensemble method based on deep ensembles (Lakshminarayanan et
al. 2017).

2.2.1 Monte Carlo dropout
The Monte Carlo (MC) dropout method (Gal and Ghahramani 2016a) uses
dropout (Srivastava et al. 2014) as a Bayesian approximation that brings
theoretically justified predictive uncertainties into deep learning. Gal and
Ghahramani (2016a) showed that training neural networks with dropout
is equivalent to Bayesian variational inference. The original idea behind
dropout is to randomly set outputs of neurons to 0 with a given probabil-
ity p during training. Dropout prevents overfitting because neurons are not
allowed to co-adapt too much.

In Bayesian variational inference, we model the true posterior distribution
(used to get the true predictive distribution) with a variational distribution
(i.e. an approximate posterior distribution) that is computationally feasible.
Kullback–Leibler divergence is used to get the variational distribution as close
to the true posterior distribution as possible. Because of the equivalence, we
still minimise a loss function with respect to model parameters θ. If we have
a regression task, we use the mean squared error loss function (hereafter MSE
loss) that is defined as:

LMSE(θ) =
1

N

N∑
i=1

(ŷi − yi)
2 + λ∥θ∥2, (2.1)

where ∥θ∥2 is the L2 regularisation with the weight decay λ hyperparameter
that controls overfitting by discouraging the model parameters θ from taking
large values. Then, we also use dropout while making predictions (i.e. we exe-
cute stochastic forward passes) to sample T predictions {yθ(xi)

(1), . . . , yθ(xi)
(T )}.

These are empirical samples from approximate predictive distributions. We
can estimate the predictive mean of the approximate predictive distribution
for input vector xi by the sample mean:

ŷi =
1

T

T∑
j=1

yθ(xi)
(j).
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This estimate is referred to as MC dropout in literature. Furthermore, we
can represent the predictive uncertainty of the approximate predictive distri-
bution by its predictive variance and estimate it with the sample variance:

s2i =
1

T − 1

T∑
j=1

(yθ(xi)
(j) − ŷi)

2.

To get Bayesian CNNs, dropout has to be performed at each layer with
model parameters (Gal and Ghahramani 2016b). Therefore, dropout is ap-
plied to both convolutional and fully connected layers of the model while
training and making predictions.

There were a few applications of MC dropout in astronomy. Levasseur
et al. (2017) employed a Bayesian CNN to estimate the predictive uncer-
tainties of lensing parameters. Intelligent exoplaNet Atmospheric RetrievAl
(Soboczenski et al. 2018) is a preliminary experiment with a Bayesian CNN
applied to synthetic spectra of exoplanets to predict the temperature, struc-
ture, and composition of their atmospheres. H. W. Leung and Bovy (2018)
used a Bayesian CNN to predict stellar parameters from the Apache Point
Observatory Galactic Evolution Experiment spectra with predictive uncer-
tainties to cope with noisy and missing flux values. They introduced a cus-
tom loss function and a complex system composed of a large CNN and small
neural networks, both using MC dropout. Möller and Boissière (2019) ex-
perimented with MC dropout applied to a recurrent neural network. They
evaluated their method on the classification of supernovae using simulated
light curves. In the Galaxy Zoo project, Walmsley et al. (2020) combined
Bayesian CNN with active learning to reduce the amount of needed annotated
data. Killestein et al. (2021) employ a Bayesian CNN to classify transients
in images.

2.2.2 Deep ensembles
Deep ensembles (Lakshminarayanan et al. 2017) combine outputs of M prob-
abilistic models, specifically probabilistic neural networks. Those neural net-
works can be simple DNs or MDNs. The weights of the neural networks
are randomly initialised to diversify the ensemble. Further diversifications
can be achieved by training them on random subsets of a given training set.
We see that the neural networks are independent, so they can be trained
in parallel. The output of the ensemble is a uniformly weighted mixture
model. For example, if the neural networks produce Gaussian distributions,
the prediction is a uniformly weighted mixture of Gaussian distributions.
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2.3 Predictive uncertainty evaluation
The third goal (see Section 1.2) was to develop a method that can help us
identify problems with the reliability of predictive uncertainties. We limit
ourselves to regression tasks and leave classification tasks for future research.

A key to predictive uncertainty evaluation is the paradigm of maximising
the sharpness of predictive distributions (that commonly represent predictive
uncertainties) subject to their calibration (Gneiting et al. 2007). Sharpness
means the concentration of probability distributions, while calibration means
statistical consistency with corresponding target values.

Proper scoring rules are commonly employed to evaluate predictive un-
certainties. A scoring rule is a loss function for predictive distributions,
as opposed to point predictions. It is proper if it has the property that
a predictive distribution that matches the true data-generating distribution
minimises the expected score. Implicitly, that property means that a proper
scoring rule measures calibration and sharpness jointly. The two most used
proper scoring rules are the negative log-likelihood (NLL):

NLL(fi, yi) = − log fi(yi),

where fi denotes the predictive probability density function (PDF) corre-
sponding to the target value yi, and the continuous ranked probability score
(CRPS):

CRPS(Fi, yi) =

∫ ∞

−∞
(Fi(a)− 1a≥yi)

2da.

where Fi denotes the predictive cumulative distribution function (CDF) cor-
responding to the target value yi.

We need to use a proper scoring rule to measure and confirm the im-
provement in predictive performance to compare two probabilistic models.
However, scalar scores such as proper scoring rules or the calibration error
(Kuleshov et al. 2018) are insufficient to fully evaluate predictive uncertain-
ties because there can be problems that scalar scores would not reveal. These
problems might cause miscalibration, and scalar scores express only the de-
gree of miscalibration, not its cause. Therefore, we have to use other tools
to evaluate predictive uncertainties.

First, we must specify what we mean by calibration, specifically prob-
abilistic calibration. We define probabilistic calibration following Gneiting
et al. (2007). At an instance i ∈ {1, . . . , N}, nature chooses a true data-
generating distribution Gi, and a model picks a predictive CDF Fi. Both
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Gi and Fi might depend on stochastic parameters. The predictive distri-
butions are probabilistically calibrated relative to the true data-generating
distributions if

1

N

N∑
i=1

Gi ◦ F−1
i (p) → p

for all p ∈ (0, 1), where the arrow denotes the almost sure convergence as
N → ∞. This definition is equivalent to the uniformity of distribution of
probability intergral transform (PIT) values:

{Fi(yi) | i ∈ {1, . . . , N}},

where the target value yi is an observed value of a random variable with the
distribution Gi. The PIT is translation- and scale-invariant. We diagnose
miscalibration by visualising the histogram of PIT values (hereafter the PIT
histogram) and inspecting its shape.

In the machine learning literature, the PIT histogram or calibration plot
(also known as the reliability diagram) are standard tools to diagnose miscal-
ibration. These two tools are equivalent because both display an estimate of
the PIT distribution: the PIT histogram shows a density estimate, whereas
the calibration plot displays an estimate of the CDF.

One should be able to diagnose miscalibration by visually inspecting
a PIT histogram or calibration plot. However, understanding the cause of
miscalibration requires much experience. Simple causes of miscalibration
(bias, underdispersion and overdispersion) can be identified easily. They
express themselves respectively as a PIT histogram with a single peak at
an edge, a U-shaped and a bell-shaped PIT histogram (see visual guide in
Figure 2.1). However, suppose the cause of miscalibration is not a simple
one or multiple causes co-occur. In that case, the potential shapes of PIT
histograms cannot be easily enumerated, which makes their interpretation
difficult or even impossible for inexperienced users.

Therefore, we provide a user-friendly interpretation of PIT histograms,
from which users can recognise causes of miscalibration. Subsequently, users
can deal with those causes and get more reliable predictive distributions.
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Chapter 3

Method for Discovery of
Objects of Interest1

The first goal (see Section 1.2) was to verify that active deep learning is
a suitable set of methods for large data sets of astronomical spectra. We
prove that by presenting an active deep learning method that allowed us to
annotate (i.e. discover) rare objects of interest in a large data set of spectra
although only a small training set was available from a different data set of
spectra.

3.1 Astronomical motivation
The stellar spectral classification, as explained in Gray and Corbally (2009),
is an important astrophysical task of assigning a particular annotation (mix-
ture of letters and Arabic and Roman numbers), called the spectral class, to
each spectrum based on the visual similarities (e.g. presence, strength, and
width of the spectral lines of a given element, or a combination of multi-
ple lines). A common automatic procedure (see e.g. Gray and Corbally 2009,
Chap 13.5) uses statistical matching (mainly using χ2 fitting) of a given spec-
trum with an extensive set of template spectra that may be either synthetic
or come from a library of carefully selected stars (called spectral standards).
This method is also used in various modifications for the automatic spectral
classification of large surveys, such as the Sloan Digital Sky Survey (SDSS)
(Y. S. Lee et al. 2008) or Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST) (Y. Wu et al. 2011; Y. S. Lee et al. 2015).

1This chapter is based on P. Škoda, O. Podsztavek, and P. Tvrdík (2020a). “Active
deep learning method for the discovery of objects of interest in large spectroscopic surveys”.
In: Astronomy & Astrophysics. doi: 10.1051/0004-6361/201936090.
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A problem arises in many cases when appropriate model of a spectrum is
not known and the library used for matching is not rich enough to contain
unusual or new types. In addition to this, many types of celestial objects may
show complex shapes of only several prominent spectral lines (mainly Hα or
other Balmer and Paschen lines) that cover only small parts of the whole
spectrum. The integral statistics then fails, and target-tailored methods
must be applied to discover such usually rare objects. This is the case of
various objects with emission lines that allow us to study a wide range of
interesting physical processes.

Pre-main-sequence stars such as young stellar objects and T Tau stars
(Reipurth, Pedrosa, and Lago 1996; Kurosawa, Harries, and Symington
2006), or hot stars with expanding envelopes or strong winds show prominent
emission lines, as do cataclysmic variables, novae, and even late-type stars
with chromospheric activity. See Kogure and K.-C. Leung (2007) or Traven
et al. (2015) for a comprehensive overview of these cases.

We showcase an active deep learning method on the discovery of classical
Be stars (Porter and Rivinius 2003) and rare B[e] stars (Zickgraf 2003). Be
and B[e] stars have complicated emission-line profiles that often look like
symmetric or slightly asymmetric double-peaks, sometimes superimposed on
absorption lines, depending on their disk geometry (Silaj et al. 2010). The
manual annotation of their profiles (Hanuschik, Kozok, and Kaiser 1988)
is a challenging task even on small samples, but it becomes impossible in
large data sets of spectra. The classical method to finding emission lines is
to compute integral statistics around their expected positions. It is similar
to the standard method of measuring the line equivalent width (Kang and
S.-G. Lee 2012; Waters and Hollek 2013). Such an integral measure based
on three-pixel statistics was taken by Lin et al. (2015) on the LAMOST data
release (DR) 1 to find strong uprising peaks. This resulted in a catalogue of
203 emission-line stars, 23 of which were identified as classical Be stars and
180 are claimed to be discovered candidates. To find double-peak profiles
hidden in deep absorption, Hou et al. (2016) used a more advanced method
based on the difference of several statistics with different kernel width. They
made an extensive analysis of the LAMOST DR2 and published a catalogue
of 11 204 spectra of emission-line stars.

We propose an alternative method for the discovery of emission-line spec-
tra here based on active deep learning. For the sake of simplicity, we limit
ourselves to the vicinity of the Hα line. Next, we describe the first system-
atic investigation of the LAMOST DR2 using a convolutional neural net-
work (CNN) in combination with active learning, i.e. an active deep learning
method.
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3.2 Active deep learning method for discov-
ery of objects of interest

The discovery of objects of interest in large data sets of spectra would be
a standard machine learning task if a large and representative training set of
a given large data set was available. With such a training set, it would be
straightforward to train a machine learning model and classify the data set
with high accuracy. However, our experiments showed that if there is not
such a training set, standard machine learning methods provide poor results
with a high rate of both false and missed candidates.

This means that if the training set is not a sufficient representation of
a target data set, for example, when the training set is biased or comes
from another, but similar instrument, other machine learning methods need
to be developed to obtain reasonable discovery results. We propose and
evaluate here a classification method based on extension of a CNN with
class balancing and active learning. Next, we explain in detail why and how
we combined a CNN with a class balancing algorithm and active learning.
This unified active deep learning method allowed us to discover objects of
interest (objects with emission-line spectra) in the LAMOST DR2 altough
only a small training set was available from a different data set of spectra.

In Subsection 2.1.1, we showed that CNNs are state-of-the-art deep mod-
els for data with grid structure including spectra and that they were success-
fully applied to astronomical tasks. Therefore, we use a CNN as the deep
model in the active deep learning method.

When discovering rare objects of interests in large data set of spectra, we
face the class imbalance problem. Annotated spectra of rare objects of inter-
est (hereafter target spectra) will usually be in the minority, in contrast to
annotated spectra of abundant objects (hereafter non-target spectra). There-
fore, the training set will tend to be imbalanced. Moreover, target spectra
will be in a significant minority in general large data sets of spectra. Our
application of the active deep learning method revealed exactly the class im-
balance problem. The archive of the Ondřejov 2 m Perek telescope is focused
on the observation of emission-line stars. Although there is almost the same
percentage of single-peaks as absorptions, double-peaks are still in the minor-
ity. Moreover, there are (at least by order of magnitude) fewer emission-line
spectra than standard ones in the LAMOST DR2 because emission-line ob-
jects are rare in the universe. In this case, class balancing is an essential part
of workflows and leads to successful performance. For example, we refer to
Calleja et al. (2011) or Lyon et al. (2016) for the necessity of class balancing
in astronomy and Rastgoo et al. (2016) in medicine. To overcome the fact
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that CNNs will tend to discriminate the minority classes, we incorporate the
synthetic minority over-sampling technique (SMOTE) proposed by Chawla
et al. (2002). This technique allows enlarging the number of annotated target
spectra to the same size as the more abundant non-target spectra.

Our experiments showed that the combination of a CNN and class bal-
ancing is still not sufficient for the discovery of objects of interest because
the first prediction of candidates delivered a considerable amount of false
candidates and featureless noisy spectra. The reason for this failure was an
imperfect training set. Therefore, we decided to explore active learning to
circumvent the requirement of good representativeness of the trainig set to
exploit the full potential of deep models to discover objects of interest.

In the case of large data sets of spectra, there are huge pools of unan-
notated samples that can be processed and gathered at once (a pool-based
setting). Spectra are queried selectively from the pool according to an in-
formativeness measure that evaluates all spectra in the pool. Concerning
CNNs for classification, the most straightforward query strategy is the uncer-
tainty sampling. This strategy selects spectra for which the CNN provided
the least certain annotations because the last layer of a CNN usually per-
forms a softmax function (see Subsection 2.1.1). Therefore, to query spectra
for annotation, for all the spectra in the pool, we compute the information
entropy:

H(zi) = −
C∑

j=1

softmax(zi)j ln(softmax(zi)j),

where zi is an input to the last layer of the CNN. Then, the query strategy
selects spectra with the highest information entropy.

Because the training of a CNN can be time-consuming, our method uses
batch mode active learning, which iterates in cycles. We annotate a batch of
queried samples in each iteration to save time and computational resources
(i.e. training of a CNN). More specifically, the method selects a batch of
a previously specified size from all spectra in the pool, and we manually
annotates them. Then, we add all the manually annotated spectra to the
training set, so that it contains training samples from the previous iterations
and newly annotated spectra.

Lastly, to decide when to stop the active learning iterative procedure,
we need to track the performance of the CNN. The obvious possibility is to
estimate a performance measure and stop learning when a plateau is reached
(i.e. when adding newly annotated spectra to the training set would not
increase the performance of the CNN).

When a large pool of unannotated samples contains a negligible amount
of target spectra, it is reasonable to estimate precision, that is the ratio of
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correctly predicted target spectra and all (both correctly and incorrectly)
predicted target spectra. In the case of precision, we can expect that a ran-
dom sample of spectra classified into target classes will contain the true
target spectra. On the other hand, a random sample of all spectra or non-
target spectra will probably contain only non-target spectra. Therefore, an
estimation of any performance based on such random samples will not yield
a useful result. For example, an estimate of accuracy, which has to be based
on a random sample of all spectra, will almost certainly be 1 or very close
to it. Moreover, when discovering rare objects, we are not interested in ac-
curacy, but rather in precision and recall. Recall is the ratio of correctly
predicted target spectra and all target spectra. However, the estimation of
recall faces the same problem as the estimation of accuracy. For this reason,
we cannot have any randomly sampled performance estimation set fixed for
all iterations. We have to sample a new random sample in every iteration as
the set of predicted target spectra is changing.

In summary, our active deep learning method takes an annotated data
set as the initial training set and balances it. Having a balanced training
set, we train the CNN and use the trained CNN to classify all spectra in the
unannotated pool. Then, we use the uncertainty sampling query strategy to
obtain a batch of samples. We annotate the batch. The annotated samples
are taken out of the unannotated pool and placed into the training set. We
repeat these steps until the performance of our CNN is satisfactory. When
we are satisfied with the CNN performance, the unannotated samples that
were lastly predicted as target ones become new candidates. Finally, we
move the samples manually annotated as targets from the training set to the
candidate set. The flowchart in Figure 3.1 illustrates all steps of our active
deep learning method.

3.3 Experiments
To illustrate the application of our active deep learning method, we have
performed experiments with the discovery of objects with signatures of Hα
emission in the LAMOST DR2 using annotated data set from the Ondřejov
2 m Perek telescope.

3.3.1 Data
The archive of spectra obtained with 700 mm camera in the Coudé spec-
trograph of the 2 m Perek telescope at the Ondřejov observatory of the As-
tronomical Institute of the Czech Academy of Sciences (hereafter CCD700
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set) is a unique source of spectra of emission-line stars (mostly Be and B[e]
stars, stars with strong winds and several novae). This continuously growing
archive, currently contains about 17 000 spectra, the majority of which (more
than 13 000) are exposed in spectral range 6 250–6 700 Å with a spectral re-
solving power of about 13 000. The standard Image Reduction and Analysis
Facility (IRAF) procedure reduces the spectra, including the calibration in
air wavelengths and heliocentric correction.

LAMOST has delivered one of the currently largest collections of spec-
tra. Four thousand fibres positioned by micro-motors feed 16 spectrographs.
Its publicly available DR2 contains over four million spectra with a spectral
resolving power of about 1 800, covering the range 3 690–9 100 Å. The LAM-
OST pipeline (Y. Wu et al. 2011) automatically assigns an estimated spectral
class to spectra. However, the pipeline uses classification mostly based on
the global shape and integral properties of a spectrum in given band-passes
using a set of predefined templates. The local features (e.g. detailed line
profiles) are ignored. Strong narrow emissions can even be rejected by the
pipeline as possibly spoiled pixels. Therefore, we did not use the assigned
spectral classes. Hereafter we call the set of all unannotated LAMOST DR2
spectra the LAMOST pool. The spectral axis of the Flexible Image Transport
System (FITS) files in the LAMOST DR2 are expressed in the logarithm of
the vacuum wavelength.

3.3.2 Data preparation
A common assumption in machine learning is that the training set (i.e. the
CCD700 set) and target data set (i.e. the LAMOST pool) come from the same
probability distribution (Pan and Yang 2010). However, we are interested in
the classification of the LAMOST pool using a training set created from the
CCD700 set, which contains mostly emission spectra. This means that the
training set is highly biased. The distribution mismatch between the training
set and the target data set is a well-known problem in machine learning and
is called domain adaptation (Glorot et al. 2011).

Using the technology of the Virtual Observatory for cross-matching, we
have identified only 22 spectra that were observed both by the Ondřejov
2 m Perek Telescope and LAMOST. Only a few (e.g. BT CMi, HD 53 416,
or V395 Aur) of them show emission lines. The lack of annotated samples
in the LAMOST pool prevents a straightforward usage of machine learning.
To use the CCD700 set as our training set, we therefore applied a domain
transfer to the spectra from the CCD700 set (based on optical engineering
procedures), so that they will look as if they were exposed with the LAMOST
spectrograph. Taigman et al. (2017) claims that domain transfer is useful
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Figure 3.2: Comparison of a spectrum from the LAMOST pool with a spec-
trum from the CCD700 set transferred to the LAMOST lower resolution and
vacuum wavelengths

when solving the domain adaptation problem.
Firstly, we applied air-to-vacuum wavelength conversion to spectra from

the CCD700 set using formulas provided in Heiter (2014) because spectra
from the CCD700 set are in air wavelengths, but the LAMOST spectra use
vacuum wavelengths. Additionally, we converted the vacuum wavelengths of
spectra from the LAMOST pool from the logarithmic to linear scale. Sec-
ondly, because spectra from the CCD700 set have a higher spectral resolution
than the spectra from the LAMOST pool, we applied the spectral resolving
power degradation to spectra from the CCD700 set, roughly approximated
by the convolution with the Gaussian kernel of a given pixel width to reduce
the high-resolution details. Comparison figures of simulated spectra from the
CCD700 set and LAMOST pool of all 22 objects mentioned above showed
that the standard deviation of seven pixels works best. Figure 3.2 shows the
comparison of a spectrum from the CCD700 set, cross-matched spectrum
from the LAMOST pool, and the trasferred spectrum.

Next, the CNN requires a vector of features as an input. To have the same
features for all spectra, they need to be resampled to obtain the measure-
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ment in the same wavelengths across all spectra. We decided to use a linear
interpolation to 140 uniformly distributed wavelengths in the spectral range
between 6 519 and 6 732 Å. We used this number of points because the LAM-
OST spectra mostly have this number of measurements in the range. We
derived the range from the fact that our classification is based on the Hα
line and most of the spectra from CCD700 set are exposed in this range.
This range also contains He I 6 678 Å line, which is important in Be stars.
Having resampled all spectra in the same wavelength points, we can create a
matrix required for training, where rows are 140-dimensional feature vectors
of spectra and columns contain fluxes in specified wavelengths.

The last step of data preparation is the min-max normalisation of the
spectral flux into a unit-less range [−1, 1] using the equation

x′
i = 2

xi −min(xi)

max(xi)−min(xi)
− 1,

where xi is an original spectrum and x′
i is its scaled spectrum. Thus, each

spectrum has a maximum flux of value 1 and a minimum of value −1. We
applied this data preparation procedure for two reasons: 1. we would like
to classify the spectra according to their shapes (this procedure effectively
suppresses the differences in intensities); and 2. it transforms values in the
comfortable small-valued range that is suitable for a neural network training
(this is not a feature scaling, but a scaling across each spectrum).

The transffered spectra from the CCD700 set were manually annotated by
Podsztavek (2017) according the visual shape of the Hα into three classes:
single-peak, double-peak, and absorption. The annotated spectra resulted in
a data set of 12 936 annotated spectra (hereafter Ondřejov data set) (Pod-
sztavek and Škoda 2019) that is suitable for machine learning. The counts
of spectra in classes are the following:

• single-peak: 5 301 spectra (40.98%),

• double-peak: 1 533 spectra (11.85%), and

• absorption: 6 102 spectra (47.17%).

Figure 3.3 displays representatives of each class. In both single-peak and
double-peak spectra the Hα line is in emission, and the difference between
the two classes is in the number of peaks, which are clearly visible in the
spectrum. Spectra in the single-peak and double-peak classes are the target
spectra of our interest, and as expected, their number is smaller than the
number of non-target absorption spectra, which are not interesting for us.
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Figure 3.3: Exemplary spectra from Ondřejov data set
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The Ondřejov data set contains only well-exposed spectra, while the
LAMOST pool contains many noisy spectra with instrumental and reduc-
tion artefacts, spectra without peaks or absorption, and spectra with low
signal-to-noise ratio. During our experiment, we placed all these spectra into
the non-target uninteresting class. Therefore, the non-target-not-interesting
class contains bad and absorption spectra, which are both uninteresting for
us.

3.3.3 Application of active deep learning method
When the data were ready, we applied our method. We chose the archi-
tecture of a CNN as developed in previous work that proved to be working
well (see Podsztavek 2017). This CNN architecture was inspired primar-
ily by VGG Nets (Simonyan and Zisserman 2015). However, VGG Nets
were designed to process multi-channel two-dimensional images. Therefore,
we adapted the architecture to our one-dimensional spectra (replace two-
dimensional convolutions with one-dimensional convolutions). After several
experiments, we converged to the architecture shown in Table 3.1. This CNN
was implemented using TensorFlow (Abadi et al. 2016) through the Keras
(Chollet et al. 2015) high-level interface and was run on an NVIDIA GTX980
GPU (4 GB memory, 2 048 CUDA cores). The network was trained with the
Adam optimiser (Kingma and Ba 2015) in its default setting. The best-found
weights were restored at the end of each training. We stopped the training
when the categorical cross-entropy loss function was not improved by at least
10−4 during the last ten iterations.

After we trained the CNN with the Ondřejov data set (the initial training
set) balanced with SMOTE, we used the model to predict classes and proba-
bilities of classes for all spectra in the LAMOST pool. From all the classified
spectra, a batch of 100 spectra with the highest information entropy com-
puted from the probabilities of classes was selected (the uncertainty sampling
strategy) and manually annotated by us. Then, all the 100 manually anno-
tated spectra were moved to the training set and removed from the LAMOST
pool. Hence, after the first iteration, the training set contained the spectra
from the Ondřejov data set and 100 new spectra from the LAMOST pool.

To track the performance of our CNN, we estimate the precision (the ratio
of correctly predicted single-peak and double-peak spectra in all predicted
target spectra) in each iteration. Therefore, we randomly selected 30 spectra
classified into single-peak and double-peak (target spectra) classes from the
LAMOST pool (hereafter the performance estimation sample). The size of
30 was chosen as a good trade-off between confidence and the demands of
visual verification. Then, we manually annotated the performance estimation

32



type of layer hyperparameters
input 140 neurons
convolutional 64 kernels
convolutional 64 kernels
max pooling
convolutional 128 kernels
convolutional 128 kernels
max pooling
convolutional 256 kernels
convolutional 256 kernels
max pooling
fully connected 512 neurons
fully connected 512 neurons
fully connected 3 neurons

Table 3.1: The CNN for the active deep learning method consists of 6 convo-
lutional (with 3 pixels wide kernels), 3 max pooling (with pool size 2, stride
2, and no padding), and 3 fully connected layers. Dropout (Srivastava et al.
2014) with probability p = 0.5 is applied to the first two fully connected
layers as a regulariser.
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sample and compared our annotations with the annotations predicted by our
CNN. Thus, we estimated the precision after each iteration. The performance
estimation sample of 30 spectra functions as a test set. In standard machine
learning, a test set is a random sample of all unseen data that could be put
into the CNN. In our case, all possible data for our CNN are in the so far
unannotated LAMOST pool. Therefore, the performance estimation sample
will provide an unbiased estimate of precision. We would like to point out
that the annotations of the performance estimation sample is different from
the manual annotations of batches for active learning. The annotations of the
performance estimation sample are forgotten after the precision estimation,
and the spectra are left in the LAMOST pool.

Finally, we stopped our experiment in the 17th iteration when the es-
timated precision reached more than the predefined threshold (in our case
80 %) for the third time. We chose the values of these parameters as a trade-
off between time and performance requirements, and it can be chosen differ-
ently for different data sets. Figure 3.4 displays the precision of our CNN
over 17 active learning iterations.

Because the training of our CNN was time-consuming, we sped up the
method by training the CNN during the active learning phase for a smaller
number of epochs. Then, after the active learning phase, we ran the Adam op-
timisation algorithm of the CNN for a longer time (the training was stopped
when the loss function did not improve by 10−5 during 100 training itera-
tions) to ensure that good convergence was achieved, and thus fewer false
candidates will be produced. In the following text, we refer to this step as
long training.

3.3.4 Results

Our method identified 4 379 candidate spectra with signatures of emission-
line profiles including candidates found by the manual annotations in all
the 4 136 482 LAMOST DR2 spectra. The last CNN predicted 3 574 spectra
as single-peak and 587 as double-peak profiles, while we found 157 single-
peak candidates and 61 double-peak candidates during manual annotations
of batches. As explained earlier, it also includes absorption profiles with
small visible disturbances that may be caused by additional circumstellar
emissions. After visual inspection of the predicted candidates, we rejected
58 as bad (partly destroyed, noisy, or with pure absorption profiles) and
computed the partial confusion matrix in Table 3.2. Finally, we had a set of
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Figure 3.4: Estimated precision from a sample of 30 single-peak and double-
peak spectra for each iteration (the zeroth iteration is estimated when the
CNN is trained only with the initial Ondřejov data set)
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predicted class actual class percentage count
single-peak single-peak 97.5 % 3 484

double-peak 1.5 % 53
uninteresting 1.0 % 37

double-peak double-peak 93.4 % 548
single-peak 3.1 % 18
uninteresting 3.6 % 21

Table 3.2: Partial confusion matrix of the final classification of our exper-
iment (excluding candidates found by manual annotation). The numbers
show the percentage and counts of correctly predicted spectra of all spectra
predicted for a given class. The 4 161 spectra in this table are all the can-
didates predicted as single or double-peaks after the long training. After we
visually reviewed all of them, we found that 58 of candidates are uninterest-
ing spectra (37 predicted as single-peaks and 21 predicted as double-peaks).
The target classes also include some misclassification: 53 double-peaks are
classified as single-peaks, and 18 single-peaks are classified as double-peaks.
We could not compute the last row of the uninteresting class because it would
mean manual annotation of all the four million spectra that are predicted as
uninteresting.

4 321 spectra of about2 3 788 individual objects.
This set includes 2 644 spectra of 2 291 objects that have been found previ-

ously by Hou et al. (2016), and 664 new spectra of 549 objects that are listed
in Set of Identifications, Measurements, and Bibliography for Astronomical
Data (SIMBAD) which were not found by Hou et al. (2016). Our method
proved to be reliable (with an error smaller than 6.5%) because most of the
candidates are classified in SIMBAD as various cases of emission-line ob-
jects, such as cataclysmic variables, young stellar objects, dwarf novae, sym-
biotic binaries, infrared excess objects from InfraRed Astronomical Satellite
(IRAS), classic Be stars and Herbig Ae/Be star (HAeBe) stars. In addition,
our method found 1 013 spectra of 948 new objects that are neither known
in SIMBAD nor discovered by Hou et al. (2016).

The newly discovered objects span almost all spectral classes as assigned
by the LAMOST pipeline, but also many unclassified ones. The visual inspec-
tion has confirmed that all of them have signatures of emission in their line
profiles. Some have even prominent strong emissions. These include three

2The exact number of individual objects is difficult to estimate because of cross-
matching problems.
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class run estimated precision predicted spectra count
single-peak no. 1 4.1 % 343 988

no. 2 3.0 % 301 396
no. 3 4.0 % 167 545

double-peak no. 1 2.0 % 248 336
no. 2 2.0 % 409 908
no. 3 0.0 % 342 230

Table 3.3: The table shows results of three runs of passive learning, specifi-
cally the precision estimated from a random sample of 100 spectra from each
target class, and the numbers of spectra classified into each target class.

supernovae candidates, an unknown Wolf-Rayet star, and many Be stars
and young stellar objects. Moreover, through the visual preview of candi-
dates, several normal and Seyfert galaxies and a high-velocity star (LAMOST
HVS1) were also identified.

3.3.5 Comparison with passive learning
To clarify the real gain of active learning, we compare our active deep learning
method to a passive learning dual scenario. The passive learning can be
considered the zeroth iteration of our active deep learning method. However,
the zeroth iteration in our application is carried out in the accelerated regime.

We carried out an independent experiment to prove the benefits of active
learning. We trained our CNN using the setting of the long training with
the initial training set of our active deep learning method (the Ondřejov data
set), and we used the trained CNN to classify all the spectra in the LAMOST
pool. Then, we estimated precision of the CNN from random samples of 100
spectra from target classes. In order to make a more reliable conclusion, we
ran the experiment three times. The results are shown in Table 3.3.

The comparison of Table 3.2 and Table 3.3 shows that the three CNNs
were unable to learn without the support of spectra from the LAMOST pool
added to the training set by active learning. Therefore we conclude that the
gain of our active deep learning method is significant.
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Chapter 4

Method for Prediction of
Spectroscopic Redshift1

The second goal (see Section 1.2) was to to develop methods that allow us to
select samples with high predictive uncertainty. In Section 2.2, we identified
Monte Carlo (MC) dropout and deep ensembles as such candidate methods.
Here, we research the MC dropout on the task of prediction of spectroscopic
redshift, while in Chapter 5, we researched deep ensembles on the task of
prediction of atmospheric properties of exoplanets. Due to the advantages of
deep learning and provision of predictive uncertainties, deep learning models
obtained by these methods can be used for both the active deep learning and
consistency check (see Section 1.1).

4.1 Astronomical motivation
Quasars or quasi-stellar objects (QSOs) are the most luminous objects in
the universe, however, due to their enormous distances, they appear in the
optical telescope like faint stars. Their spectra were not understood well as
they were showing sets of unknown spectral lines. While analysing spectra
of object 3C 273, Schmidt (1963) realised that the strange QSO lines were in
fact Balmer emission lines shifted by a large offset to the much more redder
wavelengths. Ratio of this wavelength offset to the original laboratory wave-
length is called a (cosmological) redshift, as we believe that it is caused by
the global expansion of the universe. QSOs with high redshifts representing
very early stages of the cosmic history are important for studies of large-scale

1This chapter is based on O. Podsztavek, P. Škoda, and P. Tvrdík (2022). “Spectro-
scopic redshift determination with Bayesian convolutional networks”. In: Astronomy and
Computing. doi: 10.1016/j.ascom.2022.100615.

38

https://doi.org/10.1016/j.ascom.2022.100615


structure of the early universe (Hennawi and Prochaska 2007) and namely
the epoch of reionization (Becker et al. 2001). QSOs belong to the wider
class of active galactic nuclei (AGN) where the energy is produced by the
accretion onto the supermassive black hole and their different spectral line
shapes are explained by the unified model introduced by Urry and Padovani
(1995).

As shown above, the spectroscopic redshift of QSOs is a very important
parameter for cosmological studies and therefore huge efforts have been un-
dertaken to create catalogues of QSO redshifts measured in large surveys,
such as Sloan Digital Sky Survey (SDSS) and Large Sky Area Multi-Object
Fiber Spectroscopic Telescope (LAMOST). As there are millions of spectra
available in such surveys, automatic pipelines are used for this task, usually
based on a pattern matching (Glazebrook, Offer, and Deeley 1998) of a given
spectrum with a pixel-by-pixel shifted set of templates of various QSO classes
(Vanden Berk et al. 2001). This method is understood to be straightforward
and redshifts from such pipelines are often taken as a ground truth for train-
ing of various machine learning models like Kügler, K. Polsterer, and Hoecker
(2015) or Rastegarnia et al. (2022). Unfortunately, the similar structures of
emission lines of QSOs are repeated in multiple spectral ranges, and, namely
in case of noisy spectra, the best matching with template may be identified
at a completely different wavelength region, yielding severe errors in redshift
determination. As the amount of measurements is huge, the human may
visually inspect only a small subsample of results. To increase the reliability
of pipeline predictions, a Bayesian convolutional neural network (hereafter
Bayesian CNN) may be used for performing the consistency check (see Sec-
tion 1.1) of results and for identifying the incorrect values.

We illustrate the consistency check on the task of spectroscopic redshift
determination in the SDSS with a Bayesian CNN. All objects in SDSS cat-
alogues of QSOs up to data release (DR) 12 were visually inspected (Pâris
et al. 2017). However, since there are more than half a million QSOs in the
SDSS DR14 QSO catalogue (Pâris et al. 2018) and about three-quarters of
a million QSOs in the SDSS DR16 QSO catalogue (Lyke et al. 2020), only
a small subset of spectra is visually inspected, and thus astronomers have to
rely on automated methods. A standard method for spectroscopic redshift
determination is template fitting used by the SDSS pipeline (Bolton et al.
2012). The redshift of a spectrum is measured by comparing the spectrum
with all predefined templates at almost all pixels using χ2 minimisation. The
SDSS pipeline associates each measurement with a statistical error Z_ERR and
confidence flag ZWARNING. Methods based on principal component analysis
(PCA), such as the redvsblue algorithm (Mas des Bourboux 2021), are also
traditional. The redvsblue algorithm uses predefined templates of the SDSS
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pipeline and measures redshifts by fine-tuning previous redshift determina-
tions.

There were attempts to approach spectroscopic redshift determination by
predicting redshifts with CNNs. QuasarNET (Busca and Balland 2018) is
a CNN inspired by the You Only Look Once (YOLO) (Redmon and Farhadi
2017) system for object detection. The YOLO system is a CNN for classi-
fication and regression simultaneously. The CNN of YOLO can detect and
categorise an object in an image and draw a bounding box around the object.
Accordingly, QuasarNET is trained to localise and classify several spectral
lines in spectra. However, QuasarNET is outperformed by our proposed
Bayesian CNN. Stivaktakis et al. (2020) trained a CNN for classification to
predict redshift on simulated Euclid spectra. They formulated the redshift
prediction as a classification task by mapping real redshift values into bins.
However, the redshift prediction is a regression task, so we use a CNN for
regression. Moreover, we experiment with real SDSS spectra. D’Isanto and
K. L. Polsterer (2018) researched a probabilistic redshift prediction on pho-
tometric data with mixture density networks (MDNs) (Bishop 1994). MDNs
are neural network models (including CNNs) that produce a Gaussian mix-
ture model (GMM) as their output. GMMs represent predictive probability
density functions (PDFs) of photometric redshifts allowing us to get predic-
tive uncertainties. In this work, our approach to get predictive uncertainties
is different from this method because we use a Bayesian CNN. Bayesian CNNs
do not represent predictive distributions explicitly in the form of predictive
PDFs as MDNs. But we can still sample from the predictive distributions
and thus get predictive uncertainties.

4.2 SZNet: CNN for redshift prediction
The CNN for the redshift prediction is a modification of the VGG Net-A CNN
(Simonyan and Zisserman 2015). Hereafter we denote this CNN as SZNet,
where the letters “SZ” stand for spectroscopic redshift because astronomers
denote redshift z. The reason we chose VGG Net-A is because it belongs to
the family of VGG CNNs that achieved state-of-the-art results on the object
localisation (i.e. a kind of a regression) task and object classification task of
the the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014
(Russakovsky et al. 2015).

Since VGG CNNs are designed to process images with 3 RGB channels
but spectra have only 1 flux value for each pixel, SZNet is a reduced modifica-
tion of VGG Net-A by a factor of 8 = 23. For example, we reduced 212 = 4096
neurons or kernels to 212−3 = 29 = 512 neurons or kernels. Equally like VGG
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type of layer hyperparameters
convolutional 8 kernels
max pooling
convolutional 16 kernels
max pooling
convolutional 32 kernels
convolutional 32 kernels
max pooling
convolutional 64 kernels
convolutional 64 kernels
max pooling
convolutional 64 kernels
convolutional 64 kernels
max pooling
fully connected 512 neurons
fully connected 512 neurons
fully connected 1 neuron

Table 4.1: SZNet consists of 11 layers with model parameters (8 convolutional
and 3 fully connected layers) and 5 max pooling layers.

CNNs, SZNet is based on the principle of stacking convolutional layers with
small 3 pixels wide kernels. The stride hyperparameter of convolutional lay-
ers is 1 pixel, and the padding hyperparameter of convolutional layers is set
so that the input and output sizes are the same. It contains 5 max pooling
layers with 2 pixels wide filters that are moved by (i.e. their stride is) 2 pixels
each time. All convolutional and fully connected layers (excluding the last
layer) apply the ReLU non-linear activation function (see Subsection 2.1.1.
SZNet has 1 neuron in its last layer that produces a scalar value as the
redshift prediction. It is trained with the mean squared error (MSE) loss
LMSE(θ) defined by equation (2.1). Table 4.1 summarises the architecture of
SZNet.

To get Bayesian SZNet, SZNet has to use the L2 regularisation during
training, and dropout has to be applied to each layer with model parameters
θ (see Subsection 2.2.1). However, we applied dropout only to the first two
fully connected layers of SZNet as in the VGG Net-A. One can think of this
approach as first extracting a proper representation with the convolutional
and max pooling part and then feeding such a representation into a Bayesian
fully connected neural network (FCNN). Gal et al. (2017) used the same
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method to diagnose cancer with a VGG-like Bayesian CNN.
Following the guidelines by Goodfellow et al. (2016), we trained Bayesian

SZNet with the Adam optimiser in its default setting, i.e. learning rate η =
0.001, β1 = 0.9, and β2 = 0.999 (Kingma and Ba 2015). We stopped training
with the early stopping algorithm, i.e. if there is no improvement in the
mean continuous ranked probability score (CRPS) (see Section 2.3) during
the last 32 epochs. The number of 32 epochs is a trade-off between the
convergence speed and training time. At the end of the training of Bayesian
SZNet, we restored the best-found model parameters θ∗. The original batch
size (i.e. a hyperparameter of the training algorithm) in the training of VGG
CNNs was 256 images, so we kept the batch size of 256 spectra.

4.3 Experiments

4.3.1 SDSS QSO data
The SDSS DR12 QSO catalogue2 (hereafter DR12Q) (Pâris et al. 2017) is the
final catalogue of QSOs from the Baryon Oscillation Spectroscopic Survey
(BOSS) of SDSS-III. The catalogue is the result of a visual inspection of
546 856 QSO candidates, including stars and galaxies. The QSO candidates
are stored in the DR12Q superset (also denoted as the DR12Q parent sample)
together with redshifts from visual inspection and their confidences (columns
denoted as Z_VI and Z_CONF_PERSON respectively). The DR12Q superset
is suitable for machine learning because it provides redshifts from visual
inspection for almost all its spectra. We used as target values only the
redshifts from visual inspection Z_VI > −1 (Z_VI = −1 stands for redshifts
that do not have visual inspection available) with confidences Z_CONF_PERSON
= 3 (Z_CONF_PERSON ∈ {1, 2} stands for uncertain redshifts). Furthermore,
we excluded 65 corrupted spectra3 that have all flux values equal to zero
in their Flexible Image Transport System (FITS) files. We ended up with
523 331 spectra.

To evaluate the generalisation capability of Bayesian SZNet, we evaluated
the model not only on a separate test set from the DR12Q superset but also
on the superset of the SDSS DR16 QSO catalogue.4 The SDSS DR16 QSO
catalogue (hereafter DR16Q) (Lyke et al. 2020) is the final SDSS-IV QSO
catalogue of extended BOSS. Its superset (hereafter the DR16Q superset)

2https://sdss.org/dr12/algorithms/boss-dr12-quasar-catalog/
3We list the corrupted spectra in the dr12q_superset.err file on GitHub, at https:

//github.com/podondra/bayesian-redshift.
4https://sdss.org/dr16/algorithms/qso_catalog/
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contains 1 440 615 spectra. Due to its size, approximately only one third of
its spectra have redshifts from visual inspection. As FITS files of 42 spectra
are missing,5 we evaluated the generalisation capability of Bayesian SZNet
on 1 440 573 spectra from the DR16Q superset.6

We trained Bayesian SZNet on spectra from the DR12Q superset. Then,
we applied it to spectra from the DR16Q superset to illustrate its generali-
sation capability.

Data preparation consisted of pseudo-continuum normalisation, spectral
range cutting, and zero padding. We got each spectrum from individual
FITS files (named “optical spectra per-object lite files”) that are available
on the Science Archive Server (SAS) of SDSS.7 Figure 4.1 illustrates data
preparation on an example of an SDSS spectrum.

To do the pseudo-continuum normalisation, we applied the density of the
least squares (DLS) method8 in its simplest version (Bukvić et al. 2008).
Firstly, we standardised flux values to ensure numerical stability of the DLS
method:

x′
i =

xi − µ(xi)

σ(xi)
,

where the function µ returns the mean of an array, function σ returns the
standard deviation of an array, and x′

i is the standardised spectrum. With
the DLS method, we fit the third-order polynomial to flux values of each
spectrum using ordinary least squares (i.e. inverse variances of each flux
value were not used). We found the parameters of the DLS method through
experimentation. We set its exponent parameter k = 2 that additionally
simplifies the DLS method, and its removal parameter r = 0.9 that assures
both fast processing and good fit. We subtracted9 the continuum from the
standardised spectrum. This pseudo-continuum normalisation makes spectra
invariant to scale, intensities, and continuum shape, i.e. we focus mainly on
spectral lines. Moreover, it is more convenient to pad with zero spectra with
subtracted continuum.

5Missing spectra from the DR16Q superset are listed in the dr16q_superset.err file
on GitHub, at https://github.com/podondra/bayesian-redshift.

6The DR16Q superset spectra can be identified using the catalogue available on Zenodo,
at https://doi.org/10.5281/zenodo.5173824.

7Visit https://sdss.org/dr12/data_access/bulk/ for SDSS DR12 download in-
struction and https://sdss.org/dr16/data_access/bulk/ for SDSS DR16 download
instruction.

8The Julia implementation of the DLS method is available on GitHub, at https:
//github.com/podondra/DLSMethod.jl.

9The spectrum is not divided by the continuum as in methods of rectification commonly
employed in stellar astronomy.
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Spectrum after data preparation

Figure 4.1: The top plot shows an original SDSS spectrum. The bottom
plot displays the same spectrum after pseudo-continuum normalisation, cut
into the predefined wavelength coverage, and zero padding (visible on the
left side).
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After the pseudo-continuum normalisation, we cut each spectrum into the
logarithmic wavelength coverage 3.5832–3.9583 log Å (3830.01–9084.48 Å).10

We calculated it from the DR16Q superset wavelength coverage because it
has smaller wavelength coverage, and we want to show the generalisation
capability of the examined model. We selected the minimal wavelength to be
the 99.9 quantile of all minimal wavelengths (i.e. 3830.01 Å) and the maximal
wavelength to be the 0.01 quantile of all maximal wavelengths (i.e. 9084.48 Å)
in the DR16Q superset. The wavelength coverage 3.5832–3.9583 log Å covers
3752 flux values. We tried to maintain a wide wavelength coverage, but
still some parts of spectra were cut off. Therefore, models might not have
available those parts of spectra that led to a decision in the visual inspection.

Spectra that do not cover the full range of wavelengths are padded with
zero so that we can make predictions for all spectra. This padding introduces
a straight structure (see Figure 4.1) similar to straight structures of missing
flux values in SDSS spectra (see Figure 4.2). Therefore, zero padding also
indicates missing flux values.

Finally, we split the DR12Q superset spectra into training, validation, and
test sets.11 The DR12Q superset does not contain more spectra of a single
object, so a spectrum of an object used for training or validation cannot be in
the test set. With inspiration from the split sizes in ILSVRC (Russakovsky
et al. 2015), the sizes of the validation and test sets are 50 000 spectra each.
The remaining 423 331 spectra are left in the training set. Data preparation
resulted in matrices in which rows contain spectra and columns flux values
for corresponding wavelengths and target vectors with redshifts from visual
inspection.

4.3.2 Evaluation metrics and tools
The most common metric for an evaluation of redshift prediction methods is
the root-mean-squared error (RMSE):

RMSE({(yi, ŷi)}Ni=1) =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2,

10We choose wavelengths with logarithmic spacing because original SDSS spectra are in
logarithmic wavelengths.

11Lists of the DR12Q superset training, validation, and test spectra
are in the dr12q_superset_train.lst, dr12q_superset_valid.lst, and
dr12q_superset_test.lst files respectively on GitHub, at https://github.com/
podondra/bayesian-redshift.
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Figure 4.2: Example of SDSS spectrum with missing flux values
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where yi is a redshift from visual inspection (i.e. a target value) of spectrum
xi, ŷi is a redshift determination (i.e. prediction or measurement) from spec-
trum xi, and N is the size of the data set used for the metric computation.
The redshift determination is a regression task, so the RMSE is a natural
metric because the RMSE is the square root of the MSE loss LMSE(θ) without
the L2 regularisation λ∥θ∥2 defined by equation (2.1).

However, the RMSE evaluates only point estimates (e.g. predictive means
or deterministic predictions) and not predictive distributions themselves.
With Bayesian CNNs, we can sample from predictive distributions, so we
have to use proper scoring rules and tools to evaluate them (see Section 2.3).

One such proper scoring rule, introduced to probabilistic redshift predic-
tions by D’Isanto and K. L. Polsterer (2018), is CRPS introduced in Sec-
tion 2.3. With Bayesian CNNs, we cannot get true predictive CDFs, but
we can approximate them with empirical predictive CDFs (Hersbach 2000).
The CRPS values for individual spectra are usually aggregated and the mean
value is reported.12 Moreover, if predictions ŷi are deterministic, then the
mean CRPS equals the mean absolute error (MAE):

MAE({(yi, ŷi)}Ni=1) =
1

N

N∑
i=1

|ŷi − yi|.

Therefore, we can compare probabilistic and deterministic methods with the
mean CRPS.

Furthermore, we employ probability integral transform (PIT) histograms
(see Section 2.3) to evaluate the calibration of predictive distributions. We
again approximate true predictive CDFs with empirical predictive CDFs.

Different but related evaluation metric is coverage. Coverage is the ratio
of the number of spectra for which we accept the prediction of a Bayesian
CNN. Predictive uncertainties from a Bayesian CNN allow us to reject pre-
dictions with predictive uncertainties greater than a chosen threshold.

4.3.3 Evaluation on the DR12Q superset
Firstly, we had to determine values of the weight decay λ, dropout proba-
bility p, and number of samples T of Bayesian SZNet. We set T = 256 be-
cause it is large enough to produce consistent results. Then, we used a grid
search (a search over a finite set of values) to determine optimal values of
the weight decay λ and dropout probability p. Figure 4.3 presents the result

12We used the properscoring package available on GitHub, at https://github.com/
TheClimateCorporation/properscoring, to compute CRPS.
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Figure 4.3: Grid serch result of Bayesian SZNet for weight decay λ and
dropout probability p with 95% confidence intervals

of the grid search over weight decays λ ∈ {10−11, 10−10, 10−9, 10−8, 10−7} and
dropout probabilities p ∈ {0.1, 0.05, 0.01, 0.005, 0.001}. With each hyperpa-
rameter setting, we trained five Bayesian SZNets so that we could provide
95% confidence intervals. We determined optimal values according to the
mean CRPS evaluated on the DR12Q superset validation set so that we pre-
fer calibrated and sharp predictive distributions. The optimal value of weight
decay appeared to be λ = 10−9 because smaller values do not provide any
improvement while higher values are worse. We can extrapolate this to other
values of weight decay λ. However, results in terms of the mean CRPS are
inconclusive with respect to the optimal dropout probability p. Therefore, we
inspected PIT histograms in Figure 4.4. They indicate that Bayesian SZNet
with dropout probability p = 0.01 provides the most calibrated predictive
distributions. Therefore, we selected the best Bayesian SZNet out of the five
with dropout probability p = 0.01 trained with weight decay λ = 10−9 for
further evaluation.
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Figure 4.4: PIT histograms of Bayesian SZNet for different dropout proba-
bilities p with weight decay λ = 10−9
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Figure 4.5: Grid search result of Bayesian FCNN for weight decay λ and
dropout probability p with 95% confidence intervals

To have a simple machine learning baseline for reference, we separated the
fully connected part from Bayesian SZNet and used it as a Bayesian FCNN.
It was trained in the same way as Bayesian SZNet (see the description in
Section 4.2). We again used grid search to determine optimal weight decay
λ = 10−5 and optimal dropout probability p = 0.05 (see Figures 4.5 and 4.6).

Next, we evaluated Bayesian SZNet on the DR12Q superset test set. The
DR12Q superset test set was neither used to train Bayesian SZNet nor to
optimise its hyperparameters. To put the result of Bayesian SZNet into
a relevant context, we compare it with the Bayesian FCNN and 4 other
baselines. The first baseline is the SDSS pipeline that processed the DR12Q
superset (the Z_PIPE column in the DR12Q superset). The DR16Q superset
provides other 3 baselines. The second baseline is the SDSS pipeline that
processed the DR16Q superset (its measurements are in the Z_PIPE column
in the DR16Q superset). The third baseline is QuasarNET (its predictions
are in the Z_QN column in the DR16Q superset). The fourth baseline is
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Figure 4.6: PIT histograms of Bayesian FCNN for different dropout proba-
bilities p with weight decay λ = 10−5
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model RMSE mean CRPS
Bayesian SZNet 0.1083 0.0171
Bayesian FCNN 0.2106 0.0712
Z_PCA (DR16Q superset) 0.4118 0.0724
Z_PIPE (DR16Q superset) 0.4518 0.0830
Z_PIPE (DR12Q superset) 0.5002 0.0969
Z_QN (DR16Q superset) 1.1530 0.6812

Table 4.2: Evaluation on the DR12Q superset test set (the values in rows with
“DR16Q superset” in parentheses are computed from redshift determinations
cross-matched from the DR16Q superset)

the redvsblue algorithm (its measurements are in the Z_PCA column in the
DR16Q superset). We cross-matched the Z_PIPE, Z_QN, and Z_PCA columns
from the DR16Q superset to the DR12Q superset according to PLATE, MJD
and FIBERID identifiers that uniquely identify each SDSS spectrum. Because
of cross-matching, we can compare Bayesian SZNet with these three DR16Q
baselines. However, we could not cross-match 113 spectra, so we used only
a test set of 49 887 (out of 50 000) spectra.

Table 4.2 shows the evaluation on the DR12Q superset test set and
compares performance metrics of Bayesian SZNet and other baselines. The
two rows that evaluate measurements of pipelines differ because the SDSS
pipeline has changed between SDSS DR12 and DR16 (Lyke et al. 2020).
Bayesian SZNet is the best in both the RMSE and mean CRPS by a signifi-
cant margin.

4.3.4 Generalisation to the DR16Q superset
Evaluation of generalisation capability of Bayesian SZNet to the DR16Q su-
perset is not as straightforward as the evaluation on the DR12Q superset.
These two supersets have different distributions of observations, so we can-
not extrapolate the results from the DR12Q superset test set to the DR16Q
superset. Histograms in Figure 4.7 illustrate that the redshift distributions
differ between the two supersets. Not all spectra have the redshift from vi-
sual inspection in the DR16Q superset. Nonetheless, the DR16Q superset
contains a primary redshift (hereafter primary Z) that is the redshift from
visual inspection, if available, else it is the redshift of the SDSS pipeline. The
primary Z is in the column denoted Z, while the column denoted SOURCE_Z in-
dicates its source. The DR16Q superset contains more spectra with primary
Z ∈ [0, 2.15). Moreover, Bayesian SZNet was trained with the DR12Q super-
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Figure 4.7: Redshift histograms of the DR12Q and DR16Q supersets prove
the distribution discrepancy.

set training set, where the minimal and maximal redshifts are −0.008 and
5.216 respectively. Redshifts might be negative real numbers because of blue-
shifted sources, e.g. Andromeda (Marel and Guhathakurta 2008). However,
many spectra have primary Z > 5.216 in the DR16Q superset. Therefore,
we cannot state that the RMSE of Bayesian SZNet is 0.2106 in the DR16Q
superset since the DR12Q superset test set is not a random subsample of the
DR16Q superset.

We want Bayesian SZNet to generalise to spectra with correct redshifts
greater than 5.216. On the other hand, we expect Bayesian SZNet to provide
high predictive uncertainties for spectra with a high redshift. There are 3645
spectra with primary Z > 5.216 in the DR16Q superset. Only 32 of them
have the redshift from visual inspection, while the SDSS pipeline measured
the rest. According to Lyke et al. (2020), spectra with primary Z > 5 and
SOURCE_Z = PIPE should be considered suspect. Figure 4.8 displays a sample
spectrum with a high redshift measured by the SDSS pipeline (primary Z
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Figure 4.8: Example of a spectrum with a high primary Z = 5.230 measured
by the SDSS pipeline while Bayesian SZNet predicted ŷ = 0.38.

= 5.736). Bayesian SZNet is almost sure (s2 = 0.000016 is a relatively
low predictive variance confronted with the predictive variance distribution
in Figure 4.9) that the correct redshift of the spectrum is ŷ = 1.027. We
visually inspected the spectrum, and we confirmed that the prediction of
Bayesian SZNet is correct.

The only way to numerically estimate the performance of Bayesian SZNet
on the DR16Q superset is to use redshifts from the random visual inspection
of 10 000 spectra by Lyke et al. (2020). These redshifts are stored in the col-
umn denoted Z_10K in the DR16Q superset. Z_10K redshifts with their cor-
responding spectra constitute a subsample (hereafter the Z_10K subsample)
that was originally used to evaluate measurements of the SDSS pipeline. We
indeed found 10 000 spectra using the PIPE_CORR_10K column in the DR16Q
superset. However, 304 spectra from the Z_10K subsample have Z_10K red-
shifts either −999 or −1 (the value of −999 stands for potential blazars and
−1 is a missing value). We tried to annotate such spectra manually, but
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Figure 4.9: Histogram of predictive variances of Bayesian SZNet
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they were challenging to annotate. Therefore, we decided to exclude them
from the Z_10K subsample. Furthermore, we cross-matched spectra from
the Z_10K subsample and DR12Q superset training and validation sets using
TOPCAT (Taylor 2005) and the radius of 0.5′′. This ensures that objects in
the Z_10K subsample were used to neither train nor optimise hyperparame-
ters of Bayesian SZNet, and thus are unseen by it. We found 1 028 matching
spectra that we also had to exclude from the Z_10K subsample, so the Z_10K
subsample contains 8 668 spectra.

We base the performance estimation on these 8 668 spectra, i.e. we use the
Z_10K redshifts as target values. Table 4.3 summarises the results of Bayesian
SZNet and other baselines. Bayesian SZNet is the best concerning the RMSE.
The SDSS pipeline and redvsblue algorithm beat Bayesian SZNet in terms
of the mean CRPS. However, this is not a fair comparison because there is
a bias in Z_10K redshifts towards redshift measurements of the SDSS pipeline.
Namely, Z_10K redshifts were set to be the same as redshift measurements of
the SDSS pipeline (i.e. the Z_PIPE column) if the absolute value of velocity
difference |∆vi| of these two was less than or equal to 3 000 km s−1 (Lyke
et al. 2020). Velocity difference ∆vi is defined as:

∆vi = c · ŷi − yi
1 + yi

,

where c is the speed of light, ŷi is the redshift measurement of the SDSS
pipeline, and yi is the correct redshift. Otherwise, Z_10K redshifts are deter-
mined by visual inspection. Therefore, the performance of the SDSS pipeline
is overestimated. The same applies to Z_PCA because the redvsblue al-
gorithm fine-tunes redshift measurements of the SDSS pipeline. This also
explains why Bayesian SZNet is better in terms of the RMSE. The RMSE
is more sensitive to outliers than the mean CRPS. The mean CRPS is the
MAE for deterministic predictions (see Subsection 4.3.2). This corresponds
precisely to the way Z_10K redshifts were determined because it suppresses
minor errors (i.e. |∆vi| ≤ 3 000 km s−1), but it does not suppress outliers.
Additionally, we provide scatter plots comparing redshift determinations to
Z_10K redshifts in Appendix A.1. The scatter plots reveal that measurements
of the SDSS pipeline and redvsblue algorithm have more outliers than pre-
dictions of Bayesian SZNet. Finally, the PIT histogram for the Z_10K sub-
sample in Figure 4.10 shows that predictive distributions of Bayesian SZNet
are slightly biased and underdispersed.
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model RMSE mean CRPS
Bayesian SZNet 0.1894 0.0387
Z_PIPE 0.2289 0.0260
Z_PCA 0.2114 0.0245
Z_QN 0.5406 0.1584

Table 4.3: Generalisation evaluation on Z_10K redshifts of 8 668 spectra from
the random visual inspection of the DR16Q superset
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Figure 4.10: PIT histogram of Bayesian SZNet for the Z_10K subsample
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Figure 4.11: Impact of a predefined threshold of predictive variance on the
RMSE and mean CRPS in comparison to coverage

4.3.5 Utilisation of predictive uncertainties

Predictive variances associated with predictions are one of the main advan-
tages of Bayesian SZNet for the redshift prediction. We can use the predictive
variances to do thresholding. Firstly, we choose a threshold of the predictive
variance, and we refuse predictions with predictive variances greater than
the threshold. Therefore, we refuse uncertain predictions that are probably
incorrect. This will improve the performance of Bayesian SZNet, but the
coverage (see Subsection 4.3.2) will be lower. Figure 4.11 depicts depen-
dencies of the RMSE, mean CRPS, and coverage on a predefined threshold.
Table 4.4 expresses the same dependencies as Figure 4.11 for three levels of
coverage: 99, 95, and 90 %. These coverages mean to refuse predictions for
14 406, 72 029, and 144 058 spectra from the DR16Q superset respectively.
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coverage RMSE mean CRPS
99 % 0.1848 0.0389
95 % 0.1714 0.0334
90 % 0.1587 0.0293

Table 4.4: Comparison of the RMSE and mean CRPS for three levels of
coverage

4.3.6 Suitability of Bayesian SZNet for consistency check
We verified the performance of Bayesian SZNet, so we can advance to an
illustration of its suitability for the consistency check. For the illustration,
we selected two spectra with signal-to-noise ratios greater than 12 shown
in Figures 4.12 and 4.13. The threshold 12 of the signal-to-noise ratio is
substantiated by random visual inspection that revealed that spectral fea-
tures are difficult to identify in spectra with lower signal-to-noise ratios. We
converted observed wavelengths to rest-frame wavelengths using the correct
redshift verified by our visual inspection (marked in the legend by the word
“shown”). The legend of each spectrum displays its primary Z and its source,
the IS_QSO_FINAL flag that indicates QSOs that are in the DR16Q, its red-
shift ŷ predicted by Bayesian SZNet with its associated predictive variance
s2. The spectrum in Figure 4.12 is a missed QSO (IS_QSO_FINAL = 0) with
incorrect primary Z = 0.236. However, Bayesian SZNet predicts its redshift
correctly ŷ = 2.085 and is certain, i.e. it provides the small predictive variance
s2 = 0.000133. On the contrary, Figure 4.13 displays a spectrum of a star
that was incorrectly identified as a QSO (IS_QSO_FINAL = 1), probably be-
cause of emission lines. Bayesian SZNet predicted its redshift ŷ = 0.008,
which is slightly off the correct value but with a higher predictive variance
s2 = 0.001516.

The whole DR16Q superset can be examined using the catalogue pre-
sented in Appendix A.2. Further examples are shown in Appendix A.3.
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Chapter 5

Method for Prediction of
Atmospheric Properties of
Exoplanets1

As stated at the beginning of Chapter 4, we now move our attention to deep
ensembles (see Subsection 2.2.2). We research deep ensembles on the task
of predicting atmospheric properties of exoplanets. This research concerns
the second goal (see Section 1.2) on methods that allow us to select samples
with high predictive uncertainty.

5.1 Astronomical motivation
Exoplanets are planets that orbit stars other than our own Sun. The number
of confirmed exoplanets is growing exponentially thanks to dedicated ground-
and space-based missions, such as Wide Angle Search for Planets (WASP)
(Pollacco et al. 2006), Kepler (Borucki et al. 2010), or Transiting Exoplanet
Survey Satellite (TESS) (Ricker et al. 2015). The next task is characterising
these exoplanets, i.e. understanding their atmospheric composition, dynamics
and interior. This helps us understand how exoplanets evolve, how likely it is
to find an Earth-like planet, and the conditions for life to emerge. Answering
these questions is crucial to understanding our place in the universe.

Predicting atmospheric properties of exoplanets from astronomical spec-
tra is a computationally demanding task. Astronomers have traditionally re-
lied on statistical sampling methods such as nested sampling (Skilling 2006)

1This chapter is based on K. H. Yip et al. (2022b). “Lessons Learned from Ariel
Data Challenge 2022 – Inferring Physical Properties of Exoplanets From Next-Generation
Telescopes”. In: Proceedings of the NeurIPS 2022 Competitions Track.
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to approximate the distributions of different atmospheric properties, such
as the temperature of the planet or trace gas abundances (e.g. Madhusud-
han 2018). However, these methods, while precise, are not easily scalable to
large data sets, and there have only been a few population-level analyses on
the different classes of exoplanets (e.g. Sing et al. 2016; Barstow et al. 2017;
Tsiaras et al. 2018; Fisher and Heng 2018; Pinhas et al. 2019; Mansfield et al.
2021; Roudier et al. 2021; Changeat et al. 2022; Edwards et al. 2022). Atmo-
spheric Remote-Sensing Infrared Exoplanet Large-Survey (Ariel) launch in
2029 promises to provide thousands of high-quality spectra for a wide range
of exoplanets (Tinetti et al. 2021). Conventional sampling methods will soon
become a significant bottleneck to understanding planetary characteristics in
our local galactic neighbourhood (Yip et al. 2022a; Ardevol Martinez et al.
2022; Matchev et al. 2022). We need scalable methods to analyse thousands
of planets efficiently. The emergence of machine learning makes it possible
to analyse thousands or even millions of planets at scale within a reasonable
amount of time.

5.2 Ariel Data Challenge
Our method was developed to solve the Ariel Data Challenge 2022. The
Ariel Data Challenge is an annual challenge that seeks innovative solutions to
tackle pressing issues faced by the Ariel and exoplanet community. Each year,
the challenge focuses on a different issue involving the technical or scientific
aspects of the mission. A summary of the first challenge and its top-ranked
solutions can be found in Nikolaou et al. (2023). Ariel Data Challenge 2022
focused on innovative solutions to the problem of probabilistic prediction of
atmospheric properties of exoplanets.

5.2.1 Task
Specifically, the goal of the competition was to develop a method capable
of predicting 6 atmospheric properties of exoplanets given simulated spec-
tra from Ariel with corresponding auxiliary data comprising features of host
stars (their distance, mass, radius, and temperature) and exoplanets them-
selves (their mass, orbital period, distance, radius, and surface gravity). The
atmospheric properties to be predicted are relative molecular abundances of
five gases (namely H2O, CH4, CO2, CO, and NH3), and the mean atmo-
spheric temperature at the terminator of a planet (i.e. the line that separetes
day and night also known as the twilight zone). The exact target values
vary depending on the specific participation track chosen. The light track
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asked participants to submit their predictions for the 16th, 50th and 84th
percentile of each of the 6 properties. The regular track asked participants to
submit weighted samples from a predictive distribution of those properties.

5.2.2 Data
Each spectrum is generated following a 3-step approach. First, a planet
configuration is randomly selected from the catalogue of discovered planets.
Based on the configuration of the chosen planet, a randomly generated atmo-
spheric profile and trace gasses are produced. Second, the atmospheric mod-
elling software TauREx (Al-Refaie et al. 2021) produces a theoretical atmo-
spheric model of the exoplanet. Third, this model is processed by ArielRad
(Mugnai et al. 2020) to generate a realistic spectrum expected by Ariel. The
whole process is automatic via the software Alfnoor (Changeat et al. 2020;
Mugnai et al. 2021). More than 100 000 simulated Ariel spectra were gener-
ated for this competition.

Target distributions of atmospheric properties were generated for around
26 % (21 988) of the simulated spectra using the Bayesian nested sampling
method MultiNest (Feroz and Hobson 2008; Feroz et al. 2019). Thus, only
these samples are annotated, while the rest is unannotated. More details are
available in Changeat et al. (2022).

5.2.3 Scores
Submissions to the light track were evaluated based on squared relative er-
rors. Squared relative errors were calculated between the 16th, 50th, and
84th percentiles of target distributions and their predictions. The final light
score was calculated using the formula:
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(j)
i − a

(j)
i

a
(j)
i

)2

+

(
b̂
(j)
i − b

(j)
i

b
(j)
i

)2

+

(
ĉ
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where N is the size of the test set, i indexes exoplanets, j enumerates atmo-
spheric properties, and a

(j)
i , b(j)i , c(j)i are the 16th, 50th, 84th percentiles of

their target distributions.
Submissions to the regular track were evaluated using the Earth mover’s

distance, also called the 2-Wasserstein distance. The distance was calculated
between weighted samples from a predictive distribution and those generated
by the nested sampling from the corresponding target distribution. The final
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regular score was calculated using the formula:

1000

(
1− 1

N

N∑
i=1

EMDi

)
,

where EMDi denotes the Earth mover’s distance between those two weighted
sets of samples.

5.3 Method
Our method is based on deep ensembles (see Subsection 2.2.2). The deep en-
semble consists of M = 20 convolutional neural networks (CNNs). Therefore,
its output is a probability density function (PDF), a mixture of 20 equally
weighted normal distributions.2

The inputs of the CNNs are the spectra with corresponding auxiliary
data comprising all individual features. Standardisation is applied to both
spectra and auxiliary data. Each spectrum is standardised so that it has
zero mean and unit variance. This standardisation reduces differences in
the ranges of values of individual spectra. Therefore, CNNs can focus on
the shapes of spectra since the relative molecular abundance in atmospheres
determine them. Auxiliary data are standardised feature-wise, i.e. each aux-
iliary feature is subtracted by the mean and divided by standard deviation
of the training set. The training set includes all 21 988 annotated exoplanets
(i.e. spectra, auxiliary data, and annotations). The original annotations are
weighted samples from target distributions. Such annotations would make
the training of CNNs difficult. Therefore, the annotations are simplified to
be 6 normal distributions fitted to the weighted samples independently for
each atmospheric property.

Each CNN is a modification of the VGG Net-A CNN (Simonyan and
Zisserman 2015). It consists of a convolutional part (6 convolutional and 4
max pooling layers) and fully connected part (7 fully connected layers, each
with 1024 neurons). The convolutional part processed spectra; its output is
concatenated with auxiliary data into a vector processed by the fully con-
nected part. The activation function of all layers (except the last one) is the
rectified linear unit (ReLU) introduced in Subsection 2.1.1. The last layer
outputs 6 normal distributions, i.e. 6 means and 6 variances. The softplus
function (softplus(a) = log(1 + ea)) outputs these 6 variances, and a mini-
mal variance of 10−6 is added for numerical stability. All CNNs are trained

2The code underlying this work is available online on GitHub, at https://github.
com/podondra/ariel-data-challenge.
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rank team name light score
1 podondra 987.44
2 gators 987.26
3 user1 986.01
4 MonsieurSolver 985.56
5 Stefan_Stefanov 985.31
6 LeoPulga 984.36
7 jhawkins515 983.33
8 asweet 982.56
9 ls 980.87

10 yl 979.15

Table 5.1: Final light scores of top-10 ranking solutions

with Kullback–Leibler divergence as the loss function using Adam optimiser
(Kingma and Ba 2015) with a learning rate of 10−4 and batch size of 256.
These and other hyperparameters are optimised on a separate validation set
(20 % of the training set) using early stopping on the light score. However,
after optimising them, data from both training and validation sets are used
to train the final CNNs for 2048 epochs. This number of epochs ensures
sufficient convergence of CNNs.

The deep ensemble of 20 CNNs generates samples from the predicted
distributions: 250 samples are sampled from the 6 normal distributions out-
putted by each CNN. Therefore, there are 5000 samples in total for the
regular track. Then, the sample percentiles are computed for the light track.

5.4 Results
Our method described above won first place in the light track and third place
in the regular track. The final top-10 ranking solutions are listed in Table 5.1
for the light track and Table 5.2 for the regular track. Our solution is listed
under the team name “podondra”. These placings prove that it is a high-
performing method for prediction of atmospheric properties of exoplanets.
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rank team name regular score
1 gators 987.80
2 Stefan_Stefanov 987.26
3 podondra 987.25
4 LeoPulga 986.91
5 user1 984.26
6 asweet 984.01
7 MonsieurSolver 972.71
7 Weimin 967.35
9 yl 963.43

10 Ginqwerty 939.25

Table 5.2: Final regular scores of top-10 ranking solutions
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Chapter 6

Method for Automatic
Miscalibration Diagnosis1

Finally, the third goal (see Section 1.2) was to develop a method that can help
us identify problems with the reliability of predictive uncertainties. We have
an active deep learning method (see Chapter 3) and methods to associate
predictions with uncertainties (see Chapter 4 and Chapter 5). However,
how do we know that those predictive uncertainties (that we want to use to
select samples for annotation in active deep learning) are reliable? Assessing
the reliability of those predictive uncertainties is an essential task that we
address next. Here, by reliable, we mean probabilistically calibrated (see
Section 2.3). Moreover, we still focus on regression tasks as in Chapter 4
and Chapter 5. As concluded in Section 2.3, one should be able to diagnose
miscalibration by visually inspecting a probability integral transform (PIT)
histogram. However, understanding the cause of miscalibration from a PIT
histogram requires a lot of experience. Therefore, we present method to an
automatic interpretation of PIT histograms based on an interpreter trained
with a synthetic data set.

6.1 Method
To facilitate an interpretation of a PIT histogram, we propose to perform
a decomposition into a data-generating and a predictive distribution. These
distributions allow us to reconstruct a PIT histogram that is close to the
original PIT histogram. We achieve this decomposition using a machine

1This chapter is based on O. Podsztavek et al. (2024). “Automatic Miscalibration
Diagnosis: Interpreting Probability Integral Transform (PIT) Histograms”. In: ESANN
2024 proceedings.
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learning model called an interpreter. Because the PIT is translation- and
scale-invariant, an interpreter trained on a synthetic data set of PIT his-
tograms can interpret a given PIT histogram independently of the original
translation and scale of data-generating and predictive distribution pairs.
Given the PIT histogram of a predictive model and data set, its interpre-
tation allows us to diagnose miscalibration of the model by comparing the
estimated data-generating and predictive distribution.

6.1.1 Synthetic data set of PIT histograms
A synthetic data set has to be relevant to the particular application, i.e. rele-
vant to expected data-generating and predictive distributions. The synthetic
data set consists of P PIT histograms with B bins, each generated from N
pairs of data-generating and predictive distributions.

We generate the j-th PIT histogram, where j ∈ {1, . . . , P}, by first gen-
erating a set of PIT values, and then assigning these PIT values to the
predefined bins. Technically, that means choosing a pair of predictive and
data-generating CDFs (F (j)

i and G
(j)
i ) for each i ∈ {1, . . . , N}, sampling

a target value y
(j)
i from G

(j)
i , and computing F

(j)
i (y

(j)
i ). Then, we assign the

PIT values into B bins, and calculate the corresponding relative frequen-
cies, such that the area under the histogram integrates to 1 and is therefore
independent of N .

6.1.2 Interpreter
The input of the interpreter is a PIT histogram, and its output estimates the
data-generating distribution that led to the PIT histogram. In particular, be-
cause a mixture of normal distributions can approximate any data-generating
distribution if it has enough components, the interpreter is a mixture density
network (MDN) (Bishop 1994). To allow data-generating distributions of the
synthetic data set to be from any family of distributions, the interpreter is
trained with a Monte Carlo approximation to 1-Wasserstein distance between
true G

(j)
i and predicted Ĝ(j) data-generating CDFs:

1

P

P∑
j=1

1

N

N∑
i=1

K∑
k=1

|G(j)
i (ak)− Ĝ(j)(ak)|,

here a1 < . . . < aK are equally spaced real numbers, a1 and aK are chosen
according to the domain of the data-generating CDF G

(j)
i , and K is large

enough to get a sufficiently accurate approximation.
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6.2 Experiments
In probabilistic modelling, unimodal predictive distributions are often used
to model multimodal data-generating distributions (e.g. Lakshminarayanan
et al. 2017; Gal and Ghahramani 2016b). Therefore, we choose to exper-
iment with a simple synthetic data set based on the normal family. For
the j-th PIT histogram, every target value y

(j)
i is a random number from

a data-generation distribution G
(j)
i . For simplicity, we assume that G

(j)
i is

the same for all i. Specifically, G(j) is a mixture of two normal distribu-
tions, i.e. y(j)i takes a random value from N (−d(j)/2, t(j)) with probability
w(j) or N (d(j)/2, v(j)) with probability 1−w(j). By manipulating the param-
eters separation d(j), weight w(j), and variances t(j) and v(j), we can obtain
PIT histograms of predictive models that are calibrated, under- and overes-
timated, under- and overdispersed, or have an incorrect number of modes.
For simplicity, we fix the predictive distribution F

(j)
i to N (0, 1) for all i and

j. During our experiments, we observed that reconstructed PIT histograms
match the original PIT histograms. This is already possible with the current
choices of the fixed predictive distribution and the family of data-generating
distributions. We will experiment with further distributions from various
families with even more modes in the future.

In order to have a wide range of visually distinct PIT histograms in
the synthetic data set of the interpreter, we decided to 1. define separation
d(j) = 2(1 − a(j)a(j)), where a(j) is sampled from the continuous uniform
distribution U(0.1, 1), 2. define variances t(j) = 2b

(j) and v(j) = 2c
(j) , where

b(j) and c(j) are sampled from U(−2, 2), and 3. sample weight w(j) from
U(0, 1). Each generated PIT histogram has B = 20 bins containing a total
of N = 104 PIT values per histogram.

Our experimental interpreter has a single hidden layer with 16 neurons
and outputs a mixture of five normal distributions, which gives the interpreter
enough flexibility with respect to our experimental synthetic data set.2

6.2.1 Evaluation on a simple synthetic inverse problem
First, we present a simple synthetic inverse problem for which a bimodal
predictive distribution is adequate. The corresponding data set consists of
104 pairs of an input and target value (xi, yi), where xi = u′2

i , u′
i is sampled

from U(−1, 1), yi = u′
i +0.25ϵi, and ϵi is sampled from N (0, 1). We train on

it a density network (DN) (Nix and Weigend 1994) as a simple model with
a unimodal normal predictive distribution.

2For more details, see https://github.com/podondra/calibration.
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Figure 6.1: The PIT histogram (left) of a density network (DN) trained to
solve the simple synthetic inverse problem and its interpretation (right).

Figure 6.1 displays the PIT histogram of the DN and the interpretation
of the PIT histogram. The non-uniform PIT histogram reveals that the
DN is miscalibrated. The interpretation clearly shows that the cause of
miscalibration is that a unimodal predictive distribution is used to model
a bimodal data-generating distribution.

6.2.2 Evaluation on real-world data sets
We choose the Year Prediction MSD, Physicochemical Properties of Protein
Tertiary Structure, and Combined Cycle Power Plant (hereafter year, pro-
tein, and power respectively) data sets from University of California, Irvine
(UCI) Machine Learning Repository, because they are commonly used for the
evaluation of predictive uncertainties (e.g. Lakshminarayanan et al. 2017; Gal
and Ghahramani 2016b).

Figure 6.2 displays PIT histograms of DNs trained on the data sets and
their interpretations. In the case of the year data set, the PIT histogram of
the DN is not uniform, indicating miscalibration, and its cause is more easily
identified with the proposed decomposition. Our interpreter suggests that the
normal predictive distribution is insufficiently flexible in its shape to model
the data-generating distribution, and that it would be better to use a right-
skewed predictive distribution. On the protein data set, the decomposition
is similar to the one of the year data set. However, on the power data set,
we observe that the PIT histogram of the DN exhibits some noise but is
uniform. It is plausible that the data-generating distribution deviates only
slightly from a normal distribution.

Table 6.1 reiterates the well-known fact that dealing with causes of mis-
calibration leads to tangible improvements in the predictive performance.
We deal with the skewness by training MDNs that output mixtures of five
normal distributions for simplicity. In real applications, an appropriate sim-
ple predictive distribution inferred from the interpretation should be used,
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Figure 6.2: PIT histograms (left) of DNs trained on the data sets from UCI
Machine Learning Repository and interpretations of those PIT histograms
(right).
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data set model mean NLL mean CRPS
year DN 3.373 ± 0.003 4.322 ± 0.013

MDN 3.094 ± 0.002 4.040 ± 0.007
protein DN 2.805 ± 0.039 2.342 ± 0.025

MDN 2.086 ± 0.017 1.940 ± 0.019
power DN 2.795 ± 0.018 2.175 ± 0.030

MDN 2.673 ± 0.023 2.093 ± 0.042

Table 6.1: Comparison of models in terms of the mean NLL and mean CRPS

not a complex mixture of many distributions. We report the mean NLL and
mean CRPS as performance metrics, accompanied by standard errors that
are estimated from splitting the data sets into five train-test folds. The gap
in predictive performance between DNs and MDNs is large for the year and
protein data sets. This gap is mainly due to miscalibration when assuming
a symmetric predictive distribution. For the power data set, the gap is small
because both models are almost calibrated.
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Chapter 7

Conclusion

This dissertation aimed toward better active deep learning for the annotation
of large data sets with a particular focus on large data sets of astronomical
spectra. Its first goal was to verify that active deep learning is a suitable
set of methods for large data sets. Its second goal was to develop methods
that allow us to select samples with high predictive uncertainty. Predictive
uncertainties are essential for active deep learning to select a correct batch of
samples for annotation by humans. Its third goal was to develop a method
to help us identify problems with the reliability of predictive uncertainties.

Concerning the first goal, in Chapter 3, we have contributed a promis-
ing active deep learning method for the discovery of objects of interest in
large data sets of astronomical spectra. This method, supported by interac-
tive manual annotation of a small batch of predicted objects of interest, is
very efficient and has led to the discovery of many new unknown stars with
special physical properties. To the best of our knowledge, this was the first
application of an active deep learning method to astronomical spectral clas-
sification. The main advantage of the method is that the objects of interest
with characteristic features can be identified in cases where classical deep
learning methods fail because a sufficiently large training set is not available.
Our experiments identified many candidates that deserve more detailed ex-
amination because they may be rare astronomical objects with interesting
physical properties.

Concerning the second goal, in Chapter 4, we developed a method based
on Monte Carlo (MC) dropout that also quantifies predictive uncertainties on
the spectroscopic redshift prediction task. Experiments confirmed that it can
be well applied to the spectroscopic redshift prediction. It beats other base-
lines and generalises well. We can improve its performance further by thresh-
olding, i.e. ignoring uncertain predictions. We also illustrated the consistency
check and found several unrecognised or incorrectly identified quasi-stellar
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objects (QSOs). A limitation of this work is that we only estimate predictive
means and predictive variances of predictive distributions. A more sophisti-
cated way would be to fit Gaussian mixture models (GMMs) to samples from
predictive distributions. This would better account for multimodalities, but
we leave this for future research.

Moreover, in Chapter 5, we designed a method based on a deep ensemble
that predicts the atmospheric properties of exoplanets and also quantifies the
uncertainties of these predictions. The method was one of the winning solu-
tions of the Ariel Data Challenge 2022 competition, proving its performance.
This method overcomes the limitation of the method based on MC dropout
as it outputs GMMs that better account for multimodalities.

Concerning the third goal, in Chapter 6, we proposed a method that
yields plots that essentially contain the same information as other tools for
assessing the reliability of predictive uncertainties but in a form that makes
problems with their reliability more obvious. By dealing with those problems,
we get more reliable models. In turn, the overall performance of these models
is superior in terms of other scalar scores.

All these contributions lead to better active deep learning. What remains
is to integrate these methods and apply their integration to some large data
sets of astronomical spectra. We leave this for the future work of some
astronomers interested in discovering objects of interest, etc.

We took astronomy as an exemplary domain with a lot of data. The
active deep learning method is developed for discovery in large data sets
of astronomical spectra. Also, both methods for probabilistic prediction of
spectroscopic redshift and atmospheric properties of exoplanets are tailored
to astronomical spectra. However, the principles behind these methods can
be generalised to any other domain with large data sets. On the other hand,
the method for automatic miscalibration diagnoses is general to probabilistic
models that produce predictive probabilistic distributions.
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Appendix A

Method for Prediction of
Spectroscopic Redshift

A.1 Scatter plots of redshifts
Figure A.1 compares spectroscopic redshifts determined by Bayesian SZNet,
SDSS pipeline, redvsblue algorithm, and QuasarNET to Z_10K redshifts.
In the case of ideal determinations, all points should be on a diagonal line.
However, all methods exhibit a kind of systematic errors, i.e. the lines with
different angles, which reveal that spectral lines were misidentified. Bayesian
SZNet systematically predicts ẑ = 0 for non-zero Z_10K redshifts less than
2. The SDSS pipeline (Z_PIPE) problem is that it systematically measures
higher redshifts for some spectra. The redvsblue algorithm (Z_PCA) per-
forms similarly to the SDSS pipeline because the algorithm fine-tunes its
measurements. Lastly, QuasarNET (Z_QN) systematically predicts stars to
have non-zero redshifts and predicts poorly Z_10K redshifts less than 2.

A.2 Redshift predictions catalogue
We provide the dr16q_superset_redshift.csv catalogue with redshifts
from Bayesian SZNet on Zenodo, at https://doi.org/10.5281/zenodo.
5173824. It lists 1 440 573 redshift predictions for DR16Q superset spectra
by Bayesian SZNet in the z_pred column with their associated predictive
variances in the variance column. Furthermore, we provide all 256 sam-
pled redshift predictions in z_pred_1–z_pred_256 columns. Other columns
are from the DR16Q superset, where lowercase column names correspond to
uppercase column names in the DR16Q superset (e.g. the is_qso_final col-
umn equals the IS_QSO_FINAL column in the DR16Q superset). All columns
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Figure A.1: Scatter plots comparing four different redshift determinations to
Z_10K redshifts
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column no. name description
1 plate spectroscopic plate number 
2 mjd modified Julian day of the spec-

troscopic observation
3 fiberid fibre identification number
4 z_pred redshift from Bayesian SZNet
5 variance predictive variance associated

with redshift from Bayesian
SZNet

6 z primary redshift
7 source_z origin of the reported redshift in

the z column
8 is_qso_final flag indicating QSOs included in

the DR16Q
9 z_vi redshift from visual inspection
10 z_pipe redshift from the SDSS pipeline
11 zwarning quality flag on the redshift from

the SDSS pipeline
12 z_dr12q redshift from the DR12Q visual

inspection
13 z_dr7q_sch redshift from the SDSS DR7 QSO

catalogue (Schneider et al. 2010)
14 z_dr6q_hw redshift from the SDSS DR6

QSO catalogue (Hewett and Wild
2010)

15 z_10k redshift from the Z_10K subsam-
ple

16 z_pca redshift from the redvsblue algo-
rithm

17 z_qn redshift from QuasarNET
18–273 z_pred_1–z_pred_256 sampled redshifts from Bayesian

SZNet

Table A.1: Description of columns in dr16q_superset_redshift.csv cata-
logue

89



800 1000 1200 1400 1600 1800 2000 2200 2400

Rest-frame wavelength [Å]
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Figure A.2: Spectrum of QSO missed by DR16Q with incorrect redshift
measurement of SDSS pipeline
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Figure A.3: Spectrum of QSO with incorrect redshift measurement of SDSS
pipeline

are described in Table A.1. The catalogue is in the comma-separated values
(CSV) format and is sorted according to the variance column so that the
most certain predictions are at the top.

A.3 Consistency check examples
Figures A.2–A.6 show spectra of QSOs with incorrect primary Z. Moreover,
three of them are not included in the DR16Q (IS_QSO_FINAL = 0) while they
are QSOs. The SDSS pipeline measured the spectra in Figures A.2–A.5 to
have an incorrectly low redshift, while the spectrum in Figure A.6 to have
an incorrectly high redshift.

Figures A.7–A.9 display stars with incorrect primary Z. Figure A.9 shows
a spectrum that exhibits emission features which might confuse the SDSS
pipeline.

Finally, spectra in Figures A.10 and A.11 illustrate incorrect redshift pre-
dictions that Bayesian SZNet has made. However, the redshift prediction in
Figure A.10 has a high predictive variance s2 = 0.009961. Figure A.11 dis-
plays a spectrum with missing flux values that probably caused the incorrect
redshift prediction.
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Figure A.4: Spectrum of QSO missed by DR16Q with incorrect redshift
measurement of SDSS pipeline
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Figure A.5: Spectrum of QSO missed by DR16Q with incorrect redshift
measurement of SDSS pipeline
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Figure A.6: Spectrum of QSO with incorrect redshift measurement of SDSS
pipeline
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Figure A.7: Spectrum of star with incorrect redshift measurement of SDSS
pipeline
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Figure A.8: Spectrum of star with incorrect redshift measurement of SDSS
pipeline
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Figure A.9: Spectrum of star with incorrect redshift measurement of SDSS
pipeline

4000 5000 6000 7000 8000

Rest-frame wavelength [Å]
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Figure A.10: Incorrect redshift prediction of Bayesian SZNet, but with high
predictive variance s2 = 0.009961
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Figure A.11: Incorrect redshift prediction of Bayesian SZNet is probably
caused by missing flux values
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