
PyQML

Hands-On Quantum Machine
Learning With Python
Volume 1: Get Started

Dr. Frank Zickert



Copyright © 2021 Dr. Frank Zickert

PUBLISHED BY PYQML

www.pyqml.com

The contents of this book, unless otherwise indicated, are Copyright © 2021
Dr. Frank Zickert, pyqml.com. All rights reserved. Books like this aremade
possible by the time invested by the authors. If you received this book and
did not purchase it, please consider making future books possible by buying
a copy at https://www.pyqml.com today.

Release 1.0,May 2021



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Who This Book Is For . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Book Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Why Should I Bother With QuantumMachine Learning? . . . . . . . . . 10

1.4 QuantumMachine Learning ‐ Beyond The Hype . . . . . . . . . . . . . . . . . 11
1.4.1 What is Machine Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 What is Quantum Computing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 How Does Machine Learning Work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.4 What Tasks Are Quantum Computers Good At? . . . . . . . . . . . . . . . . . . . . . . 16
1.4.5 The Case For QuantumMachine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 QuantumMachine Learning In The NISQ Era . . . . . . . . . . . . . . . . . . . . 19

1.6 I learned QuantumMachine Learning The Hard Way . . . . . . . . . . . . . 21

1.7 QuantumMachine Learning Is Taught The Wrong Way . . . . . . . . . . 24

1.8 Configuring Your QuantumMachine Learning Workstation . . . . . . 26
1.8.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.8.2 Jupyter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.8.3 Libraries and Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.8.4 Virtual Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.8.5 Configuring Ubuntu For QuantumMachine Learning with Python . . . . . . 28
1.8.6 How To Setup JupyterLab For Quantum Computing ‐‐‐ On Windows . . . . . 30



2 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Predicting Survival On The Titanic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Get the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Look at the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Data Preparation and Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.1 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.3 Handling Text and Categorical Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.4 Feature Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.5 Training and Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Classifier Evaluation and Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Unmask the Hypocrite Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Qubit and Quantum States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Exploring the Quantum States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Visual Exploration Of The Qubit State . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Bypassing The Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Exploring The Observer Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Parameterized Quantum Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Variational Hybrid Quantum‐Classical Algorithm . . . . . . . . . . . . . . . 89

4 Probabilistic Binary Classifier . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1 Towards Naïve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Bayes' Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Gaussian Naïve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Working with Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1 You Don't Need To Be A Mathematician . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Quantumic Math ‐ Are You Ready For The Red Pill? . . . . . . . . . . . . 124

5.3 If You Want To Gamble With Quantum Computing… . . . . . . . . . . . . 134

6 Working With Multiple Qubits . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1 Hands‐On Introduction To Quantum Entanglement . . . . . . . . . . . . 147



6.2 The Equation Einstein Could Not Believe . . . . . . . . . . . . . . . . . . . . . . 159
6.2.1 Single Qubit Superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.2.2 Quantum Transformation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.2.3 Transforming Single Qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.4 Two‐Qubit States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.5 Two‐Qubit Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2.6 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.3 Quantum Programming For Non‐mathematicians . . . . . . . . . . . . . . 173
6.3.1 Representing a marginal probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3.2 Calculate the joint probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.3 Calculate the conditional probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7 Quantum Naïve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.1 Pre‐processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.2 PQC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.3 Post‐Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8 Quantum Computing Is Different . . . . . . . . . . . . . . . . . . . . . 225

8.1 The No‐Cloning Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.2 How To Solve A Problem With Quantum Computing . . . . . . . . . . . . 231

8.3 The Quantum Oracle Demystified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

9 Quantum Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . 253

9.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

9.2 Composing Quantum Computing Controls . . . . . . . . . . . . . . . . . . . . . 259

9.3 Circuit implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

10 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

10.1 Learning Hidden Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

10.2 Estimating A Single Data Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

10.3 Estimating A Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

10.4 Predict Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

11 The World Is Not A Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

11.1 The Qubit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320



6

11.2 Visualize The Invisible Qubit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
11.2.1 The Z‐gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
11.2.2 Multi‐Qubit Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
11.2.3 Controlled Z‐gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

11.3 Phase Kickback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

11.4 Quantum Amplitudes and Probabilities . . . . . . . . . . . . . . . . . . . . . . . 364

12 Working With The Qubit Phase . . . . . . . . . . . . . . . . . . . . . . . . 371

12.1 The Intuition Of Grover's Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 372

12.2 Basic Amplitude Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

12.3 Two‐Qubit Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

13 Search For The Relatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

13.1 Turning the Problem into a Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

13.2 Multiple Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

14 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

14.1 Forward Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

14.2 Bayesian Rejection Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

14.3 Quantum Rejection Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

15 What's Next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434



1. Introduction

WelcometoHands-OnQuantumMachineLearningWithPython. Thisbook
is your comprehensiveguide toget startedwith“QuantumMachineLearning”
– the use of quantum computing for the computation of machine learning
algorithms.

Hands-On Quantum Machine Learning With Python strives to be the per-
fect balance between theory taught in a textbook and the actual hands-on
knowledge you’ll need to implement real-world solutions.

Inside this book, you will learn the basics of quantum computing and ma-
chine learning in a practical and applied manner. And you will learn to use
state-of-the-art quantummachine learning algorithms.

By the time you finish this book, you’ll be well equipped to apply quantum
machine learning to your projects. Then, you will be in the pole position to
become a “QuantumMachine Learning Engineer” – the job to become the sexi-
est job of the 2020s.

1.1 Who This Book Is For
This book is for developers, programmers, students, and researcherswho
have at least some programming experience and want to become proficient
in quantummachine learning.

Don’t worry if you’re just getting started with quantum computing and ma-
chine learning. We will begin with the basics, and we don’t assume prior



8 Chapter 1. Introduction

knowledge of machine learning or quantum computing. So you will not get
left behind.

If you have experience in machine learning or quantum computing, the re-
spective parts may repeat concepts you’re already familiar with. However,
this may make learning the corresponding new topic easier and provide a
slightly different angle to the known.

This book offers a practical, hands-on exploration of quantum machine
learning. Rather thanworking through tons of theory,wewill build upprac-
tical intuition about the core concepts. Wewill acquire the exact knowledge
we need to solve practical examples with lots of code. Step by step, you will
extend your knowledge and learn how to solve new problems.

Of course, we will do some math. Of course, we will cover a little physics.
But I don’t expect you to hold a degree in any of these two fields. We will
go through all the concepts we need. While this includes some mathemati-
cal notation and formulae, we keep it at the minimum required to solve our
practical problems.

The theoretical foundation of quantummachine learning may appear over-
whelming at first sight. But, be assured that it is not harder than learning a
newprogramming languagewhenput into theproper context and explained
conceptually. And this is what’s insideHands-OnQuantumMachine Learn-
ingWithPython.

Of course, we will write code. A lot of code. Do you know a little Python?
Great! If you don’t know Python but another language, such as Java,
Javascript, or PHP, you’ll be fine, too. If you know programming concepts
(such as if-then else-constructs and loops), then learning the syntax is a piece
of cake. If you’re familiar with functional programming constructs, such as
map, filter, and reduce, you’re alreadywell equipped. If not, don’tworry. We
will get you startedwith these constructs, too. Wedon’t expect you to be a se-
nior software developer. Wewill go through all the source code—line by line.

By the time you finish the first few chapters of this book, you will be profi-
cient with doing themath, understanding the physics, andwriting the code
you need to graduate to themore advanced content.

This book is not just for beginners. There is a lot of advanced content inhere,
too. Many chapters of Hands-OnQuantumMachineLearningWithPython
cover, explain, and apply quantummachine learning algorithms developed
in the last two years. You can directly apply the insights this book provides
in your job and research. The time you save by reading through Hands-On
QuantumMachine LearningWith Pythonwillmore than pay for itself.



1.2 Book Organization 9

1.2 Book Organization
Machine learning and quantum computing rely onmath, statistics, physics,
and computer science. This is a lot of theory. Covering it all upfront would
be pretty exhaustive and fill at least one bookwithout any practical insight.

However, without understanding the underlying theoretical concepts, the
code examples on their own do not provide many practical insights, either.
While libraries free you from tedious implementation details, the code, even
though short, does not explain the core concepts.

This book provides the theory needed to understand the code we’re writing
to solve a problem. For one thing, we cover the theory when it applies, and
weneed it to understand the backgroundofwhatwe are doing. Secondly,we
will embed the theory into solving a practical problem and directly see it in
action.

As a result, the theory spreads among all the chapters, from simple to com-
plex. You may skip individual examples if you like. But you should have a
look at the theoretical concepts discussed in each chapter.

We start with a Variational Hybrid Quantum-Classical Algorithm to solve a
binary classification task. First, we have a detailed look at binary classifica-
tion in chapter 2. Then, in chapter 3, we introduce the basic concept of the
quantum bit, the quantum state, and howmeasurement affects it. Based on
these concepts, we build our first Parameterized QuantumCircuit and use it
to solve our binary classification task. Such ahybrid algorithmcombines the
quantum state preparation andmeasurementwith classical optimization.

Then, we learn how to work with single qubits (chapter 5) and with multi-
ple qubits (chapter 6). Andwe explore the astonishing phenomenon of quan-
tum entanglement. This serves as our basis to develop a Quantum Naïve
Bayes classifier (chapter 7). In chapter 8,we dive deep into the specificities of
how quantum computing is different from classical computing and how we
solve problems the quantumway. It enables us to create and train a quantum
Bayesian network (chapter 9).

By now, you’ll be experienced in dealing with the probabilistic nature of
qubits. It’s time to take it one step further. We learn about the qubit phase
(chapter 11) and how we can use it to tap the potential of quantum systems
(chapter 12). We use it to search the relatives of a passenger on board the Ti-
tanic (chapter 13) and approximate a variable’s distribution in our quantum
Bayesian network. (chapter 14).

You can find the complete source code of this book this Github repository.

https://github.com/quantum-machine-learning/Hands-On-Quantum-Machine-Learning-With-Python-Vol-1


10 Chapter 1. Introduction

1.3 Why Should I Bother With Quantum
Machine Learning?
In the recent past, we have witnessed how algorithms learned to drive cars
and beat world champions in chess and Go. Machine learning is being ap-
plied to virtually every imaginable sector, frommilitary to aerospace, from
agriculture tomanufacturing, and fromfinance to healthcare.

But these algorithms become increasingly hard to train because they consist
of billions of parameters. Quantum computers promise to solve such prob-
lems intractable with current computing technologies. Moreover, their abil-
ity to compute multiple states simultaneously enables them to perform an
indefinite number of superposed tasks in parallel. An ability that promises
to improve and to expeditemachine learning techniques.

Unlike classical computers based on sequential information processing,
quantum computing uses the properties of quantumphysics: superposition,
entanglement, and interference. But rather than increasing the available
computing capacity, it reduces the capacity needed to solve a problem.

But quantum computing requires us to change the way we think about com-
puters. It requires a whole new set of algorithms. Algorithms that encode
and use quantum information. This includesmachine learning algorithms.

And it requires anewsetofdevelopers. Developerswhounderstandmachine
learning and quantum computing. Developers capable of solving practical
problems that have not been solved before. A rare type of developer. The
ability to solve quantum machine learning problems already sets you apart
from all the others.

Quantummachine learningpromises tobedisruptive. Although thismerger
of machine learning and quantum computing, both areas of active research,
is largely in theconceptualdomain, therearealreadysomeexampleswhere it
is being applied to solve real-life problems. Google, Amazon, IBM,Microsoft,
and a whole fleet of high-tech startups strive to be the first to build and sell
quantummachine learning systems.

The opportunity to study a technology right when it is about to prove its
supremacy is a unique opportunity. Don’tmiss it.



1.4 QuantumMachine Learning ‐ Beyond The Hype 11

1.4 Quantum Machine Learning -
Beyond The Hype
If there were two terms in computer science that I would describe as overly
hypedandpoorlyunderstood, Iwouldsaymachine learningandquantumcom-
puting.

QuantumMachineLearning is the use of quantum computing for the compu-
tation ofmachine learning algorithms. Could it be anyworse?

Figure 1.1: Which future will it be?

There are many anecdotes on these two technologies. They start at ma-
chines that understand the natural language of us humans. And they end at
the advent of the Artificial General Intelligence that either manifests as the
Terminator-like apocalypse or theWall-E-like utopia.

Don’t fall for the hype! An unbiased and detailed look at a technology helps
not to fall for the hype and the folklore. Let’s start withmachine learning.

1.4.1 What is Machine Learning?
“Machine learning is a thing-labeler, essentially.” – Cassie Kozyrkov, Chief
Decision Scientist at Google, source –

Withmachine learning,we aim toput a label onto a yet unlabeled thing. And

https://www.linkedin.com/pulse/simplest-explanation-machine-learning-youll-ever-read-cassie-kozyrkov


12 Chapter 1. Introduction

there are threemainways of doing it: classification, regression, and segmen-
tation.

In classification,we try topredict thediscrete label of an instance. Given the
input and a set of possible labels, which one is it? Here’s a picture. Is it a cat
or a dog?

Figure 1.2: Is it a cat or a dog?

Regression is about finding a function to predict the relationship between
some input and the dependent continuous output value.

e f
fe
ct
iv
e
ta
x
ra
te

gross income

?

Figure 1.3: Effective tax rate by gross income



1.4 QuantumMachine Learning ‐ Beyond The Hype 13

For example, given that you know your friends’ income and the effective tax
rates, can you estimate your tax rate given your income even though you
don’t know the actual calculation?

And segmentation is the process of partitioning the population into groups
with similar characteristics,whichare thus likely toexhibit similarbehavior.
Given that you produce an expensive product, such as yachts, and a popula-
tion of potential customers, whomdo youwant to try to sell to?

cu
rr
en

tw
ea

lth

gross income

?

Our customers

Figure 1.4: Customer Segmentation

1.4.2 What is Quantum Computing?
Quantum computing is a different form of computation. It uses three fun-
damental properties of quantum physics: superposition, interference, and
entanglement.

Superposition refers to thequantumphenomenonwhere aquantumsystem
can exist inmultiple states concurrently.

! The quantum system does not exist in multiple states concur-
rently. It exists in a complex linear combination of a state 0 and
a state 1. It is a different kind of combination that is neither ”or”
nor is it ”and.”Wewill explore this state in-depth in this book.



14 Chapter 1. Introduction

Figure 1.5: The quantum superposition

Quantum interference is what allows us to bias quantum systems toward
the desired state. The idea is to create a pattern of interference where the
paths leading to wrong answers interfere destructively and cancel out, but
the paths leading to the correct answer reinforce each other.

Interfering waves

resulting wave

Figure 1.6: Interference of waves

Entanglement is an extremely strong correlation between quantum parti-
cles. Entangled particles remain perfectly correlated even if separated by
great distances.



1.4 QuantumMachine Learning ‐ Beyond The Hype 15

Figure 1.7: Entanglement

Doyou see theTerminator already? No?MaybeWall-E?No again?

Maybe it helps to look at how these thingswork.

1.4.3 How Does Machine Learning Work?
There are myriads of machine learning algorithms out there. But every one
of these algorithms has three components:

• The representation depicts the inner architecture the algorithm uses
to represent the knowledge. Itmay consist of rules, instances, decision
trees, support vectormachines, neural networks, and others.
• The evaluation is a function to evaluate candidate algorithm parame-
terizations. Examples include accuracy, prediction and recall, squared
error, posterior probability, cost,margin, entropy, and others.
• The optimization describes theway of generating candidate algorithm
parameterizations. It is known as the search process – for instance,
combinatorial optimization, convex optimization, and constrained op-
timization.

Thefirst stepofmachine learning is thedevelopmentof the architecture, the
representation. Thearchitecture specifies theparameterswhosevalueshold
the representation of the knowledge. This step determines how suited the
solution will be to solve a specific problem. More parameters are not always
better. Forexample, if a linear functioncansolveourproblem, tryingtosolve
it with a solution that consists of millions of parameters is likely to fail. On



16 Chapter 1. Introduction

theotherhand, anarchitecturewithvery fewparametersmaybe insufficient
to solve complex problems such as natural language understanding.

Representation

Evaluation

Optimization

Try

Improve

Develop

Measure

Figure 1.8: A generalized notion of machine learning

Oncewe settled for the architecture to represent theknowledge,we trainour
machine learningalgorithmwithexamples. Dependingon thenumberofpa-
rameters, we need many examples. Next, the algorithm tries to predict the
label of each instance. Finally, we use the evaluation function to measure
howwell the algorithmperformed.

The optimizer adjusts the representation to parameters that promise bet-
ter performance concerning the measured evaluation. It may even involve
changing the architecture of the representation.

Learning does not happen in giant leaps. Instead, it takes tiny steps. To yield
agoodperformanceanddependingonthecomplexityof theproblem, it takes
several iterations of this general process until the machine can put the cor-
rect label on a thing.

1.4.4 What Tasks Are Quantum Computers
Good At?
Theworldofquantummechanics is different fromthephysicsweexperience
in our everyday situations. So is the world of quantum computing different
from classical (digital) computing.

Whatmakes quantum computing so powerful isn’t its processing speed. It is
rather slow. Whatmakes quantum computing so powerful isn’t its memory,



1.4 QuantumMachine Learning ‐ Beyond The Hype 17

either. It is absurdly tiny. We’re talking about a few quantumbits.

Whatmakes quantumcomputing so powerful is the algorithms itmakes pos-
sible because these algorithms exhibit different complexity characteristics
than their classical equivalents. To understand what that means, let’s have
a brief look at complexity theory. Complexity theory is the study of the com-
putational effort required to run an algorithm.

For instance, the computational effort of addition is O(n). This means that
the effort of adding two numbers increases linearly with the size (digits) of
the number. The computational effort of multiplication is O(n2). The effort
increases by the square of the number size. These algorithms are said to be
solvable in polynomial time.

But these problems are comparably simple. For example, the best algorithm
solving the problem of factorization, finding the prime factors of an n-digit
number, isO(en1/3). Itmeans that the effort increases exponentiallywith the
number of digits.

Co
m
pl
ex
ity

Problem size

√
n

n

f(
n)

n

n22n

Figure 1.9: Graphs of common complexity functions

The difference between O(n2) and O(en1/3) complexity must not be underes-
timated. While your smartphone canmultiply numbers with 800 digits in a
few seconds, the factorization of such numbers takes about 2,000 years on a
supercomputer.

A proper quantum algorithm (such as Shor’s algorithm) can use superposi-
tion to evaluate all possible factors of a number simultaneously. And rather
than calculating the result, it uses interference to combine all possible an-



18 Chapter 1. Introduction

swers in away that yields a correct answer. This algorithm solves a factoriza-
tion problemwith O

(
(logn)2(log logn)(log loglogn)

)
complexity. This is a poly-

nomial complexity! So ismultiplication.

Quantumcomputing is powerful because it promises to solve certain types of
mathematical calculationswith reduced complexity.

Doyou see theTerminator orWall-E now? Not yet?

1.4.5 The Case For Quantum Machine Learning
Quantummachine learning is the use of quantum computing for the compu-
tation ofmachine learning algorithms.

We have learned that machine learning algorithms contain three compo-
nents: representation, evaluation, and optimization.

When we look at the representation, current machine learning algorithms,
such as the Generative Pre-trained Transformer 3 (GPT-3) network, pub-
lished in 2020, come to mind. GPT-3 produces human-like text, but it has
175 billion parameters. In comparison, the IBM Q quantum computer has
27 quantum bits, only. Thus, even though quantum bits store a lot more in-
formation than a classical bit does (because it is not either 0 or 1), quantum
computers are far away fromadvancingmachine learning for their represen-
tation ability.

During the evaluation, the machine learning algorithm tries to predict the
label of a thing. Classically, this involves measuring and transforming data
points. For instance, neural networks rely onmatrixmultiplications. These
are tasks classical computers are good at. However, if you have 175 billion pa-
rameters, then calculating the resulting prediction takes quitemanymatrix
multiplications.

Finally, the algorithmneeds to improve the parameters in ameaningfulway.
The problem is to find a set of parameter values that result in better perfor-
mance. With 175 billion parameters, the number of combinations is endless.

Classical machine learning employs heuristics that exploit the structure of
the problem to converge to an acceptable solution within a reasonable time.
However, despite the use of even advanced heuristics, training the GPT-3
would require 355 years to train on a single GPU (Graphics Processing Unit)
and cost $4.6million. To get a feeling of what reasonable means in this con-
text.

Themaincharacteristic ofquantumcomputing is theability to computemul-
tiple states concurrently. A quantum optimization algorithm can combine



1.5 QuantumMachine Learning In The NISQ Era 19

all possible candidates and yield those that promise good results. Therefore,
quantum computing promises to be exponentially faster than classical com-
puters in the optimization of the algorithm. But this does notmeanwe only
look at the optimization. Instead, the optimization builds upon running an
evaluation, and the evaluation builds upon the representation. Thus, tap-
ping the full potential of quantum computing to solve themachine learning
optimizationproblemrequires the evaluation and the representation to inte-
gratewith the quantumoptimizer.

Keeping inmindwhat classicalmachine learning algorithms cando today. If
we expect quantum computing to reduce the complexity of training such al-
gorithmsbymagnitudes, then thehypebecomesunderstandable becausewe
are “only”magnitudes away from things like Artificial General Intelligence.

But of course, building Artificial General Intelligence requires more than
computation. It needs data. And it needs the algorithms.

Thedevelopment of suchalgorithms is oneof the current challenges inquan-
tummachine learning. But there’s another aspect to cope with in that chal-
lenge. That aspect is thatwe are in theNISQ era.

1.5 Quantum Machine Learning In The
NISQ Era
Quantumcomputing is adifferent formof computation. Aswe just learned, a
formcan change the complexity of solvingproblems,making themtractable.
But this different form of computation brings its challenges.

Digital computers need to distinguish between two states: 0 and 1. The cir-
cuits need to tell the difference betweenhighvoltage and lowvoltage. When-
ever there is a high voltage, it is 1 and if there is a lower voltage, it is 0. This
discretizationmeans that errorsmustbe relatively large tobenoticeable, and
we can implementmethods for detecting and correcting such errors.

Unlike digital computers, quantum computers need to be very precise be-
cause they keep a continuous quantum state. Quantum algorithms base on
specific manipulations of continuously varying parameters. In quantum
computers, errors can be arbitrarily small and impossible to detect, but still,
their effects canbuildup to ruina computation. This fragile quantumstate is
very vulnerable to the noise coming from the environment around the quan-
tumbit. For example, noise canarise fromcontrol electronics, heat, or impu-
rities in thequantumcomputer’smaterial itself andcause serious computing
errors thatmay be difficult to correct.



20 Chapter 1. Introduction

But to keep the promises quantum computers make, we need fault-tolerant
devices. Weneeddevices tocomputeShor’salgorithmfor factoring. Weneed
machines to execute all the other algorithms that we know in theory that
solve problems intractable for digital computers.

But such devices require millions of quantum bits. This overhead is re-
quired for error correction since most of these sophisticated algorithms are
extremelysensitive tonoise. Currentquantumcomputershaveupto27quan-
tumbits. Even though IBMstrives for a 1000-quantumbits computerby2023,
we expect the quantum processors in the near term to have between 50 and
100 quantumbits. Even if they exceed these numbers, they remain relatively
small andnoisy. These computers canonly execute short programs since the
longer the program is, themore noise-related output errorswill occur.

Nevertheless, programs that run ondevices beyond 50 quantumbits become
extremely difficult to simulate on classical computers already. These rel-
atively small quantum devices can do things infeasible for a classical com-
puter.

And this is the era we’re about to enter. The era when we can build quan-
tum computers that, while not being fault-tolerant, can do things classical
computers can’t. Wedescribe this era by the term“Noisy Intermediate-Scale
Quantum” -NISQ.

Noisybecausewedon’thaveenoughqubits to spare forerrorcorrection. And
“Intermediate-Scale” because the number of quantum bits is too small to
compute sophisticated quantum algorithms but large enough to show quan-
tum advantage or even supremacy.

The current era of NISQ-devices requires a different set of algorithms, tools,
and strategies.

For instance, Variational Quantum-Classical Algorithms have become a pop-
ularway to think about quantumalgorithms fornear-termquantumdevices.
In these algorithms, classical computers perform the overall machine learn-
ing task on information they acquire from running the hard-to-compute cal-
culations on a quantum computer.

The quantum algorithm produces information based on a set of parameters
provided by the classical algorithm. Therefore, they are called Parameter-
ized Quantum Circuits (PQCs). They are relatively small, short-lived, and
thus suited forNISQ-devices.

https://quantum-journal.org/papers/q-2018-08-06-79/
https://quantum-journal.org/papers/q-2018-08-06-79/


1.6 I learned QuantumMachine Learning The Hard Way 21

1.6 I learned Quantum Machine
Learning The Hard Way
I did not have the fortune to take a quantum computing class in college, not
to speak of a course in quantummachine learning. At the time, it wouldn’t
have beenmuch fun either. In the early 2000s, quantum computingwas just
about to take the step from a pure theory to evaluation in research labs. It
was a field for theoretical physicists andmathematicians.

At thetime, Ihaven’tevenheardabout it. WhenIdid for thefirst time, I think
it was around 2008, researchers had successfully entangled qubits and were
able to control them. Then, of course, Star Trek-like transportation came to
mind when I heard two physically apart particles could share a state so that
it was possible to change the state of one particle by observing the other.

Yet, until around 2014, I did not pay much attention. I was too busy writ-
ingmydoctoral dissertation about assessing the effort caused by the require-
ments in a software development project. When I returned to everyday life,
I was just right in time to experience the end of the secondAIwinter and the
adventofpracticalmachine learning. Whathadbeen theory thus farbecame
a reality now.

When I got into machine learning, the field was already quite evolved. Li-
braries suchasScikit-Learn, laterKeras, TensorFlow, andPyTorchmadema-
chine learning algorithms convenient. So even though my favorite books
were published sometime later, there were already many good books and
learningmaterial available.

i My favorite books are Hands-OnMachine Learning with Scikit-
Learn andTensorFlow byAurélien Géron, released in 2017, and
Deep Learning with Python by Francois Chollet, released in
2018.

But themodelswe’re developing todaybecome increasinglyhard to train. As
mentionedbefore,OpenAI’sGPT-3model thatusesdeep learning toproduce
human-like text would require 355 years on a single GPU. Thus, it is hard
to believe that we can reach the upcoming milestones classically. This in-
sight brought quantumcomputing back intomy focus. Quantumcomputing
promises to reduce the computational complexity of specific algorithms by
magnitudes. It promises to solve tasks in a few seconds classical computers
would need thousands of years for. It may even prevent us from the next AI



22 Chapter 1. Introduction

winter caused by the inability to reach the following milestones of machine
learning.

Figure 1.10: The AI Winter

In 2018, I started to deep dive into quantum machine learning. Scientific
papers and a few academic books were all I could find. And these did not
cover quantum machine learning but quantum computing in general. So I
was happy about every little piece.

These quantumcomputing publications leftme scratchingmyhead. Most of
the papers are pretty heavy onmath and assume you’re familiar with much
physical jargon. I could not even find an appropriate starting point or guid-
ance on how to structuremy learning efforts.

Frustrated with my failed attempts, I spent hours searching on Google. Fi-
nally, I hunted for quantum tutorials, only to come up empty-handed.

I could see the potential value of quantum computing for machine learning.
Yet, I couldn’t see how all these parts of quantum computing fit together.
Entry-level material was hard to find. And practical guides were simply not
existent. I wanted to get started, but I had nothing to show formy effort, ex-
cept for a stack of quantum computing papers on my desk that I hardly un-
derstood.

Finally, I resorted to learning the theoryfirst. Then, IheardaboutQiskit, the
IBM quantum SDK for Python. Its documentationwas relatively poor at the
time, especially if you were not familiar with all the physical jargon and its
underlying theory. But it let me experience what some of these things like
superposition, entanglement, and interferencemeant practically.

This practical knowledge enabled me to connect quantum computing with
the algorithms I knew frommachine learning. I found my way to quantum
machine learning success through myriads of trial-and-error experiments,



1.6 I learned QuantumMachine Learning The Hard Way 23

countless late nights, and much endurance. I believe that painstakingly
working everythingout in small pieces impactedhowIunderstandquantum
machine learning. Again, though, I would recommend not taking the same
path.

My takeaways are:

• You don’t need to cram all the theory before you start applying it.
• You don’t need towork through tons of equations.
• You don’t need to be a mathematician to master quantum machine
learning.
• You don’t need to be a physicist to understand quantummachine learn-
ing.
• You’ll do great as a programmer, an engineer, a data scientist, or any
other profession.
• But quantummachine learning is taught thewrongway.

When I started studying the quantum part of quantummachine learning, I
took a deep dive into theory and math. Because this is what most quantum
computing resources focus on.

Of course, it is desirable to have an understanding of the underlying math
and the theory. But more importantly, you need to have a sense of what the
concepts mean in practice. You need to knowwhat you can do and how you
need to do it. But you don’t need to knowhow it works physically.

Don’t getmewrong. In quantummachine learning, theory andmath are es-
sential. But if you don’t use the theoretical knowledge and apply it to solve
real-world tasks, then you’ll have a hard timefinding your space in the quan-
tummachine learning world. So it would be best if you became a quantum
machine learning practitioner from the very beginning. In contrast to the
dayswhenI started, today, therearequite a fewresources available. Butmost
of them fall into one of the following categories.

• Theoretical paperswith lots of equationsprove somequantumspeedup
of an algorithm. Yet, they don’t show any code.
• Textbooks on quantum computing explain the concepts. But they are
short on showing how to use them for a purpose.
• Blog posts show you an actual algorithm in code. But they don’t relate
the code to any underlying concept. While you see it works, you don’t
learn anything aboutwhy and how it works.

Bynomeansdo Iwant to say these resources arenotworth reading. Butnone
of these resources are helpful to learn how to apply quantummachine learn-
ing. For someone just about to start with quantum machine learning, you



24 Chapter 1. Introduction

would need to invest a lot of time and effort for little to no practical return.

There is a fundamental disconnect between theory and practice. There’s a
gap I want to help to fill with Hands-On Quantum Machine Learning with
Python so you can learn in amore efficient–a betterway.

This is the book I wish I hadwhen I first started studying quantummachine
learning. Inside this book, you’ll find practical walkthroughs and hands-on
tutorials with lots of code. The book introduces new theory just in time you
need it to take the next step. You’ll learn a lot of theory. But you’re not left
alone with it. We directly apply our newly acquired knowledge to solve an
actual problem.

Wewillnotonly implementdifferentquantummachine learningalgorithms,
such as QuantumNaïve Bayes andQuantumBayesianNetworks. Butwe also
use them to solve actual problems taken fromKaggle.

By the time youfinish this book, you’ll know these algorithms,what they do,
why youneed them, how theywork, andmost importantly, how touse them.

Hands-OnQuantumMachineLearningWithPython strives to be theperfect
balance between theory taught in a textbook and the actual hands-on knowl-
edge you’ll need to implement real-world solutions.

Thisbook isyourcomprehensiveguide toget startedwithQuantumMachine
Learning–the use of quantum computing formachine learning tasks.

1.7 Quantum Machine Learning Is
Taught The Wrong Way
The literature onquantumcomputing is full of physical jargonand formulae.
Let’s take the Variational QuantumEigensolver (VQE), for instance.

VQE can help us to estimate the energy of the ground state of a
givenquantummechanical system. This is theupperboundof the
lowest eigenvalue of a givenHamiltonian. It builds upon the vari-
ational principle that is described as: ⟨Ψλ |H|Ψλ ⟩>= E0

If you don’t hold a degree in physics, the first and natural reaction is to put
the article away.

“Well, nice try. Maybe the whole topic is not for me”, you think. “Maybe,
quantum computing is beyondmy reach”.



1.7 QuantumMachine Learning Is Taught The Wrong Way 25

Don’t give up that fast. Physicists and mathematicians discovered most of
the stuff in quantum computing. Of course, they build upon the knowledge
of their peers when they share insights and teach their students. So it is rea-
sonable that they use the terms they are familiarwith.

Youwouldn’t use the vocabulary of a bartender to explain programming and
machine learning either, would you? Butmaybe, we should.

It is reasonable to assume a certain kind of knowledgewhenwe talk orwrite
about something. But should we restrain students of other, nearby disci-
plines fromlearningthestuff? Forexample,whyshouldn’twesupportacom-
puter scientist or a software engineer in learning quantum computing?

I’ve got a clear opinion. I believe anyone sincerely interested in quantum
computing should be able to learn it. There should be resources out there
catering to the student’s needs, not to the teacher’s convenience. But, of
course, this requiresa teacher toexplain thecomplexstuffinallegedlysimple
language.

If you can't explain it simply,
you don't understand it
well enough.

Figure 1.11: Albert Einstein

I wouldn’t dare to say I understood quantum computing well enough to ex-
plain it with the vocabulary bartenders use. But I’d give it a shot explaining
it to a computer scientist and a software engineer. I don’t see a reason to re-
strict this field to physicists only.

Of course, it isdesirable tounderstand theunderlying theoryofquantumme-
chanics. Of course, it is desirable to be able to do themath. But,more impor-
tantly, you need to understand how to solve a certain problem.

In quantum computing, we use quantum superposition, entanglement, and
interference to solve tasks. These are astonishing and maybe counter-
intuitive phenomena. But no matter how weird they may appear, quantum



26 Chapter 1. Introduction

mechanical systems adhere to a particular set of physical laws. And these
laws make the systems behave in specific ways. How deep do you have to
know the physical laws? Howmuch quantummath do you need?

I don’t believe anyone (includingme) understands how a classical computer
works. Yet, we all use them. We even program them! I learned how to code
a classical computer because my teachers explained it to me in a way I could
understand back then.

My high-school teacher explained the concepts of data types and algorithms
in an applied way. He taught me how they work and what they are good for.
So even though–ormaybe because–we didn’t go through electro-mechanical
circuits and information theory, I learned to program.

“Maybe quantumcomputing is different,” you say? “Maybe, the stuff in there
is too complex to learnwithout a degree in physics!”

The theoretical foundation of quantummachine learning may appear over-
whelming at first sight. But, be assured, when put into the proper context
and explained conceptually, it is not more complicated than learning a new
programming language.

I genuinely believe developers, programmers, and studentswhohave at least
some programming experience can become proficient in quantummachine
learning. However, teaching quantum machine learning the right way re-
quires a different approach–a practical approach.

Rather thanworking through tons of theory, a good approachbuilds upprac-
tical intuition about the core concepts. I think it is best to acquire the exact
theoretical knowledgewe need to solve practical examples.

Quantummachine learning relies onmath, statistics, physics, and computer
science. Covering it all upfront would be pretty exhaustive and fill at least
one book without any practical insight. However, without understanding
the underlying theoretical concepts, code examples on their own do not pro-
vide valuable insights, either.

This books combines practical exampleswith the underlying theory.

1.8 Configuring Your Quantum
Machine Learning Workstation
Eventhoughthisbookisaboutquantummachine learning, Idon’texpectyou
to have a quantum computer at your disposal. Thus, wewill runmost of the



1.8 Configuring Your QuantumMachine Learning Workstation 27

code examples in a simulated environment on your local machine. But we
will need to compile and install some dependencies first.

Wewill use the following software stack:

• Unix-based operating system (not required but recommended)
• Python, including pip
• Jupyter (not required but recommended)

1.8.1 Python
For all examples inside Hands-On Quantum Machine Learning With
Python, we use Python as our programming language. Python is easy to
learn. Its simple syntax allows you to concentrate on learning quantum
machine learning rather than spending your time with the specificities of
the language.

Most importantly, machine learning tools, such as PyTorch and Tensorflow,
as well as quantum computing tools, such as Qiskit and Cirq, are available as
Python SDKs.

1.8.2 Jupyter
Jupyter notebooks are a great way to run quantummachine learning exper-
iments. They are a de facto standard in the machine-learning and quantum
computing communities.

A notebook is a file format (.ipynb). The Jupyter Notebook app lets you edit
yourfile in the browserwhile running the Python code in interactive Python
kernels. The kernel keeps the state in memory until it is terminated or
restarted. This state contains the variables defined during the evaluation of
code.

A notebook allows you to break up long experiments into smaller pieces you
can execute independently. You don’t need to rerun all the code every time
youmake a change. But you can interact with it.

1.8.3 Libraries and Packages
Wewill use the following libraries and packages:

• Scikit-learn
• Pandas
• Qiskit

https://jupyter.org


28 Chapter 1. Introduction

Scikit-learn is the most helpful library for machine learning in Python. It
contains a rangeof supervisedandunsupervised learningalgorithms. Scikit-
learn builds upon a range of other handy libraries, such as:

• NumPy: Workwith n-dimensional arrays
• SciPy: Fundamental library for scientific computing
• Matplotlib: Comprehensive 2D/3D plotting
• IPython: Enhanced interactive console
• Sympy: Symbolicmathematics

Pandas provides convenient data structures and analysis tools. Qiskit is
IBM’s quantum computing SDK.

1.8.4 Virtual Environment
Likemost programming languages, Python has its package installer. This is
pip. It installs packages from the Python Package Index (PyPI) and other in-
dexes.

By default, it installs the packages in the same base directory shared among
all your Python projects. Thus, it makes an installed package available to all
your projects. This seems to be good because you don’t need to install the
same packages repeatedly.

However, if any two of your projects require different versions of a package,
you’ll be in trouble because there is no differentiationbetweenversions. You
wouldneed touninstall oneversionand install anotherwheneveryouswitch
working on either one of the projects.

This iswherevirtual environments come intoplay. Theirpurpose is to create
an isolated environment for each of your Python projects. It’s no surprise,
using Python virtual environments is the best practice.

1.8.5 Configuring Ubuntu For Quantum
Machine Learning with Python
In this section, we go through the installation onUbuntu Linux. AnUbuntu
Linux environment is highly recommended when working with quantum
machine learning and Python because all the tools you need can be installed
and configured quickly.

Other Linux distributions (such as Debian) or MacOS (that also builds upon
Unix) are also ok. But there are a fewmore aspects to consider.

All the code should work onWindows, too. However, the configuration of a



1.8 Configuring Your QuantumMachine Learning Workstation 29

Windows working environment can be a challenge on its own. Fortunately,
there is a way out. So, if you have a Windows operating system, look at the
next section 1.8.6 before you continuewith the following instructions.

We accomplish all steps by using the Linux terminal. To start, open up your
command line and update the apt−get packagemanager.

$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install -y build-essential wget python3-dev \

libreadline-gplv2-dev libncursesw5-dev libssl-dev \
libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev \
libffi-dev

Thenext step downloads and installs Python 3.8.5 (the latest stable release at
the time ofwriting).

$ mkdir /tmp/Python38
$ cd /tmp/Python38
$ wget https://www.python.org/ftp/python/3.8.5/Python-3.8.5.tar.xz
$ tar xvf Python-3.8.5.tar.xz
$ cd /tmp/Python38/Python-3.8.5
$ ./configure
$ sudo make altinstall

If youwant to have this Python version as the default, run

$ sudo ln -s /usr/local/bin/python3.8 /usr/bin/python

Python is ready to work. Let’s now install and update the Python package
manager pip:

$ wget https://bootstrap.pypa.io/get-pip.py && python get-pip.py
$ pip install --upgrade pip

Youmight need to restart yourmachine to recognize pip as a command.

As mentioned, we install all the Python packages in a virtual environment.
So, we need to install virtualenv:

$ sudo apt-get install python3-venv

To create a virtual environment, go to your project directory and run venv.
The following parameter (here env) specifies the name of your environment.

$ python -m venv env



30 Chapter 1. Introduction

You’ll need to activate your environment before you can start installing or
using packages.

$ source env/bin/activate

When you’re done working on this project, you can leave your virtual envi-
ronment by running the command deactivate. If you want to reenter, call
source env/bin/activate again.

We’re now ready to install the packageswe need.

Install Jupyter:

$ pip install jupyter notebook jupyterlab --upgrade

Install Qiskit

$ pip install qiskit

If you don’t install Qiskit in the virtual environment, you should add the−−
user flag. Otherwise, the installationmight fail due tomissing permissions.

Install furtherdependencies requiredofQiskit andScikit-Learn. If youdon’t
use a virtual environment, use the−−user flag here, too.

$ pip install numpy scipy matplotlib ipython pandas sympy nose seaborn

Install Scikit-Learn,with the−−userflag if you’renotusingavirtual environ-
ment.

$ pip install scikit-learn

Install drawing libraries:

$ pip install pylatexenc ipywidgets qutip

You’re now ready to start. Open up JupyterLabwith

$ jupyter lab

1.8.6 How To Setup JupyterLab For Quantum
Computing — On Windows
If you’re a Python developer, there’s no way around a Unix-based operating
system. Python is a language towrite software that’s usually supposed to run
at a server. Andmost servers run some kind of Linux.

https://jupyter.org/install
https://qiskit.org/documentation/install.html#install
https://scikit-learn.org/stable/install.html


1.8 Configuring Your QuantumMachine Learning Workstation 31

Figure 1.12: Windows, Jupyter, Qiskit

Consequently, the default configuration in Python caters to the specificities
of a Unix-based system. While Pythonworks onWindows, too, it requires a
lotmore attention toget all the configurationdetails right. Starting fromthe
path separator that is not a slash but a backslash (\) to the different charset
(windows−1252), to different commands (e.g. del /s /q instead of rm), Windows
differs in quite a few aspects.

While Linux is great for developing, youmay preferWindows in other situa-
tions. Maybe you don’t even have a choice. Your working computer simply
runsWindows. Full stop.

Fortunately, there’s a solution - at least if you’re runningWindows 10. Win-
dows 10 containsWSL2, theWindows Subsystem for Linux. It lets you run a
full Ubuntu Linux insideWindows. Windows 10must be updated to version
2004 and Intel’s virtualization technologymust be enabled in BIOS settings.

In the first step, we need to activate the Windows Subsystem for Linux op-
tional feature. Open PowerShell as Administrator and run the following
command:
dism.exe /online /enable−feature /featurename:Microsoft−Windows−

Subsystem−Linux /all /norestart

In the next step, we update the subsystem toWSL2. Download the latest ker-
nel update for your system from https://aka.ms/wsl2kernel and install theMSI
package.

Now, we enable the Virtual machine platform and set WSL2 as the default
version.
dism.exe /online /enable−feature /featurename:

VirtualMachinePlatform /all /norestart
wsl −−set−default−version 2

Finally, we can install a Linux distribution as if it was a normal program.



32 Chapter 1. Introduction

Open theMicrosoft store, search for “Ubuntu 20.04 LTS”, and install the pro-
gram. Once the installation finishes, you can start Ubuntu from your start
menu. On the first start, you need to create a new Unix user and specify a
password.

You can proceed with the installation of the libraries and packages as de-
scribed in the previous section 1.8.5.



2. Binary Classification

2.1 Predicting Survival On The Titanic
The sinking of theTitanic is one of themost infamous shipwrecks in history.

On April 15, 1912, the Titanic sank after colliding with an iceberg. Being con-
sidered unsinkable, there weren’t enough lifeboats for everyone on board.
As a result, 1502 out of 2224 passengers and crewmembers died that night.

Of course, the 722 survivors must have had some luck. But it seems as if cer-
tain groups of people had better chances to survive than others. Therefore,
theTitanic sinkinghas also becomea famous starting point for anyone inter-
ested inmachine learning.

If you have some experience with machine learning, you’ll probably know
the legendary TitanicML competition provided byKaggle.

If youdon’tknowKaggleyet,Kaggle is among theworld’s largestdata science
communities. It offers many exciting datasets, and therefore, it is an excel-
lent place to get started.

The problem to be solved is simple. Use machine learning to create a model
that, given the passenger data, predicts which passengers survived the Ti-
tanic shipwreck.



34 Chapter 2. Binary Classification

2.2 Get the Dataset
Toget thedataset, you’llneed tocreateaKaggleaccount (it’s free) and join the
competition. EventhoughKaggle is all aboutcompetitions, youdon’tneed to
take part in them actively by uploading your solution.

Figure 2.1: The Titanic Shipwreck

When you join a competition, you need to accept and abide by the rules that
govern how many submissions you can make per day, the maximum team
size, and other competition-specific details.

You’ll find the competition data in the Data tab at the top of the competition
page. Then, scroll down to see the list of files.

There are three files in the data:

• train.csv
• test.csv
• gender_submission.csv

The file train.csv contains the data of a subset of the Titanic’s passengers.
This file is supposed to serve your algorithmas a basis to learnwhether a pas-
senger survived or not.

The file test.csv contains the data of another subset of passengers. It serves
to determine howwell your algorithmperforms.

https://www.kaggle.com/c/titanic/data


2.3 Look at the data 35

The gender_submission.csv file is an example that shows how you should struc-
ture your predictions if you plan to submit them to Kaggle. Since we’re here
to start learning and not yet be ready to compete, we’ll skip this file.

Download the files train.csv and test.csv.

2.3 Look at the data
The first thing we need to do is to load the data. We use Pandas for that. It is
renowned in themachine learning community for data processing. It offers
a variety of useful functions, such as a function to load .csv-files: read_csv.

Listing 2.1: Load the data from the csv‐files

1 import pandas as pd
2
3 train = pd.read_csv('./data/train.csv')
4 test = pd.read_csv('./data/test.csv')

We loaded our data into train and test. These are Pandas DataFrames.

A DataFramekeeps thedata ina two-dimensional structurewith labels. Suchas
a database table or a spreadsheet. It provides a lot of valuable attributes and
functions out of the box.

For instance, the DataFrame’s attribute shape provides a tuple of two integers
that denote the number of rows and columns.

Let’s have a look:
Listing 2.2: The shapes of the Titanic datasets

1 print('train has {} rows and {} columns'.format(*train.shape))
2 print('test has {} rows and {} columns'.format(*test.shape))

train has 891 rows and 12 columns
test has 418 rows and 11 columns

We can see we have 891 training and 418 testing entries. But, more interest-
ingly, the train dataset has onemore column than the test dataset.



36 Chapter 2. Binary Classification

The DataFrame’s info()method shows somemore detailed information. Have
a look at the train dataset.
Listing 2.3: The structure of the train dataset

1 train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

The infomethod returns a list of the columns: their index, their names, how
many entries have actual values (are not null), and the type of values.

Let’s have a look at the test dataset, too.
Listing 2.4: The structure of the test dataset

1 test.info()



2.3 Look at the data 37

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 PassengerId 418 non-null int64
1 Pclass 418 non-null int64
2 Name 418 non-null object
3 Sex 418 non-null object
4 Age 332 non-null float64
5 SibSp 418 non-null int64
6 Parch 418 non-null int64
7 Ticket 418 non-null object
8 Fare 417 non-null float64
9 Cabin 91 non-null object
10 Embarked 418 non-null object

dtypes: float64(2), int64(4), object(5)
memory usage: 36.0+ KB

When comparing both info, we can see the test dataset misses the column
Survived, indicatingwhether a passenger survived or died.

AsKaggle notes, theyuse the testdataset to evaluate the submissions. If they
provided the correct answer, it wouldn’t bemuch of a competition anymore,
would it? It is our task to predict the correct label.

Sincewe donot plan to submit our predictions toKaggle to evaluate howour
algorithmperformed, the test dataset is quite useless for us.

So, we concentrate on the train dataset.

The info output is relatively abstract. Wouldn’t it be good to see some actual
data? No problem. That’s what the headmethod is for.

The headmethod shows the column heads and the first five rows. So, with
this impression, let’s go through the columns. You can read an explanation
on the Kaggle page, too.

Listing 2.5: Look at the data

1 train.head()



38 Chapter 2. Binary Classification

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund,Mr. OwenHarris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings,Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen,Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle,Mrs. JacquesHeath (LilyMay Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen,Mr. WilliamHenry male 35.0 0 0 373450 8.0500 NaN S

Each column represents one feature of our data. The PassengerId is a consec-
utive number identifying each row. Survived is the indicator of whether the
passenger survived (0 =No, 1 = Yes). Pclass is the ticket class (1 = 1st, 2 = 2nd, 3
= 3rd). Thenwe have self-explanatory Name, Sex, and Age.

SibSp denotes the number of this passenger’s siblings or spouses aboard the
Titanic. Parch indicates the number of this passenger’s parents or children
aboard the Titanic.

Then, there is the Fare the passenger paid, the Cabin number, and the port of
embarkation (embarked) (C = Cherbourg, Q =Queenstown, S = Southampton).

2.4 Data Preparation and Cleaning
Our data have different types. There are numerical data, such as Age, SibSp,
Parch, and Fare. There are categorical data. Some of the categories are repre-
sented by numbers (Survived, Pclass). Some are represented by text (Sex and
Embarked). And there is textual data (Name, Ticket, and Cabin).

This is quite a mess for data we want to feed into a computer. Furthermore,
when looking at the result of train.info(), you can see that the counts vary for
different columns. Whilewehave 891 values formost columns,we only have
714 for Age, 204 for Cabin, and 889 for Embarked.

Beforewe can feed our data into anymachine learning algorithm,weneed to
clean up.

2.4.1 Missing Values
Most machine learning algorithms don’t work well with missing values.
There are three options of howwe can fix this:

• Get rid of the corresponding rows (removing the passengers from con-
sideration)
• Get rid of the whole column (remove the entire feature for all passen-
gers)
• Fill the missing values (for example, with zero, the mean, or the me-
dian)



2.4 Data Preparation and Cleaning 39

Listing 2.6: Cope with missing values

1 # option 1
2 # We only have two passengers without it. This is bearable
3 train = train.dropna(subset=["Embarked"])
4
5 # option 2
6 # We only have very few information about the cabin, let's drop it
7 train = train.drop("Cabin", axis=1)
8
9 # option 3

10 # The age misses quite a few times. But intuition
11 # says it might be important for someone's chance to survive.
12 mean = train["Age"].mean()
13 train["Age"] = train["Age"].fillna(mean)
14
15 train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 11 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 PassengerId 889 non-null int64
1 Survived 889 non-null int64
2 Pclass 889 non-null int64
3 Name 889 non-null object
4 Sex 889 non-null object
5 Age 889 non-null float64
6 SibSp 889 non-null int64
7 Parch 889 non-null int64
8 Ticket 889 non-null object
9 Fare 889 non-null float64
10 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(4)
memory usage: 83.3+ KB

We can accomplish these things easily using DataFrame’s dropna(), drop(), and
fillna()methods. There isnoonebestoption ingeneral. Butyoushouldcare-
fully consider the specific context.

There are only two passengers whose port of embarkation we don’t know.



40 Chapter 2. Binary Classification

These account for less than 1% of our data. If we disregard these two passen-
gers entirely, wewon’t see completely different results. Thus, we drop these
rows (line 3) with the dropna-method.

The dropna-method takes the column ("Embarked") as anamedparameter subset.
This parameter specifies the columns that determinewhether to remove the
row(passenger). If at leastonevalueof thesecolumns ismissing, therowgets
removed.

The situation is different concerning the Cabin. We only have this informa-
tion for 204 out of 991 passengers. It is questionable if this is enough to draw
any information from. We don’t know why these values miss. Even if we
found the Cabin to be highly correlated with the survival of a passenger, we
wouldn’t knowwhether this correlation can be generalized to all passengers
or whether there is a selection bias, meaning that the fact that we know the
Cabin depends on some other aspect.

We drop the whole column with the method drop. Then, we provide the col-
umn (Cabin)wewant to remove as a positioned argument. The value 1wepro-
vide as a named argument axis specifies that we want to remove the whole
column.

Next, we know the Age of 714 passengers. Removing all the passengers from
considerationwhose Agewedon’t knowdoesn’t seem to be an option because
theyaccount for about 22%ofourdata, quite a significantportion. Removing
the whole column doesn’t seem to be a good option either. First, we know
the Age ofmost of the passengers, and intuition suggests that the Agemight be
influential for someone’s chance to survive.

We fill the missing values with the fillnamethod (line 13). Since we want to
fill only the missing values in the Age column, we call this function on this
column and not the whole DataFrame. We provide as an argument the value
we want to set. This is the mean age of all passengers we calculated before
(line 12).

Great. We nowhave 889 rows, ten columns, and nomissing data anymore.

2.4.2 Identifiers
The goal of machine learning is to create an algorithm that can predict data.
Or, as we said before: to put a label on a thing. While we use already labeled
datawhenbuilding our algorithm, the goal is to predict labelswedon’t know
yet.

We don’t tell our algorithm how it can decide which label to select. Instead,



2.4 Data Preparation and Cleaning 41

we say to the algorithm, “here is the data. Figure it out yourself.” That be-
ing said, an intelligent algorithm may be able to memorize all the data you
provide it with. This is referred to as overfitting. The result is an algorithm
performingwell on known data but poorly on unknown data.

If ourgoalwasonly topredict labelswealreadyknow, thebest thingwecould
do is memorize all passengers and whether they survived. But if we want to
create an algorithm that performs well even on unknown data, we need to
preventmemorization.

We have not even started building our algorithm. Yet, the features we use in
our algorithm affect whether the algorithm can memorize data because we
have potential identifiers in our data.

When lookingat thefirstfiveentriesof thedataset, threecolumnsappear sus-
picious: the PassengerId, the Name, and the Ticket.

The PassengerId is a consecutive number. Therefore, there should be no con-
nection between howbig the number is andwhether a passenger survived.

Neither should the name of a passenger or the number on a ticket be a deci-
sive factor for survival. Instead, these are data identifying single passengers.
Let’s validate this assumption.

Let’s have a look at howmany unique values are in these columns.

Listing 2.7: Unique values in columns

1 print('There are {} different (unique) PassengerIds in the data'
2 .format(train["PassengerId"].nunique()))
3 print('There are {} different (unique) names in the data'
4 .format(train["Name"].nunique()))
5 print('There are {} different (unique) ticket numbers in the data'
6 .format(train["Ticket"].nunique()))

There are 889 different (unique) PassengerIds in the data
There are 889 different (unique) names in the data
There are 680 different (unique) ticket numbers in the data

Name and PassengerId are perfect identifiers. Therefore, each of the 889 rows in
our dataset has a unique value.

And there are 680 different Ticket numbers. A possible explanation for the



42 Chapter 2. Binary Classification

Ticket not to be a perfect identifier may be family tickets. Yet, a prediction
based on this data appears to support memorization rather than learning
transferable insights.

We remove these columns.
Listing 2.8: Remove identifying data

1 train = train.drop("PassengerId", axis=1)
2 train = train.drop("Name", axis=1)
3 train = train.drop("Ticket", axis=1)
4
5 train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 8 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Survived 889 non-null int64
1 Pclass 889 non-null int64
2 Sex 889 non-null object
3 Age 889 non-null float64
4 SibSp 889 non-null int64
5 Parch 889 non-null int64
6 Fare 889 non-null float64
7 Embarked 889 non-null object

dtypes: float64(2), int64(4), object(2)
memory usage: 62.5+ KB

2.4.3 Handling Text and Categorical Attributes
Many machine learning algorithms work with numbers, nothing but num-
bers. If wewant to use textual data, we need to translate it into numbers.

Scikit-Learn provides a transformer for this task called LabelEncoder.



2.4 Data Preparation and Cleaning 43

Listing 2.9: Transforming textual data into numbers

1 from sklearn.preprocessing import LabelEncoder
2 le = LabelEncoder()
3
4 for col in ['Sex', 'Embarked']:
5 le.fit(train[col])
6 train[col] = le.transform(train[col])
7
8 train.head()

Survived Pclass Sex Age SibSp Parch Fare Embarked
0 0 3 1 22.0 1 0 7.2500 2
1 1 1 0 38.0 1 0 71.2833 0
2 1 3 0 26.0 0 0 7.9250 2
3 1 1 0 35.0 1 0 53.1000 2
4 0 3 1 35.0 0 0 8.0500 2

First, we import the LabelEncoder (line 1) and initialize an instance (line 2).
Then, we loop through the columns with textual data (Sex and Embarked) (line
4). Foreachcolumn,weneedto fit theencoder to thedata in thecolumn(line
5) beforewe can transform the values (line 6).

Finally, let’s have another look at our DataFrame. You can see that both, Sex and
Embarked are now numbers (int64). In our case, 0 representsmale, and 1 repre-
sents female passengers. But when you rerun the transformation, you may
yield different assignments.

2.4.4 Feature Scaling
Machine learning algorithms usually work with numbers with identical
scales. If numbers have different scales, the algorithm may consider those
with higher scales to bemore important.

Even though all our data is numerical, it is not yet uniformly scaled. For ex-
ample, the values of most of the columns range between 0 and 3. But Age and
Fare have far bigger scales.

The maxmethod returns themaximum value in a column. As we can see, the
oldest passengerwas 80 years old, and the highest farewas about 512.



44 Chapter 2. Binary Classification

Listing 2.10: The maximum values

1 print('The maximum age is {}'.format(train["Age"].max()))
2 print('The maximum fare is {}'.format(train["Fare"].max()))

The maximum age is 80.0
The maximum fare is 512.3292

A commonway to copewith data of different scales ismin-max-scaling (also
knownasnormalization). This process shifts and rescales values so that they
end up ranging from 0 to 1. It subtracts theminimum value from each value
and divides it by themaximumminus theminimumvalue.

Scikit−Learn provides the MinMaxScaler transformer to do this for us.

Listing 2.11: Normalization of the data.

1 from sklearn.preprocessing import MinMaxScaler
2
3 scaler = MinMaxScaler()
4 scaler.fit(train)
5 train = scaler.transform(train)
6
7 print('The minimum value is {} and the maximum value is {}'
8 .format(train.min(), train.max()))

The minimum value is 0.0 and the maximum value is 1.0

Again, we first import the transformer (line 1) and initialize it (line 3). Then,
we fit the transformer to our data (line 4) and transform it (line 5).

As a result, all the data in our dataset range between 0.0 and 1.0.

! The scaler returns a Numpy-array instead of a Pandas
DataFrame.



2.4 Data Preparation and Cleaning 45

2.4.5 Training and Testing
We already mentioned the goal of building an algorithm that performs well
on data it already knows and predicts the labels of yet unknown data. That’s
why it is essential to separate thedata into a traininganda testing set. Weuse
the training set to build our algorithm. Andweuse the testing set to validate
its performance.

Even thoughKaggleprovides a testing set,we skipped it fornot including the
Survived column. This is because wewould need to ask Kaggle every timewe
wanted tovalidate it. Tokeep things simpleanddothevalidationonourown,
we rather spare some rows from the Kaggle training set for testing.

Separating a test set is quite simple. Scikit-learnprovides a usefulmethod for
that, too. This is train_test_split.

Further, we need to separate the input data from the resulting label wewant
to predict.
Listing 2.12: Separating input from labels and training from testing sets

1 from sklearn.model_selection import train_test_split
2
3 input_data = train[:, 1:8]
4 labels = train[:, 0]
5
6 train_input, test_input, train_labels, test_labels = train_test_split(
7 input_data, labels, test_size = 0.2)
8
9 print('We have {} training and {} testing rows'.format(train_input.shape

[0], test_input.shape[0]))
10 print('There are {} input columns'.format(train_input.shape[1]))

We have 711 training and 178 testing rows
There are 7 input columns

We separate the input columns from the labels with Python array indices
(lines 3-4). The first column (position 0) contains the Survived flag we want
to predict. The other columns have the datawe use as input.

train_test_split separates the training from the testing data set. The param-
eter test_size = 0.2 (= 20%) specifies the portion we want the testing set to
have.



46 Chapter 2. Binary Classification

We can see that our training data set consists of 711 entries. Accordingly, our
testing set consists of 178 entries. We have input seven columns and single-
columnoutput. Let’s saveourprepareddata touse inthefuturewithoutneed-
ing to repeat all these steps.

Listing 2.13: Save the data to the filesystem

1 import numpy as np
2
3 with open('data/train.npy', 'wb') as f:
4 np.save(f, train_input)
5 np.save(f, train_labels)
6
7 with open('data/test.npy', 'wb') as f:
8 np.save(f, test_input)
9 np.save(f, test_labels)

2.5 Baseline
Now, we have our input data and the resulting labels. And we have it sepa-
rated into a training and a testing set. The only thing left is our algorithm.

Our algorithmshouldpredictwhether apassenger survived theTitanic ship-
wreck. This is a classification task since there are distinct outcome values.
Specifically, it is a binary classification task because there are precisely two
possible predictions (survived or died).

Before developing a quantummachine learning algorithm, let’s implement
the simplest algorithmwe can imagine: a classifier that guesses.

Listing 2.14: A random classifier

1 import random
2 random.seed(a=None, version=2)
3
4 def classify(passenger):
5 return random.randint(0, 1)

We import the randomnumber generator (line 1) and initialize it (line 2).

Our classifier is a function that takes passenger data as input and returns ei-
ther 0 or 1 as output. Similar to our data, 0 indicates the passenger died and 1
the passenger survived.



2.5 Baseline 47

To use the classifier, we write a Python function that runs our classifier for
each item in the training set.
Listing 2.15: The classification runner

1 def run(f_classify, x):
2 return list(map(f_classify, x))

This function takes the classifier-function as the first argument (we can re-
place the classifier later) and the input data (as x) as the second parameter
(line 1).

It uses Python’s map function to call the classifier with each item in x and re-
turn an array of the results.

Let’s run it.
Listing 2.16: Run the classifier

1 result = run(classify, train_input)

[0, 1, 0, ... 0, 1, 1]

When we run the classifier with our train_input, we receive a list of predic-
tions.

Since our goal is to predict the actual result correctly, we need to evaluate
whether the predictionmatches the actual result.

Let’s have a look at the accuracy of our predictions.
Listing 2.17: Evaluate the classifier

1 def evaluate(predictions, actual):
2 correct = list(filter(
3 lambda item: item[0] == item[1],
4 list(zip(predictions,actual))
5 ))
6 return '{} correct predictions out of {}. Accuracy {:.0f} %' \
7 .format(len(correct), len(actual), 100*len(correct)/len(actual))
8
9 print(evaluate(run(classify, train_input), train_labels))



48 Chapter 2. Binary Classification

347 correct predictions out of 711. Accuracy 49 %

We define another function named evaluate. It takes the predictions of our
algorithm and the actual results as parameters (line 1).

The term list(zip(predictions,actual)) (line4) createsa listof 2-itemlists. The
2-item lists are pairs of a prediction and the corresponding actual result.

We filter these items from the list where the prediction matches the actual
result (lambda item: item[0] == item[1]) (line 3). These are the correct predic-
tions. The length of the list of correct predictions divided by the total num-
ber of passengers is our Accuracy.

Great! We are already correct in half of the cases (more or less). This is not a
surprisewhen guessing one out of two possible labels.

Butmaybe we can do even better? I meanwithout any effort. We know that
more people died than survived. What ifwe consistently predicted the death
of a passenger?

Listing 2.18: Always predict a passenger died

1 def predict_death(item):
2 return 0
3
4 print(evaluate(run(predict_death, train_input), train_labels))

436 correct predictions out of 711. Accuracy 61 %

We’re up to an accuracy of 61% of our predictions. Not too bad. This value
that is the ratio between the two possible actual values, is the prevalence.

Let’s consider a different task for a moment. Let’s say you’re a doctor, and
your job is to predict whether a patient has cancer. Only 1% of your patients
have cancer. If you expected no cancer all the time, your accuracy would be
astonishing 99%! But you would falsely diagnose the patients that have can-
cer. And for the resulting lack of treatment, they’re going to die.

Maybe theaccuracyof thepredictionsalone isnotagoodmeasure toevaluate
the performance of our algorithm.



2.6 Classifier Evaluation and Measures 49

2.6 Classifier Evaluation and Measures
As wementioned in section 1.4.3, the evaluation is one central part of every
machine learning algorithm. It may seem trivial at first sight. Yet, deciding
on the right measure is a crucial step. When you optimize your algorithm
towards better performance, you will inevitably optimize the scores in your
evaluation function.

We will get to know more sophisticated evaluation functions in this book.
But right now, we keep it simple. For example, a better way to evaluate the
performance of a classifier is to look at the confusionmatrix.

Ac
tu
al

Predicted
Death (negative)

De
at
h

(n
eg

at
iv
e)

Survived (positive)

Su
rv
iv
ed

(p
os
iti
ve
)

True
Positives

False
Negatives

True
Negatives

False
Positives

Pr
ec
isi

on
Recall

Specificity

Ne
ga

tiv
e
Pr
ed

ic
tiv

e
Va

lu
e

Figure 2.2: Confusion matrix

The general idea is to compare the predictionswith the actual values. So, for
example, inbinary classification, there are twopossible actual values: trueor
false. And there are two possible predictions: true or false.

There are four possibilities:

• TrueNegatives (TN): a passengerwho diedwas correctly predicted
• FalsePositives (FP): a passengerwhodiedwaswronglypredicted to sur-
vive
• FalseNegatives (FN): a passengerwho survivedwaswrongly predicted
to die
• TruePositive (TP): a passengerwho survivedwas correctly predicted



50 Chapter 2. Binary Classification

Let’s have a look at the confusionmatrix of the predict_death classifier.
Listing 2.19: Confustion matrix of the predict death classifier

1 from sklearn.metrics import confusion_matrix
2
3 predictions = run(predict_death, train_input)
4 confusion_matrix(train_labels, predictions)

array([[436, 0],
[275, 0]])

Scikit-Learn provides the confusion_matrixmethod that we import (line 1). It
takes the actual values as first and the predictions as the second parameter
(line 3).

It returns a two-dimensional array. The first row shows the true negatives
(TN) and the false positives (FP). And, the second row shows the false nega-
tives (FN) and the true positives (TP).

We can define the accuracywemeasured thus far as:

Accuracy =
∑TruePositives+∑TrueNegatives

TotalPopulation
(2.1)

It does not care whether there is a systematic error, such as the algorithm’s
inability to correctly predict a passenger who survived (true positives), as
long as it performswell at correctly predicting passengerswho die (true neg-
atives).

The confusion matrix offers us more detailed measures of our classifier per-
formance. These are:

• precision
• recall
• specificity
• negative predictive value (NPV)

The precision is the “accuracy of the positive predictions.” It only looks at
the positive predictions. These are predictions that the passenger survived.

Precision =
∑TruePositives

∑AllPredictedPositives
(2.2)



2.6 Classifier Evaluation and Measures 51

Let’s have a look at the code:
Listing 2.20: The precision score

1 from sklearn.metrics import precision_score
2 print('The precision score of the predict_death classifier is {}'
3 .format(precision_score(train_labels, predictions)))

The precision score of the predict_death classifier is 0.0

Scikit-Learn provides a function to calculate the precision_score. It takes the
list of actual values and the list of predicted values as input.

Sincewedidnothaveasinglepositiveprediction,ourprecisionisnotdefined.
Scikit-Learn interprets this as a score of 0.0.

The recall is the “accuracy of the actual positives.” It only looks at the actual
positives.

Recall =
∑TruePositives

∑AllActualPositives
(2.3)

In Python, it is:
Listing 2.21: The recall score

1 from sklearn.metrics import recall_score
2 print('The recall score of the predict_death classifier is {}'
3 .format(recall_score(train_labels, predictions)))

The recall score of the predict_death classifier is 0.0

Even though recall is defined (the number of actual positives is greater than
0), the score is 0.0againbecauseourclassifierdidnotpredict a single survival
correctly. It is not a surprisewhen it always predicts death.

Thespecificity is the“accuracyof theactualnegatives.” Itonly looksatactual
negatives (deaths).

Speci f icity =
∑TrueNegatives

∑AllActualNegatives
(2.4)



52 Chapter 2. Binary Classification

And the “negative predictive value” (NPV) is the “accuracy of the negative
predictions.”

NegativePredictiveValue(NPV ) =
∑TrueNegatives

∑AllPredictedNegatives
(2.5)

These two functions are not provided out of the box. But with the values we
get from the confusionmatrix, we can calculate them easily:

Listing 2.22: The specificity and the npv

1 def specificity(matrix):
2 return matrix[0][0]/(matrix[0][0]+matrix[0][1]) if (matrix[0][0]+matrix

[0][1] > 0) else 0
3
4 def npv(matrix):
5 return matrix[0][0]/(matrix[0][0]+matrix[1][0]) if (matrix[0][0]+matrix

[1][0] > 0) else 0
6
7 cm = confusion_matrix(train_labels, predictions)
8
9 print('The specificity score of the predict_death classifier is {:.2f}'.

format(specificity(cm)))
10 print('The npv score of the predict_death classifier is {:.2f}'.format(

npv(cm)))

The specificity score of the predict_death classifier is 1.00
The npv score of the predict_death classifier is 0.61

The function specificity takes the confusionmatrix as a parameter (line 1). It
divides the true negatives (matrix[0][0]) by the sum of the true negatives and
the false positives (matrix[0][1]) (line 2).

The function npv takes the confusion matrix as a parameter (line 4) and di-
vides the true negatives by the sum of the true negatives and the false nega-
tives (matrix[1][0]).

These fourscoresprovideamoredetailedviewof theperformanceofourclas-
sifiers.

Let’s calculate these scores for our random classifier aswell:



2.7 Unmask the Hypocrite Classifier 53

Listing 2.23: The scores of the random classifier

1 random_predictions = run(classify, train_input)
2 random_cm = confusion_matrix(train_labels, random_predictions)
3
4 print('The precision score of the random classifier is {:.2f}'
5 .format(precision_score(train_labels, random_predictions)))
6 print('The recall score of the random classifier is {:.2f}'
7 .format(recall_score(train_labels, random_predictions)))
8 print('The specificity score of the random classifier is {:.2f}'
9 .format(specificity(random_cm)))

10 print('The npv score of the random classifier is {:.2f}'
11 .format(npv(random_cm)))

The precision score of the random classifier is 0.38
The recall score of the random classifier is 0.49
The specificity score of the random classifier is 0.50
The npv score of the random classifier is 0.61

While the predict_death classifier exhibits a completeabsenceofprecisionand
recall, it has excellent specificity. It reaches an NPV score that matches the
percentage of negatives in our test dataset (the prevalence).

The random classifier produces balanced scores. You’ll get a little bit differ-
ent scores every time you run the classifier. But the values seem to stay in
certain ranges. While the precision of this classifier is usually below 0.4 the
npv is above 0.6.

The confusionmatrix and relatedmeasures give youmuch information. But
sometimes, you need a more concise metric. For example, the evaluation
function in a machine learning algorithm must return a single measure to
optimize.

And this single measure should unmask a classifier that does not add any
value.

2.7 Unmask the Hypocrite Classifier
Even though the predict_death classifier does not add any insight, it outper-
forms the random classifier concerning overall accuracy. This is because it



54 Chapter 2. Binary Classification

exploits the prevalence, the ratio between the two possible values, not being
0.5.

The confusion matrix reveals more details on certain areas. For example, it
shows that the predict_death classifier lacks any recall andpredicts actual pos-
itives. This is no surprise since it always predicts death.

But having a whole set of metrics makes it difficult tomeasure real progress.
How do we recognize that one classifier is better than another? How do we
even identify a classifier that adds no value at all? Howdowe identify such a
hypocrite classifier?

Let’s write a generalized hypocrite classifier and see howwe can unmask it.

Listing 2.24: A hypocrite classifier

1 def hypocrite(passenger, weight):
2 return round(min(1,max(0,weight*0.5+random.uniform(0, 1))))

The hypocrite classifier takes the passenger data and a weight value. The weight
is a number between −1 and 1. It denotes the classifier’s tendency to predict
death (negative values) or survival (positive values).

The formula weight*0.5+random.uniform(0, 1) generates numbers between−0.5
and 1.5. The minand max functionsensure theresult tobebetween 0and 1. The
round function returns either 0 (death) or 1 (survival).

Depending on the weight, the chances to return one or the other prediction
differs.

If weight is −1, it returns −1*0.5+random.uniform(0, 1), a number between −0.5
and 0.5. A number almost always rounding to 0 (predicted death).

If weight is 0, the formula returns −1*0+random.uniform(0, 1). This is our ran-
dom classifier.

If weight is 1, it returns 1*0.5+random.uniform(0, 1), a number that is always
greater than 0.5 and thus, rounding to 1(predicted survival).

We can choose the tendency from −1 to 1. −1 always predicts death, 0 is en-
tirely random, 1 always predicts survival.

Let’s have a look at how the predictions vary. We pass the weight as a hyper-
parameter. Try different values, if you like.



2.7 Unmask the Hypocrite Classifier 55

Listing 2.25: The scores of the hypocrite classifier

1 w_predictions = run(lambda passenger: hypocrite(passenger, −0.5),
train_input)

2 w_cm = confusion_matrix(train_labels, w_predictions)
3
4 print('The precision score of the hypocrite classifier is {:.2f}'
5 .format(precision_score(train_labels, w_predictions)))
6 print('The recall score of the hypocrite classifier is {:.2f}'
7 .format(recall_score(train_labels, w_predictions)))
8 print('The specificity score of the hypocrite classifier is {:.2f}'
9 .format(specificity(w_cm)))

10 print('The npv score of the hypocrite classifier is {:.2f}'
11 .format(npv(w_cm)))

The precision score of the hypocrite classifier is 0.38
The recall score of the hypocrite classifier is 0.22
The specificity score of the hypocrite classifier is 0.77
The npv score of the hypocrite classifier is 0.61

If you run the hypocrite classifier a few times, youmay get a feeling for its per-
formance. But let’s create a visualization of it.

The following code runs the hypocrite classifier for different values of weight.

The range of allowed weights is between−1 and 1. Wedivide this range into 40
(cnt_steps) steps (line 4). We create lists of the indices (steps=[0, 1, ..., 38,
39], line 7) and of the weights at every step (weights=[−1, −0.95, ... 0.9, 0.95,
1.0], lines 10-13).

We run the hypocrite classifier for every step (lines 17-19) and put the results
into l_predictions (line 16). Based on the predictions and the actual results,
we calculate the confusion matrix for every step (line 26) and store them in
l_cm (line 25).



56 Chapter 2. Binary Classification

Listing 2.26: Run the hypocrite classifiers

1 import numpy as np
2
3 # number of steps to consider between −1 and 1
4 cnt_steps = 40
5
6 # a list of the step numbers [0, 1, ..., 38, 39]
7 steps = np.arange(0, cnt_steps, 1).tolist()
8
9 # list of the weights at every step [−1, −0.95, ... 0.9, 0.95, 1.0]

10 weights = list(map(
11 lambda weight: round(weight, 2),
12 np.arange(−1, 1+2/(cnt_steps−1), 2/(cnt_steps−1)).tolist()
13 ))
14
15 # list of predictions at every step
16 l_predictions = list(map(
17 lambda step: run(
18 lambda passenger: hypocrite(passenger, weights[step]),
19 train_input
20 ),
21 steps
22 ))
23
24 # list of confusion matrices at every steo
25 l_cm = list(map(
26 lambda step: confusion_matrix(train_labels, l_predictions[step]),
27 steps
28 ))

The next piece of code takes care of rendering the two graphs.

The green graph depicts the number of predicted survivals at a step. The red
graph shows the number of expected deaths.



2.7 Unmask the Hypocrite Classifier 57

Listing 2.27: Plot the distribution of predictions

1 import matplotlib.pyplot as plt
2 import matplotlib
3
4 # create a graph for the number of predicted deaths
5 deaths, = plt.plot(
6 weights, # point at x−axis
7 list(map(lambda cur: l_cm[cur][0][0]+l_cm[cur][1][0], steps)),
8 'lightsalmon', # color of the graph
9 label='Predicted death'

10 )
11
12 # create a graph for the number of predicted survivals
13 survivals, = plt.plot(
14 weights, # point at x−axis
15 list(map(lambda cur: l_cm[cur][0][1]+l_cm[cur][1][1], steps)),
16 'lightgreen', # color of the graph
17 label='Predicted survival'
18 )
19
20 plt.legend(handles=[deaths, survivals],loc='upper center',
21 bbox_to_anchor=(0.5, −0.15), framealpha=0.0, ncol=2)
22 plt.xlabel("Weight")
23 plt.ylabel("Number of predictions")
24 plt.show()

Figure 2.3: Distribution of predictions based on the weight



58 Chapter 2. Binary Classification

Wecan see that the hypocrite classifier generates the expected tendency in its
predictions. At weight=−1, it always predicts death, at weight=0 it is 50:50, and
at weight=1 it always predicts survival.

Let’s seehow thedifferent hypocrite classifiers performat the fourmetrics de-
pending on the weight.

Listing 2.28: Metrics of the hypocrite classifier

1 l_precision = list(map(lambda step: precision_score(train_labels,
l_predictions[step]),steps))

2 l_recall = list(map(lambda step: recall_score(train_labels, l_predictions
[step]),steps))

3 l_specificity = list(map(lambda step: specificity(l_cm[step]),steps))
4 l_npv = list(map(lambda step: npv(l_cm[step]),steps))

In these four lines, we calculate the fourmetrics at each step. Let’s visualize
them.
Listing 2.29: Plot the performance measures

1 m_precision, = plt.plot(weights, l_precision, 'pink', label="precision")
2 m_recall, = plt.plot(weights, l_recall, 'cyan', label="recall")
3 m_specificity, = plt.plot(weights, l_specificity, 'gold', label="

specificity")
4 m_npv, = plt.plot(weights, l_npv, 'coral', label="npv")
5
6 plt.legend(
7 handles=[m_precision, m_recall, m_specificity, m_npv],
8 loc='upper center',
9 bbox_to_anchor=(0.5, −0.15),

10 framealpha=0.0,
11 ncol=4)
12
13 plt.xlabel("Weight")
14 plt.ylabel("Number of predictions")
15 plt.show()



2.7 Unmask the Hypocrite Classifier 59

Figure 2.4: Performance measures of the hypocrite classifier

These graphs show some exciting characteristics. specificity and recall
are directly related to the classifier’s tendency to predict death (higher
specificity) or to predict survival (higher recall).

Except for the edge cases where all predictions are death, or all are survival,
the values for precision and npv seem to be horizontal lines. precision relates
to theprevalence of 39% survivals in ourdata and npv to theprevalence of 61%
deaths.
Listing 2.30: Calculating the mean of the measures

1 l_mean = list(map(lambda step: sum(step)*0.25, zip(l_precision, l_recall,
l_specificity, l_npv)))

2 m_mean, = plt.plot(weights, l_mean, 'pink', label="Mean of the measures")
3
4 plt.legend(handles=[m_mean],loc='upper center',
5 bbox_to_anchor=(0.5, −0.15),framealpha=0.0)
6 plt.ylim(0, 1)
7 plt.show()



60 Chapter 2. Binary Classification

Figure 2.5: The mean of the measures discloses the absence of
any information gain

When looking at themean of all fourmeasures,we see an almost flat line. Its
drops at the edges are due to precision and npv being 0 there because there are
nopredictedsurvivals (leftedge) respectivelynopredicteddeaths (rightedge)
to calculate somemeasures.

This line indicates that the overall level of information provided by all hyp-
ocrite classifiers is equal. And the level is about 0.5. That is the baseline for a
binary classifier, for there are only two possible outcomes.

Eventhoughspecific typesof hypocriteclassifiersareable to trickasinglemea-
sure (like accuracy, recall, precision, or npv) byexploiting theprevalence,when
looking at all complementarymeasures at once,we canunmask the hypocrite
classifier.

However, thisdoesnot imply that themeanof thesemeasures is thebestmea-
sure to evaluate the performance of your classifier with. Depending on your
task at hand, you may, for instance, favor precision over recall. Rather, the
implication is that you should look at the overall level of information pro-
vided by the classifier, too. You should not let yourself be dazzled by the clas-
sifier’s performance at a singlemeasure.

Finally, let’s createareusable functionthatcalculates themeasures forusand
displays the results.



2.7 Unmask the Hypocrite Classifier 61

Listing 2.31: A reusable function to unmask the hypocrite classifier

1 def classifier_report(name, run, classify, input, labels):
2 cr_predictions = run(classify, input)
3 cr_cm = confusion_matrix(labels, cr_predictions)
4
5 cr_precision = precision_score(labels, cr_predictions)
6 cr_recall = recall_score(labels, cr_predictions)
7 cr_specificity = specificity(cr_cm)
8 cr_npv = npv(cr_cm)
9 cr_level = 0.25*(cr_precision + cr_recall + cr_specificity + cr_npv)

10
11 print('The precision score of the {} classifier is {:.2f}'
12 .format(name, cr_precision))
13 print('The recall score of the {} classifier is {:.2f}'
14 .format(name, cr_recall))
15 print('The specificity score of the {} classifier is {:.2f}'
16 .format(name, cr_specificity))
17 print('The npv score of the {} classifier is {:.2f}'
18 .format(name, cr_npv))
19 print('The information level is: {:.2f}'
20 .format(cr_level))

Let’s use this function to get a report of our random classifier.

Listing 2.32: The report of the random classifier

1 classifier_report(
2 "Random PQC",
3 run,
4 classify,
5 train_input,
6 train_labels)

The precision score of the Random PQC classifier is 0.38
The recall score of the Random PQC classifier is 0.51
The specificity score of the Random PQC classifier is 0.47
The npv score of the Random PQC classifier is 0.61
The information level is: 0.49



3. Qubit and Quantum States

In this chapter, we start with the very basics of quantum computing–the
quantumbit. Andwewillwrite ourfirst quantumcircuit. A quantumcircuit
is a sequence of quantum bit transformations–the quantum program. Let’s
start with the basics.

3.1 Exploring the Quantum States
Theworld of quantummechanics is different. A quantum system can be in a
state of superposition. A popular notion of superposition is that the system
is in different states concurrently unless youmeasure it.

For instance, the spin of a particle is not up or down, but it is up and down at
the same time. Butwhen you look at it, you find it either up or down.

Or, let’s say you flip a quantum coin. In the air, it has both values, heads and
tails. If and only if you catch it and look at it, it decides for a value. Once
landed, it is a normal coinwith heads up or tails up.

Anothernotionof superposition is that the systemis truly randomand there-
fore distinguishes it from the systems we know. Tossing a (normal) coin,
for instance, seems random because whenever you do it, the conditions are
slightly different. And even tiny differences can change the outcome from
heads to tails. The coin is sensitive dependent to initial conditions.

If we were able to measure all conditions precisely, we could tell the out-
come. In classical mechanics, there is no randomness. Things in our every-



3.1 Exploring the Quantum States 63

dayworld, suchas thecoin, seemrandom. But theyarenot. Ifmeasuredwith
infinite precision, randomnesswould disappear. By contrast, a quantumsys-
tem is truly random.

Maybe youwonder: Ok, it’s random. Where’s the big deal?

The big thing is the consequences. In a classic system, a system sensitive de-
pendent to initial conditions, the answer to a question is already determined
beforewe ask it.

Rather than watching the baseball match tonight, you spend the evening
with your friends. When you return home, even though you don’t know the
results, thematch is over, and there is a definite result. There could be differ-
ent results, but you simply don’t know the result until you look at it.

Contrarily, in a quantum system, the answer to a question is not determined
up until the time you ask it. And since it is not determined yet, you still can
change the probabilities ofmeasuring distinct states.

Do you have doubts? Good! Not even Einstein liked this notion. It led him to
his famous statement of God does not play dice.

God does not
play dice.

Figure 3.1: Albert Einstein

Many physicists, including Einstein, proposed the quantum state, though
hidden, to be a well-defined state. This is known as the hidden variable the-
ory.

There are statistically distinct behaviors between a system following thehid-
den variable theory and a quantum system following the superposition prin-
ciple. And experiments showed that the quantum mechanical predictions
were correct.

For now, let’s accept the quantum state is something different. Later in this



64 Chapter 3. Qubit and Quantum States

book,wewill have a closer look at it. And its consequences. But this requires
a littlemore theory andmath.

We turn to the quantum computer. Let’s say you have a quantumbit. We call
it qubit. Unless you observe its value, it is in a superposition state of 0 and 1.
Once you observe its value, you’ll get 0 or 1.

The chances of a qubit to result in either one value don’t need to be 50:50. It
can be 25:75, 67:33, or even 100:0. It can be anyweighted probability distribu-
tion.

The probability distribution a qubit has when observed depends on its state.
The quantum state.

In quantummechanics,we use vectors to describe the quantum state. A pop-
ularway of representing quantum state vectors is theDirac notation’s “ket”-
construct that looks like |ψ⟩. In Python, we don’t have vectors. But we have
arrays. Luckily, their structures are similar.

Let’s have a look. We start with the simplest case. Let’s say we have a qubit
that, when observed, always has the value 0. If you argued this qubit must
have thevalue 0evenbefore it isobserved, youwouldn’tbecompletelywrong.
Yet, you’dbe imprecise. Before it is observed, this qubit has theprobability of
1 (= 100%) to have the value 0when observed.

These are the equivalent representations (ket, vector, array) of a qubit that
always results in 0when observed:

|0⟩=
[

1
0

]
and in Python [1, 0].

Accordingly, the following representations depict a qubit that always results
in 1when observed:

|1⟩=
[

0
1

]
and in Python [0, 1].

Ok, enough with the theory for now. Let’s have a look at the code of such a
qubit.

If youhaven’t configured yourworkstation yet, have a look at the brief expla-
nation of how to set up theworking environment (section 1.8).

Now, open the Jupyter notebook and test whetherQiskitworks.



3.1 Exploring the Quantum States 65

Listing 3.1: Verify Qiskit version

1 import qiskit
2 qiskit.__qiskit_version__

{'qiskit-terra': '0.16.4',
'qiskit-aer': '0.7.4',
'qiskit-ignis': '0.5.2',
'qiskit-ibmq-provider': '0.11.1',
'qiskit-aqua': '0.8.2',
'qiskit': '0.23.5'}

If you get a response like this, Qiskitworks. Great! We’re ready to create our
first qubit.

Listing 3.2: The first qubit

1 from qiskit import QuantumCircuit
2
3 # Create a quantum circuit with one qubit
4 qc = QuantumCircuit(1)
5
6 # Define initial_state as |1>
7 initial_state = [0,1]
8
9 # Apply initialization operation to the qubit at position 0

10 qc.initialize(initial_state, 0)

The fundamental unit ofQiskit is the quantumcircuit. Aquantumcircuit is a
model for quantum computation. The program, if youwill. Our circuit con-
sists of a single qubit (line 4).

We define [0,1] as the initial_state of our qubit (line 7) and initialize the first
and only qubit (at position 0 of the array) of our quantum circuit with it (line
10).

Remember [0,1]? This is the equivalent to |1⟩ =
[

0
1

]
. And in plain English, it

is a qubit resulting in the value 1when observed.

This is it. It’s now time to boot our quantum computer. In case you don’t



66 Chapter 3. Qubit and Quantum States

have one, noproblem. Wecan simulate it. (In case youhave one: “Cool, letme
know”).

Listing 3.3: Prepare the simulation backend

1 from qiskit import execute, Aer
2
3 # Tell Qiskit how to simulate our circuit
4 backend = Aer.get_backend('statevector_simulator')
5
6 # Do the simulation, returning the result
7 result = execute(qc,backend).result()

Qiskitprovides the Aerpackage (thatwe import at line 1). It provides different
backends for simulatingquantumcircuits. Themost commonbackend is the
statevector_simulator (line 4).

The execute function (that we import at line 1, too) runs our quantum circuit
(qc) at the specified backend. It returns a job object that has a useful method
job.result(). This returns the result object once our program completes it.

Let’s have a look at our qubit in action.

Qiskit uses Matplotlib to provide useful visualizations. A simple histogram
will do. The result object provides the get_counts method to obtain the his-
togramdata of an executed circuit (line 5).

Themethod plot_histogram returns aMatplotlib figure that Jupyter draws au-
tomatically (line 8).

We seewe have a 100% chance of observing the value 1.

Listing 3.4: The measured qubit

1 from qiskit.visualization import plot_histogram
2 import matplotlib.pyplot as plt
3
4 # get the probability distribution
5 counts = result.get_counts()
6
7 # Show the histogram
8 plot_histogram(counts)



3.1 Exploring the Quantum States 67

Figure 3.2: The qubit state

Now, let’smove on to amore advanced case. Say, wewant our qubit to result
in either 0 or 1with the same probability (50:50).

In quantummechanics, there is the fundamental principle superposition. It
says any two (ormore) quantum states can be added together (“superposed”),
and the result will be another valid quantum state.

Wait! We already know two quantum states, |0⟩ and |1⟩. Why don’t we add
them? |0⟩ and |1⟩ are vectors. Adding two vectors is straightforward.

Avector is ageometricobject thathasamagnitude (or length) andadirection.
Usually, they are represented by straight arrows, starting at one point on a
coordinate axis and ending at a different point.

You can add two vectors by placing one vector with its tail at the other vec-
tor’s head. The straight line between the yet unconnected tail and the yet
unconnected head is the sumof both vectors. Have a look at the figure 3.3.

Mathematically, it is as easy.

Let u⃗ =

[
u1
u2

]
and v⃗ =

[
v1
v2

]
be two vectors.

The sumof u⃗ and v⃗ is:

u⃗+ v⃗ =
[

u1 + v1
u2 + v2

]
(3.1)



68 Chapter 3. Qubit and Quantum States

u⃗

v⃗u⃗+ v⃗

Figure 3.3: Adding two vectors

Accordingly, our superposed state should beψ∗:

|ψ⟩= |0⟩+ |1⟩︸ ︷︷ ︸
superposition

=

[
1+0
0+1

]
=

[
1
1

]
(3.2)

∗ψ (“psi”) is a common symbol used for the state of a quantum system.

Wehave a computer in our hands. Why don’t we try it?

Listing 3.5: First attempt to superpose two states

1 # Define state |psi>
2 initial_state = [1, 1]
3
4 # Redefine the quantum circuit
5 qc = QuantumCircuit(1)
6
7 # Initialise the 0th qubit in the state `initial_state`
8 qc.initialize(initial_state, 0)
9

10 # execute the qc
11 results = execute(qc,backend).result().get_counts()
12
13 # plot the results
14 plot_histogram(results)

QiskitError: 'Sum of amplitudes-squared does not equal one.'

It didn’t quite work. It tells us: QiskitError: 'Sum of amplitudes−squared does
not equal one.'.



3.1 Exploring the Quantum States 69

The amplitudes are the values in our array. They are proportional to proba-
bilities. And all the probabilities should add up to exactly 1 (100%). We need
to addweights to the quantum states |0⟩ and |1⟩. Let’s call them α and β .

Weweight |0⟩with α and |1⟩with β . Like this:

|ψ⟩= α|0⟩+β |1⟩=
[

1 ·α +0 ·β
0 ·α +1 ·β

]
=

[
α
β

]
Amplitudes are proportional to probabilities. We need to normalize them so
that α2 +β 2 = 1. If both states |0⟩ and |1⟩ should have the same weight, then
α = β . And therefore, we can solve our equation to α:

α2 +α2 = 1 ⇔ 2 ·α2 = 1 ⇔ α2 =
1
2
⇔ α =

1√
2

Andwe insert the value for both α and β (both are equal). Let’s try this quan-
tum state:

|ψ⟩= 1√
2
|0⟩+ 1√

2
|1⟩=

[
1√
2

1√
2

]
The corresponding array in Python is: [1/sqrt(2), 1/sqrt(2)]. Don’t forget to
import sqrt.

Listing 3.6: Weighted initial state

1 from math import sqrt
2
3 # Define state |psi>
4 initial_state = [1/sqrt(2), 1/sqrt(2)]
5
6 # Redefine the quantum circuit
7 qc = QuantumCircuit(1)
8
9 # Initialise the 0th qubit in the state `initial_state`

10 qc.initialize(initial_state, 0)
11
12 # execute the qc
13 results = execute(qc,backend).result().get_counts()
14
15 # plot the results
16 plot_histogram(results)



70 Chapter 3. Qubit and Quantum States

Figure 3.4: The qubit state

What is the state of qubit that has a 25% chance of resulting in 0 and 75% of
resulting in 1?

The solution is solving the following equation system.

Equation 3.3. This is the definition of a qubit in superposition. This qubit,
when observed, has the probability of α2 to result in 0 and β 2 to result in 1.

|ψ⟩= α|0⟩+β |1⟩=
[

α
β

]
(3.3)

Equation 3.4. This is the required normalization. It requires the sum of the
squared amplitudes (α and β ) to equal 1.

α2 +β 2 = 1 (3.4)

Let’s regard the probabilities 25% and 75% as fractions and equate them to α2

and β 2, respectively.

α2 =
1
4
⇔ α =

1
2

(3.5)

and

β 2 =
3
4
⇔ β =

√
3

2
(3.6)

Now,we insert 3.5 and 3.6 into equation 3.3:

|ψ⟩= 1
2
|0⟩+

√
3

2
|1⟩=

[
1
2√
3

2

]



3.1 Exploring the Quantum States 71

In Python, the array [1/2, sqrt(3)/2] represents the vector
[

1
2√
3

2

]
Now, let’s open our Jupyter notebook and test our calculation.
Listing 3.7: The qubit with a probability of 0.25 to result in 0

1 from qiskit import QuantumCircuit, execute, Aer
2 from qiskit.visualization import plot_histogram
3 from math import sqrt
4
5 qc = QuantumCircuit(1)
6 initial_state = [1/2, sqrt(3)/2] # Here, we insert the state
7 qc.initialize(initial_state, 0)
8 backend = Aer.get_backend('statevector_simulator')
9 result = execute(qc,backend).result()

10 counts = result.get_counts()
11 plot_histogram(counts)

Figure 3.5: The qubit measurement probabilities

Phew. In this chapter, we introduced quite a few terms and equations just to
scratch on the surface of quantummechanics. But the actual source code is
pretty neat, isn’t it?

We introduced the notion of the quantum state. In particular, the state of a
binary quantum system. The quantumbit or qubit.

Untilweobserveaqubit, it is in superposition. Contrary toa classical bit that
can be either 0 or 1, a qubit is in a superposition of both states. But once you
observe it, there are distinct probabilities ofmeasuring 0 or 1.



72 Chapter 3. Qubit and Quantum States

Thismeans thatmultiplemeasurementsmadeonmultiplequbits in identical
stateswill not always give the sameresult. The equivalent representationsof
aquantumbit that,whenobserved,has theprobabilityofα2 to result in 0and
β 2 to result in 1 are:

|ψ⟩ = α|0⟩+ β |1⟩ =
[

α
β

]
, with α2 + β 2 = 1. In Python, the array [alpha, beta]

denotes this state.

3.2 Visual Exploration Of The Qubit
State
Thequbit is a two-dimensional quantumsystem. Eachdimension is denoted
by a standard basis vector:

|0⟩=
[

1
0

]
in Python [1, 0] and

|1⟩=
[

0
1

]
, in Python [0, 1].

The state of thequbit is representedby the superpositionofbothdimensions.
This is the qubit state vector |ψ⟩ (“psi”).

|ψ⟩= α|0⟩+β |1⟩=
[

α
β

]
(3.7)

In Python, |ψ⟩ is the array [alpha, beta].

But |ψ⟩must be normalized by:

α2 +β 2 = 1 (3.8)

Although normalizing the qubit state vector is not a difficult task, doing the
math over and over again is quite cumbersome.

Butmaybe, there’s anotherway, an easyway. Let’s first have a look at a graph-
ical representation of the qubit state |ψ⟩ in the following figure 3.6.

In this representation, both dimensions reside at the vertical axis but in op-
posite directions. The top and the bottom of the system correspond to the
standard basis vectors |0⟩ and |1⟩, respectively.



3.2 Visual Exploration Of The Qubit State 73

|0⟩

|1⟩

|ψ⟩

θ

β

α

Figure 3.6: 2-dimensional qubit system

i When there are two dimensions, the usual way is to put the two
dimensions orthogonal to each other. While using one axis to
represent both dimensions is rather an unusual representation
foratwo-dimensional system, it iswell suitedforaquantumsys-
tem. Butmore on this later.

Let’s have a look at the arbitrary qubit state vector |ψ⟩ in this figure 3.6.

Since qubit state vectors are normalized, |ψ⟩ originates in the center and has
the magnitude (length) of 1

2 . Due to this equal magnitude, all state vectors
end at the pointed circle. So does |ψ⟩.

The angle between the state vector |0⟩ and |ψ⟩, named θ (“theta”), controls
the proximities of the vector head to the top and the bottom of the system
(dashed lines).

These proximities represent the probabilities of

• α2 ofmeasuring |ψ⟩ as 0
• and β 2 ofmeasuring it as 1.

! The proximities α and β are at the opposite sides of the state’s
probability (|ψ⟩) they describe. α is the proximity (or distance)
to |1⟩ because with increasing distance to |1⟩ the probability of



74 Chapter 3. Qubit and Quantum States

measuring 0 increases.

Thus, by controlling the proximities, the angle θ also controls the probabili-
ties ofmeasuring the qubit in either state 0 or 1.

Rather than specifying the relation between α and β and then coping with
normalizing theirvalues,wecanspecify theangleθ anduse the requirednor-
malization to derive α and β from it.

3.3 Bypassing The Normalization
The angle θ controls the probabilities ofmeasuring the qubit in either state 0
or 1. Therefore, θ also determines α and β .

Have a look at figure 3.6 again.

Any valid qubit state vectormust be normalized:

α2 +β 2 = 1 (3.9)

This implies all qubit state vectors have the samemagnitude (length). Since
they all originate in the center, they form a circle with a radius of their mag-
nitude (that is half of the circle diameter).

In such a situation,Thales’ theorem states, if

• A, B, and C are distinct points on a circle (condition 1)
• where the line AC is a diameter (condition 2)
• then the angle∠ABC (the angle at point B) is a right angle.

In our case, the heads of |0⟩, |1⟩, and |ψ⟩ represent the points A, B, and C, re-
spectively (satisfy condition 1). The line between |0⟩ and |1⟩ is the diameter
(satisfy condition 2). Therefore, the angle at the head of |ψ⟩ is a right angle.

Now, the Pythagorean theorem states the area of the square whose side is
opposite the right angle (hypotenuse, c) is equal to the sumof the areas of the
squares on the other two sides (legs a, b).

c2 = a2 +b2 (3.10)

When looking at figure 3.6, again, we can see that α and β are the two legs
of the rectangular triangle and the diameter of the circle is the hypotenuse.



3.3 Bypassing The Normalization 75

Therefore, we can insert the normalization equation 3.9

c =
√

α2 +β 2 =
√

1 = 1 (3.11)

The diameter c is two times the radius, thus two times themagnitude of any
vector |ψ⟩. The length of |ψ⟩ is thus c

2 = 1
2 .

Since all qubit state vectors have the same length, including |0⟩ and |1⟩, there
are two isosceles triangles (△M|0⟩|ψ⟩ and△M|ψ⟩|1⟩).

Have a look at the following figure 3.7.

|0⟩

|1⟩

|ψ⟩

θ

β

α
M

γ
γ

δ

δ

Figure 3.7: Two inner isosceles triangles and an outer
rectangular triangle

Youcansee the two isosceles triangles. Theangles in isosceles trianglesat the
equal legs are equal, as denoted by γ and δ .

Further, the sumof all three angles in a triangle is 180o. Therefore,

θ +2γ = 180o (3.12)

Let’s solve this after γ

γ =
180o −θ

2
= 90o − θ

2
(3.13)

In a rectangular triangle (the outer one), trigonometric identity says the sine
of an angle is the length of the opposite leg divided by the length of the hy-
potenuse. In our case, thismeans:

sinγ =
α
1
= α (3.14)



76 Chapter 3. Qubit and Quantum States

Now,we insert equation 3.13:

sin
(

90o − θ
2

)
= α (3.15)

With sin(90o − x) = cosx, we can see:

α = cos
θ
2

This is the first variablewe aimed to calculate.

The further derivationworks accordingly and is straightforward. At the cen-
ter (M), the (unnamed) angle inside the dashed triangle is 180o −θ .

(180o −θ)+2δ = 180o ⇔ δ =
θ
2

(3.16)

Again, we use the trigonometric identity. This time it implies:

sinδ =
β
1
= β (3.17)

Finally, we insert 3.16:

sin
θ
2
= β (3.18)

This is the second variable to calculate.

We calculated α and β . We can insert it into the definition of the qubit super-
position.

|ψ⟩= α|0⟩+β |1⟩=
[

α
β

]
(3.19)

The result is

|ψ⟩= cos
θ
2
|0⟩+ sin

θ
2
|1⟩=

[
cosθ

2
sinθ

2

]
(3.20)

In Python the two-field array [cos(theta/2), sin(theta/2)] denotes this state.

α and β describe the proximity to the top and the bottom of the system, re-

spectively. θ is the angle between the standard basis vector: |0⟩=
[

1
0

]
and the

qubit state vector |ψ⟩ it represents.

There’s one problem left. For θ ∈ R, what if π < θ < 2π? Or in plain English,
what if the θ denotes a vector pointing to the left side of the vertical axis?



3.3 Bypassing The Normalization 77

Figure 3.8 shows this situation.

|0⟩

|1⟩

|ψ⟩

θ
|+⟩= |0⟩+|1⟩√

2|−⟩= |0⟩−|1⟩√
2

Figure 3.8: 360° 2-dimensional qubit system

Mathematically, we don’t have a problem. Since we square α and β , their
signs (+ or−) are irrelevant for the resulting probabilities.

But what does it mean? How can either α2 or β 2 be negative, as the figure
indicates? The answer is i. i is a complex number whose square is negative:
i2 =−1.

And if α and β are complex numbers (α,β ∈ C), their squares can be negative.

This entails a lot of consequences. And it raises a lot of questions. We will
unravel them one by one in this book. For now, we interpret all vectors on
the left-hand side of the vertical axis to have a negative value for β 2 (β 2 < 0).

While such a value lets us distinguish the qubit state vectors on both sides of
the vertical axis, it does notmatter for the resulting probabilities.

For instance, the state |ψ⟩= |0⟩+|1⟩√
2
yields the same probability ofmeasuring 0

or 1. It resides on the horizontal axis. And so does |ψ⟩= |0⟩−|1⟩√
2

Although these states share the same probabilities, they are different. And
the angle θ differentiates between them.

θ = π
2 specifies |ψ⟩= |0⟩+|1⟩√

2
that is also known as |+⟩.

And θ = 3
2π or θ =−π

2 specifies |ψ⟩= |0⟩−|1⟩√
2
that is also known as |−⟩.



78 Chapter 3. Qubit and Quantum States

One of the consequences mentioned above of α2 or β 2 being negative is that
our normalization rule needs some adjustments.

We need to change the normalization equation 3.8 to:

|α|2 + |β |2 = 1 (3.21)

This section contained a lot of formulae. The important takeaway is we can
specify quantum states that yield certain probabilities of measuring 0 and 1
by an angle θ . It saves us fromdoing the normalizationmanually.

Let’s have a look.
Listing 3.8: Using theta to specify the quantum state vector

1 from math import pi, cos, sin
2 from qiskit import QuantumCircuit, Aer, execute
3 from qiskit.visualization import plot_histogram
4
5 def get_state (theta):
6 """returns a valid state vector"""
7 return [cos(theta/2), sin(theta/2)]
8
9 # play with the values for theta to get a feeling

10 theta = −pi/2 # affects the probabilities
11
12
13 # create, initialize, and execute the quantum circuit
14 qc = QuantumCircuit(1)
15 qc.initialize(get_state(theta), 0)
16 backend = Aer.get_backend('statevector_simulator')
17 result = execute(qc,backend).result()
18 counts = result.get_counts()
19
20 # Show the histogram
21 plot_histogram(counts)



3.4 Exploring The Observer Effect 79

Figure 3.9: Theta specifies the qubit state |->

Inthispieceofcode,we introducedthe function getState (line5). It takes theta
as a parameter and returns the array [cos(theta/2), sin(theta/2)]. This is the
vectorwe specified in the equation 3.20.

3.4 Exploring The Observer Effect
A qubit is a two-level quantum system that is in a superposition of the quan-
tum states |0⟩ and |1⟩ unless you observe it. Once you observe it, there are
distinct probabilities of measuring 0 or 1. In physics, this is known as the
observer effect. It says the mere observation of a phenomenon inevitably
changes that phenomenon itself. For instance, if you measure the temper-
ature in your room, you’re taking away a little bit of the energy to heat up
the mercury in the thermometer. This loss of energy cools down the rest of
your room. In the world we experience, the effects of observation are often
negligible.

But in the sub-atomic world of quantum mechanics, these effects matter.
They matter a lot. The mere observation of a quantum bit changes its state
from a superposition of the states |0⟩ and |1⟩ to either one value. Thus, even
the observation is a manipulation of the system we need to consider when
developing a quantum circuit.

Let’s revisit the quantum circuit from section 3.1. Here’s the code and the re-
sult if you run it:



80 Chapter 3. Qubit and Quantum States

Listing 3.9: A circuit without measurement

1 from qiskit import QuantumCircuit, execute, Aer
2 from qiskit.visualization import plot_histogram
3 from math import sqrt
4
5 # Create a quantum circuit with one qubit
6 qc = QuantumCircuit(1)
7
8 # Define state |Psi>
9 initial_state = [1/sqrt(2), 1/sqrt(2)]

10
11 # Apply initialization operation to the qubit at position 0
12 qc.initialize(initial_state, 0)
13
14 # Tell Qiskit how to simulate our circuit
15 backend = Aer.get_backend('statevector_simulator')
16
17 # Do the simulation, returning the result
18 result = execute(qc,backend).result()
19
20 # Get the data and display histogram
21 counts = result.get_counts()
22 plot_histogram(counts)

Figure 3.10: Probabilities of measuring a qubit

Our circuit consists of a single qubit (line 6). It has the initial state [1/sqrt(2),
1/sqrt(2)] (line 9) thatwe initialize our quantum circuit with (line 12).



3.4 Exploring The Observer Effect 81

Here are theDirac and the vector notation of this state:

|ψ⟩= 1√
2
|0⟩+ 1√

2
|1⟩=

[
1√
2

1√
2

]

We add a simulation backend (line 15), execute the circuit, and obtain the re-
sult (line 18). The result object provides the get_counts function that provides
the probabilities for the resulting (observed) state of our qubit.

Let’s have a look at our circuit. The QuantumCircuit provides the draw function
that renders an image of the circuit diagram. Provide output=text as a named
parameter to get an ASCII art version of the image.

Listing 3.10: Draw the circuit

1 qc.draw(output='text')

Figure 3.11: The qubit state

This drawing shows the inputs on the left, outputs on the right, and opera-
tions in between.

What we see here is our single qubit (q) and its initialization values ( 1√
2
=

0.707). These values are the input and the output of our circuit. Whenwe ex-
ecute this circuit, our result function evaluates the quantumbit in the super-
position state of |0⟩ and |1⟩. Thus, we have a 50:50 chance to catch our qubit
in either one state.

Let’s seewhat happens if we observe our qubit as part of the circuit.



82 Chapter 3. Qubit and Quantum States

Listing 3.11: Circuit with measurement

1 qc = QuantumCircuit(1)
2 qc.initialize(initial_state, 0)
3
4 # observe the qubit
5 qc.measure_all()
6
7 # Do the simulation, returning the result
8 result = execute(qc,backend).result()
9 counts = result.get_counts()

10 plot_histogram(counts)

Figure 3.12: Measuring the qubit inside the circuit

“Whoa?!”

We get a 100% probability of resulting state 1. That can’t be true. Let’s rerun
the code. I know, doing the same things and expecting different results is a
sign of insanity.

Listing 3.12: Another circuit with measurement

1 qc = QuantumCircuit(1)
2 qc.initialize(initial_state, 0)
3 qc.measure_all()
4 result = execute(qc,backend).result()
5 counts = result.get_counts()
6 plot_histogram(counts)



3.4 Exploring The Observer Effect 83

Figure 3.13: Measuring the qubit inside the circuit, again

Again. 100% probability ofmeasuring…wait… it’s state 0.

No matter how often you run this code, you’ll always get a 100% probability
of either 0 or 1. In fact, if you reran the codemany, many times and counted
the results, you’d see a 50:50 distribution.

Sounds suspicious? Yes, you’re right. Let’s have a look at our circuit.

Listing 3.13: Draw a circuit with measurement

1 qc.draw(output='text')

Figure 3.14: A circuit with measurement

Our circuit nowcontains ameasurement. That is anobservation. It pulls our
qubit out of a superposition state and lets it collapse into either 0 or 1. When



84 Chapter 3. Qubit and Quantum States

we obtain the result afterward, there’s nothing quantumic anymore. It is a
distinct value. And this is the output (to the right) of the circuit.

Whetherwe observe a 0 or a 1 is now part of our quantum circuit.

! The small number at the bottommeasurement line does not de-
pict a qubit’s value. It is themeasurement’s index that indicates
the classical bit that receives themeasurement.

Sometimes, we refer to measurement as collapsing the state of the qubit.
This notion emphasizes the effect a measurement has. Unlike classical pro-
gramming, where you can inspect, print, and show values of your bits as of-
ten as you like, in quantum programming, measurement has an effect on
your results.

Ifwe constantlymeasured our qubit to keep track of its value,wewouldkeep
it inawell-definedstate, either 0or 1. Suchaqubitwouldn’tbedifferent from
aclassical bit. Our computation couldbe easily replacedbya classical compu-
tation. In quantum computation, wemust allow the qubits to explore more
complex states. Measurements are therefore only used when we need to ex-
tract an output. Thismeans thatwe often place allmeasurements at the end
of our quantum circuit.

In this section,we had a look at the simplest quantumcircuit. We initialize a
singlequbit andobserve it. But it effectivelydemonstrates theobservereffect
in quantum computing. It is something we need to keep in mind when we
startmanipulating our qubits.

3.5 Parameterized Quantum Circuit
In chapter 2, we created different hypocrite classifiers. These are classifiers
solely buildingupon chancewhenpredicting the label of a thing. While such
aclassifiercanyieldseeminglygoodperformance inasinglemeasure, suchas
precision, it does not reach an average far beyond 0.5 four the fourmeasures
that directly result from the confusion matrix (precision, recall, specificity,
andNPV).

In this section, we use a quantum circuit to solve our binary classification
task. This quantum circuit is a Parameterized Quantum Circuit (PQC). A
PQC is a quantum circuit that takes all data it needs as input parameters.
Therefore it has its name parameterized. It predicts the label of the thing



3.5 Parameterized Quantum Circuit 85

based on these parameters.

The following image 3.15 depicts the simple PQCwe are about to build in this
section.

PQC

|ψ⟩

0

1

Figure 3.15: A PQC binary classifier

This PQC takes a single quantum state (ψ) as its input. It measures the state
and provides its prediction as output.

We created such a quantum circuit in the last section 3.4, already.

Here’s the source code.
Listing 3.14: A simple PQC binary classifier

1 qc = QuantumCircuit(1)
2 initial_state = [1/sqrt(2), 1/sqrt(2)]
3 qc.initialize(initial_state, 0)
4 qc.measure_all()

In fact, this circuit outputs either 0 or 1, each with a probability of 50%. It
sounds a lot like the random classifierwe created in section 2.5.

Let’s wrap this circuit into a function we can use with the run and evaluate
functionswe created in that section to seewhether it behaves similarly.



86 Chapter 3. Qubit and Quantum States

Listing 3.15: The parameterized quantum circuit classifier

1 from qiskit import execute, Aer, QuantumCircuit
2 from math import sqrt
3 from sklearn.metrics import recall_score, precision_score,

confusion_matrix
4
5 def pqc_classify(backend, passenger_state):
6 """backend −− a qiskit backend to run the quantum circuit at
7 passenger_state −− a valid quantum state vector"""
8
9 # Create a quantum circuit with one qubit

10 qc = QuantumCircuit(1)
11
12 # Define state |Psi> and initialize the circuit
13 qc.initialize(passenger_state, 0)
14
15 # Measure the qubit
16 qc.measure_all()
17
18 # run the quantum circuit
19 result=execute(qc,backend).result()
20
21 # get the counts, these are either {'0': 1} or {'1': 1}
22 counts=result.get_counts(qc)
23
24 # get the bit 0 or 1
25 return int(list(map(lambda item: item[0], counts.items()))[0])

The first difference to notice is the function takes two parameters instead of
one (line 5). Thefirstparameter is aQiskit backend. Since theclassifierwill run
a lot of times in a row, it makes sense to reuse all we can. And we can reuse
the backend.

The second parameter differs from the classifiers thus far. It does not take
the passenger data but a quantumstate vector (passenger_state) as input. This
is not a problem right now since all the hypocrite classifiers we developed so
far ignored the data anyway.

The function creates a quantum circuit with one qubit (line 12), initializes it
with the passenger_state (line 15), measures the qubit (line 18), executes the
quantum circuit (line 21), and retrieves the counts from the result (line 24).
All these steps did not change.

But how we return the counts is new (line 27). counts is a Python dictionary.



3.5 Parameterized Quantum Circuit 87

It contains themeasurement result (either 0 or 1) as a key and the probability
as the associated value. Since our quantum circuitmeasures the qubit, it col-
lapsed to a finite value. Thus, themeasurement probability is always 1. Con-
sequently, counts is either {'0': 1} or {'1': 1}.

All we’re interested in here is the key. And this is whatwe return.

We start (from inner to outer)with the term counts.items(). It transforms the
Pythondictionary into a list of tuples, like [('0', 1)]. Sincewe only have one
key in the dictionary, there is only one tuple in the list. The important point
is toget the tuple rather than thedictionary’skey-valueconstructbecausewe
can access a tuple’s elements through the index.

This is what we do in the function lambda: item: item[0]. It takes a tuple and
returns its first element. We do this for every item in the list (even though
there is onlyone item)byusing list(map(...)). Fromthis list,we take thefirst
(and only) item (either '0' or '1') and transform it into a number (int(...)).

Beforewe can run it, we need to load the prepared passenger data.

Listing 3.16: Load the data

1 import numpy as np
2
3 with open('data/train.npy', 'rb') as f:
4 train_input = np.load(f)
5 train_labels = np.load(f)
6
7 with open('data/test.npy', 'rb') as f:
8 test_input = np.load(f)
9 test_labels = np.load(f)

The following code runs the pqc_classifierwith the initial statewith a proba-
bility of 0.5 tomeasure 0 or 1, respectively (line 5).

Further, we create a backend (line 2) and provide it as a parameter to be
reused (line 8).



88 Chapter 3. Qubit and Quantum States

Listing 3.17: The scores of the random quantum classifier

1 # Tell Qiskit how to simulate our circuit
2 backend = Aer.get_backend('statevector_simulator')
3
4 # Specify the quantum state that results in either 0 or 1
5 initial_state = [1/sqrt(2), 1/sqrt(2)]
6
7 classifier_report("Random PQC",
8 run,
9 lambda passenger: pqc_classify(backend, initial_state),

10 train_input,
11 train_labels)

The precision score of the Random PQC classifier is 0.39
The recall score of the Random PQC classifier is 0.49
The specificity score of the Random PQC classifier is 0.51
The npv score of the Random PQC classifier is 0.61
The information level is: 0.50

Whenwe run the pqc_classify classifier with the initial state, we can see that
it yields identical scores as the random classifier did.

But how these two classifiers create the results is entirely different.

The classic “random” classifier uses the function random and initializes it, as
depicted by the following code snippet.

Listing 3.18: Initialization of classical (pseudo‐)random

1 import random
2 random.seed(a=None, version=2)

Weprovide None as the randomness source (a). This implies that the function
takes a value from the operating system. Thus, it appears random, but it is
not. If we knew the value it gets from the operating system or specified a dis-
tinct value ourselves, we could reproduce the exact predictions.

That’s why Python’s random function generates pseudo-random (see Python-
docs) numbers.

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html


3.6 Variational Hybrid Quantum‐Classical Algorithm 89

By contrast, the PQCgenerates truly randomresults (when running on a real
quantumcomputer). This is followingoneof the interpretations of thequan-
tum state of superposition thatwe discussed in section (3.1).

Nevertheless, we have not used anything quantumic yet, making us see the
difference between classical pseudo-random and quantumic genuinely ran-
dom.

3.6 Variational Hybrid
Quantum-Classical Algorithm
The PQC binary classifier we created in the previous section 3.5 is as good as
the randomclassifier or as poor because it does not increase the information
level.

This is going to change now. So far, we always feed the PQC with the same

initial state: |ψ⟩=

[
1√
2

1√
2

]
, with the corresponding array in Python: [1/sqrt(2),

1/sqrt(2)].

This statedoesnot take intoaccount thepassengerdataat all. It is ahypocrite
classifier, such as the classifiers we build in section 2.7. Hypocrite classifiers
solely use chancewhenpredicting the label of a thing. While such a classifier
can yield seemingly good performance in a single metric, such as precision,
it does not reach an average above 0.5 for the fourmetrics that directly result
from the confusion matrix (precision, recall, specificity, and NPV). Thus, it
does not provide any information gain.

To improve our classifier, we need to use the passenger data. However, even
though we prepared the passenger data into normalized numerical data, it
doesnotfit thequantumstatevectorweneed to feed intoourPQC.Therefore,
we need to pre-process our passenger data to be computable by a quantum
computer.

We implicitly post-processed the results as part of the return statement, as
shown in the following snippet.



90 Chapter 3. Qubit and Quantum States

Listing 3.19: Return statement of pqc‐classify

1 def pqc_classify(backend, passenger_state):
2 # ...
3
4 # get the bit 0 or 1
5 return int(list(map(lambda item: item[0], counts.items()))[0])

Since we have a binary classification task, our prediction is 0 or 1. Thus, our
post-processing is limited to transforming the output format. But in any
other setting, post-processingmay involve translation fromtheoutputof the
quantum circuit into a useable prediction.

Altogether, we wrap the PQC into a process of classical pre-processing and
post-processing. This is an algorithm with an outer structure running at a
classical computerandaninnercomponentrunningonaquantumcomputer.
It is aVariationalHybridQuantum-Classical Algorithm, and it is a popular
approach for near-term quantumdevices.

Figure 3.16 shows the overall architecture of our simple Variational Hybrid
Quantum-Classical Algorithm.

PQC

|ψ⟩

Running at
quantum
computer

data measurement

prediction

Running at
classical
computer

Pre-Processing:
Post
Processing:

Figure 3.16: A Variational Hybrid Quantum-Classical Algorithm

Thedata ispre-processedonaclassical computer todeterminea set ofparam-
eters for the PQC. In our simple case, this is the quantum state vector |ψ⟩.



3.6 Variational Hybrid Quantum‐Classical Algorithm 91

The quantum hardware uses the initial quantum state, works with it, and
performsmeasurements. All its calculations are parameterized. So, they are
relatively small and short-lived. In our case, we only measure the quantum
state. We do not use any other parameters beyond |ψ⟩.

Finally, themeasurement outcomes are post-processed by the classical com-
puter to generate a prediction.

The overall algorithm consists of a closed-loop between the classical and
quantum components.

Let’s separate our code thus far into the three parts:

• Pre-processing
• PQC
• Post-processing

Listing 3.20: Pre‐processing template

1 def pre_process(passenger):
2 """
3 passenger −− the normalized (array of numeric data) passenger data
4 returns a valid quantum state
5 """
6 quantum_state = [1/sqrt(2), 1/sqrt(2)]
7 return quantum_state

The function pre_process takes thepassenger data as an array of numeric data.

It returns a valid quantum state vector. In this first version, it returns the
balanced state ofmeasuring 0 or 1with equal probabilities.



92 Chapter 3. Qubit and Quantum States

Listing 3.21: The parameterized quantum circuit

1 def pqc(backend, quantum_state):
2 """
3 backend −− a qiskit backend to run the quantum circuit at
4 quantum_state −− a valid quantum state vector
5 returns the counts of the measurement
6 """
7
8 # Create a quantum circuit with one qubit
9 qc = QuantumCircuit(1)

10
11 # Define state |Psi> and initialize the circuit
12 qc.initialize(quantum_state, 0)
13
14 # Measure the qubit
15 qc.measure_all()
16
17 # run the quantum circuit
18 result=execute(qc,backend).result()
19
20 # get the counts, these are either {'0': 1} or {'1': 1}
21 counts=result.get_counts(qc)
22
23 return counts

The function pqc is the PQC. It takes a quantum backend and a valid
quantum_state as input parameters.

It prepares and runs the quantum circuit before it returns the counts of its
measurements.
Listing 3.22: Post‐processing

1 def post_process(counts):
2 """
3 counts −− the result of the quantum circuit execution
4 returns the prediction
5 """
6 return int(list(map(lambda item: item[0], counts.items()))[0])

The function post_process takes the counts as input and returns the prediction
(see section 3.5 for the detailed explanation of how to transform the counts
dictionary into the prediction).



3.6 Variational Hybrid Quantum‐Classical Algorithm 93

Let’s put it all together.
Listing 3.23: The scores of the random quantum classifier

1 # Tell Qiskit how to simulate our circuit
2 backend = Aer.get_backend('statevector_simulator')
3
4 classifier_report(
5 "Variational",
6 run,
7 lambda passenger: post_process(pqc(backend, pre_process(passenger))),
8 train_input,
9 train_labels)

The precision score of the Variational classifier is 0.39
The recall score of the Variational classifier is 0.50
The specificity score of the Variational classifier is 0.53
The npv score of the Variational classifier is 0.63
The information level is: 0.51

Wefirst create the statevector_simulator backendwe can reuse for all our pre-
dictions (line 2).

We use the classifier_reportwrapping functionwe developed in section 2.7.

Besides an arbitrary name it uses in the output (line 5), the primary input is
the classifierwe provide (line 6).

We provide an anonymous (lambda) function (a function without a name) as
our classifier. It takes a single parameter passenger and runs (from inner to
outer) the pre_process function with the passenger as a parameter. Finally, we
put the result alongside the backend into the pqc functionwhose result we put
into the post_process function.

Whenwe run the pqc classifierwith the initial state, we can see that it yields
the identical scores as the random classifier.

Now, it’s finally time tobuild a real classifier. One thatuses the actual passen-
ger data to predict whether the passenger survived the Titanic shipwreck or
not.

Let’s start at the end. The current post-processing already returns either 0 or
1. This fits our required output since 0 represents a passengerwho died and 1
means the passenger survived.



94 Chapter 3. Qubit and Quantum States

The current PQC measures the provided quantum state vector and returns
the counts. We could leave it unchanged if we provided input a vector whose
probability corresponds to the passenger’s actual likelihood to survive.

The passenger data consists of an array of seven features. We already trans-
formed all features into numbers between 0 and 1 (section 2.4).

Thus, thepre-processing task is to translate these sevennumbers intoaquan-
tumstatevectorwhoseprobabilitycorresponds to thepassenger’sactual like-
lihood to survive.

Finding such a probability is the innate objective of anymachine learning al-
gorithm.

Our data consists of seven features. The central assumption is that these fea-
tures determine or at least affected whether a passenger survived or not. If
that weren’t the case, we wouldn’t be able to predict anything reliably. So
let’s assume the features determine survival.

The question then is, how do these seven features determine survival? Is
one feature more important than another? Is there a direct relationship be-
tween a feature and survival? Are there any interdependencies between the
features, such as if A then B indicates survival? But if not A, then B is irrele-
vant, but C is essential.

But before we use sophisticated tools (such as Bayesian networks) that can
discover complex structures of how the features determine the outcome, we
start simple.

We assume all features are independent of each other, and each feature con-
tributesmore or less to the survival or death of the passenger.

Therefore, we say the overall probability of survival P(survival) is the sum of
each feature’s value F times the feature’s weight µF (“mu”).

P(survival) = ∑(F ·µF) (3.22)

Let’s have a look atwhat thismeans in Python.



3.6 Variational Hybrid Quantum‐Classical Algorithm 95

Listing 3.24: weigh a passenger's feature

1 def weigh_feature(feature, weight):
2 """
3 feature −− the single value of a passenger's feature
4 weight −− the overall weight of this feature
5 returns the weighted feature
6 """
7 return feature*weight

The weigh_feature function calculates and returns the term F · µF . Thus, this
function calculates how much a passenger’s feature the age contributes to
this passenger’s overall probability of survival. The higher the weighted
value, the higher the chance.

Next, we need to add all the weighted features to calculate the overall proba-
bility.
Listing 3.25: Calculate the overall probability

1 from functools import reduce
2
3 def get_overall_probability(features, weights):
4 """
5 features −− list of the features of a passenger
6 weights −− list of all features' weights
7 """
8 return reduce(
9 lambda result, data: result + weigh_feature(*data),

10 zip(features, weights),
11 0
12 )

The function get_overall_probability takes two parameters. First, it takes the
list of apassenger’s featurevalues. This is apassenger’s data. Second, it takes
the list of the featureweights.

We construct a list of tuples for each feature (line 10) containing the feature
and its weight. Python’s zip function takes two separate lists and creates the
respective tuple for every two elements in the lists.

We reduce this list of (feature, weight) into a single number (line 8). Then, we
call the weight_feature-function for each of the tuples and add up the results
(line 9), startingwith the value 0 (line 11).



96 Chapter 3. Qubit and Quantum States

Now, we need to calculate the weights of the features. These are similar
across all passengers. Webuild theweights upon the correlation coefficients.

The correlation coefficient is ameasure of the relationship between twovari-
ables. Each variable is a list of values. It denotes howmuch the value in one
list increases as the value of the other list increases. The correlation coeffi-
cient can take values between−1 and 1.

• A correlationcoefficientof 1means that there is aproportional increase
in the other for every increase in one variable.
• A correlation coefficient of −1 means that there is a proportional de-
crease in the other for every increase in one variable.
• A correlation coefficient of 0means that the two variables are not lin-
early related.

We calculate the correlation coefficient for each feature in our dataset in re-
lation to the list of labels. In the following code, we separate our dataset into
a list of the columns (line 4).

The term list(map(lambda passenger: passenger[i], train_input transforms
each passenger’s data into its value at the position i. Andwe do this for i in
range(0,7). Itmeanswe do this for each column.

Listing 3.26: Calculate the correlation coefficients

1 from scipy.stats import spearmanr
2
3 # separate the training data into a list of the columns
4 columns = [list(map(lambda passenger: passenger[i], train_input)) for i

in range(0,7)]
5
6 # calculate the correlation coefficient for each column
7 correlations = list(map(lambda col: spearmanr(col, train_labels)[0],

columns))
8 correlations

[-0.33282978445145533,
-0.539340557551996,
-0.029337576985579865,
0.10244706581397216,
0.15946021387370407,
0.3222967880289113,
-0.16443725432119416]



3.6 Variational Hybrid Quantum‐Classical Algorithm 97

There are different types of correlation coefficients. The most frequently
used are the Pearson and Spearman correlationmethods.

The Pearson correlation is best suited for linear continuous variables,
whereas the Spearman correlation also works for monotonic ordinal vari-
ables. Since we have some categorical data (Plass, Sex, and Embarked), we use
the Spearmanmethod to calculate the correlation coefficient.

Scipyprovides the function spearmanr forus. Wecall this function for each col-
umn and the train_labels (line 7). The function returns two values, the corre-
lation coefficient and the p-value. We’re only interested in the first (at index
0).

The correlation coefficients range from−0.58 to 0.32.

Let’s put this all together in the pre-processing.

Listing 3.27: The weighting pre‐processing

1 from math import pi, sin, cos
2
3 def get_state (theta):
4 """returns a valid state vector from angle theta"""
5 return [cos(theta/2), sin(theta/2)]
6
7 def pre_process_weighted(passenger):
8 """
9 passenger −− the normalized (array of numeric data) passenger data

10 returns a valid quantum state
11 """
12
13 # caluclate the overall probability
14 mu = get_overall_probability(passenger, correlations)
15
16 # theta between 0 (|0>) and pi (|1>)
17 quantum_state = get_state((1−mu)*pi)
18
19 return quantum_state

We use the function get_state from section 3.2. It takes the angle theta and
returns a valid quantum state. An angle of 0 denotes the state |0⟩which is the
probability of 100%measuring 0. An angle of π denotes the state |1⟩ that is the
probability of 100%measuring 1.

Accordingly, we multiply the overall probability we calculate at line 14 with



98 Chapter 3. Qubit and Quantum States

pi to specify anangleup toπ (line 17). Since the correlationcoefficients arebe-
tween−1 and 1 andmost of our coefficients are negative, a value of µ towards
−1 implies the passenger died. Thus,we reverse the angles by calculating (1−
mu)*pi.

Now, we’re ready to run the classifier. Let’s feed it into the classifier_report
wrapping function.

Listing 3.28: Run the PQC with the weighted pre‐processing

1 backend = Aer.get_backend('statevector_simulator')
2
3 classifier_report("Variational",
4 run,
5 lambda passenger: post_process(pqc(backend, pre_process_weighted(

passenger))),
6 train_input,
7 train_labels)

The precision score of the Variational classifier is 0.70
The recall score of the Variational classifier is 0.61
The specificity score of the Variational classifier is 0.84
The npv score of the Variational classifier is 0.78
The information level is: 0.73

We achieve an overall information level of about 0.73 to 0.77. Not too bad,
is it? But before we’re starting to party, we need to test our classifier. We
“trained” the classifierwith the training data. So it had seen the data before.

Let’s run the classifierwith the test dataset.
Listing 3.29: Test the PQC‐based classifier on data it has not seen before

1 classifier_report("Variational−Test",
2 run,
3 lambda passenger: post_process(pqc(backend, pre_process_weighted(

passenger))),
4 test_input,
5 test_labels)



3.6 Variational Hybrid Quantum‐Classical Algorithm 99

The precision score of the Variational-Test classifier is 0.67
The recall score of the Variational-Test classifier is 0.68
The specificity score of the Variational-Test classifier is 0.78
The npv score of the Variational-Test classifier is 0.78
The information level is: 0.73

The overall information level is somewhere between 0.71 and 0.76. This is
onlyslightly lowerthanthevaluewegetwhenrunning itonthetrainingdata.
The algorithm seems to generalize (to a certain extent).

Most importantly, in comparison to the hypocrite classifiers,we see a signifi-
cant increase in the information level. Therefore, this classifierprovides real
information.

It is our first working Variational Hybrid Quantum-Classical Classifier.



4. Probabilistic Binary Classifier

In our first simple Variational Hybrid Quantum-Classical Binary Classifica-
tion Algorithm, we developed in the previous section 3.6, we used a Param-
eterized Quantum Circuit (PQC) that did nothing but measuring a quantum
state. While quantum systems bring inherent randomness and allow us to
workwith probabilities, we did not yet use this characteristic becausewe de-
termined theresultingprobabilityofmeasuringeither0or 1upfront inaclas-
sical program.

In the following two chapters,we go one step further. We create a probabilis-
tic binary classifier that calculates the resulting likelihood inside the PQC.
We build a Variational Hybrid quantum-classical Naïve Bayes Classifier. It
builds upon Bayes’ Theorem. Starting with an initial prior probability, we
update the resulting probability inside the PQC based on the evidence given
by the passenger data.

Don’t worry if you’re not familiar with Bayes Theorem and the Naïve Bayes
classifier. We’ll cover all the basics in this chapter.

Weuse theTitanic shipwreck data to discover Bayes’ Theoremand theNaïve
Bayes classifier with actual data. We load the original data here because it is
easier toworkwithmanually.

Listing 4.1: Load the raw data

1 import pandas as pd
2 train = pd.read_csv('./data/train.csv')



4.1 Towards Naïve Bayes 101

The following table depicts thefirst five rows and thedata in the trainPandas
dataframe. See section 2.3 formore details on the dataset.
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

0 1 0 3 Braund,Mr. OwenHarris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings,Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen,Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle,Mrs. JacquesHeath (LilyMay Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen,Mr. WilliamHenry male 35.0 0 0 373450 8.0500 NaN S

4.1 Towards Naïve Bayes
“Did a passenger survive the Titanic shipwreck?”

A probabilistic classifier predicts the label of a thing based on its probability.
So, toanswerthequestionabove,weneedtoknowwhatthechancetosurvive
is?

Let’s calculate it. In the following snippet, we create a list of all survivors
(line 2). First, we use the Pandas chaining operation (train.Survived) to access
a column. Then, we use Pandas’ eq() function and chain it to the column. It
selects the rowswhose valuesmatch the provided value (1 for survival).

The probability of surviving is the number of survivors divided by the total
number of passengers (line 5).
Listing 4.2: Calculating the probability to survive the Titanic shipwreck

1 # list of all survivors
2 survivors = train[train.Survived.eq(1)]
3
4 # calculate the probability
5 prob_survival = len(survivors)/len(train)
6 print('P(Survival) is {:.2f}'.format(prob_survival))

P(Survival) is 0.38

Given our dataset, the probability of survival is 38%. Thus, I’d rather say the
passenger died than survived.

This is a probabilistic classifier already. It is the “predict_death” classifierwe
created in section 2.5 and discussed in section 2.7. Even though it is a hyp-
ocrite classifier because it does not consider the individual passenger when
predicting survival, this classifier yields ahigher precision thanapurely ran-
dom classifier does.



102 Chapter 4. Probabilistic Binary Classifier

What if the passenger had a second-class ticket? What was this passenger’s
probability of surviving?

Let’s have a look. In the following snippet,we create a list of passengerswith
a second-class ticket (train.Pclass.eq(2), line 2).

We divide the survivors of this subset (secondclass.Survived.eq(1)) by the total
number of passengerswith a second-class ticket (line 4).

Listing 4.3: Calculating the probability to survive if the passenger had a
second‐class ticket

1 # list of all passengers with a second class ticket
2 secondclass = train[train.Pclass.eq(2)]
3
4 prob_survival_secondclass = len(secondclass[secondclass.Survived.eq(1)])/

len(secondclass)
5 print('P(Survived|SecondClass) is {:.2f}'.format(

prob_survival_secondclass))

P(Survived|SecondClass) is 0.47

Second-class passengers had a probability of surviving of 47%. Thus, those
passengers had a much better chance to survive than the average passen-
ger. Mathematically, the term P(Survived|SecondClass) describes a conditional
probability. In general, a conditional probability consists of a Hypothesis
whose probability it denotes, and some Evidencewe observed.

P(Hypothesis|Evidence) (4.1)

This notion of a conditional probability is already an important part of a
Bayesian classifier. While a hypocrite classifier sticks with its prediction ig-
noring all evidence, theBayesian classifier updates our belief about ahypoth-
esis given the evidence.

What if the passengerwas female?



4.1 Towards Naïve Bayes 103

Listing 4.4: Calculating the probability to survive if the passenger was female

1 #list of all females
2 females = train[train.Sex.eq("female")]
3
4 prob_survival_female = len(females[females.Survived.eq(1)])/len(females)
5 print('P(Survived|Female) is {:.2f}'.format(prob_survival_female))

P(Survived|Female) is 0.74

Females had an even better chance to survive. Andwhat if we know that the
passengerwas female and had a second-class ticket?

Listing 4.5: Calculating the probability to survive if the passenger was female and
had a second‐class ticket

1 #list of all females with a second class ticket
2 secondclass_female = secondclass[secondclass.Sex.eq("female")]
3 prob_survival_secondclass_female = len(secondclass_female[

secondclass_female.Survived.eq(1)])/len(secondclass_female)
4 print('P(Survived|SecondClass,Female) is {:.2f}'.format(

prob_survival_secondclass_female))

P(Survived|SecondClass,Female) is 0.92

92% of the female passengerswith a second-class ticket survived. So if Iwere
to predict the survival of such a passenger, I’d say she survived.

A probabilistic classifier can be a powerful tool. For example, based on only
two features, we got an almost precise result on the chances to survive for a
particular class of passengers.

The problem is, though, there aremyriads of possible types of passengers—a
different type foreachpossible combinationofall the features. Forone thing,
calculating all of them upfront is cumbersome. The other and even worse,
when we consider all features, the number of passengers per class might be
only one. Thus, we would create an algorithm that memorizes the training
data rather than generalizing to yet unknown data.



104 Chapter 4. Probabilistic Binary Classifier

In the example above, we calculated the probability of
P(Survived|SecondClass,Female) solely based on the knowledge we gathered
from female passengers with a second-class ticket. We excluded everything
we know about female passengers in other classes ormale passengers.

Listing 4.6: Counting passengers

1 print('There are {} female passengers the dataset'.format(len(females)))
2 print('There are {} passengers with a second−class ticket in the dataset'.

format(len(secondclass)))
3 print('There are {} female passengers with a second−class ticket in\nthe

dataset'.format(len(secondclass_female)))

There are 314 female passengers the dataset
There are 184 passengers with a second class ticket in the dataset
There are 76 female passengers with a second class ticket in
the dataset

The following image 4.1 illustrates these subsets of passengers.

Females
(314)

SecondClass
(184)

Female
and

SecondClass
(76)

P(Survived|Female) = 0.74

P(Survived|SecondClass,Female) = 0.92

P(Survived|SecondClass) = 0.47

P(Survived) = 0.38

Figure 4.1: Passengers



4.2 Bayes' Theorem 105

We see, we only consider 76 passengers (out of 891 in the dataset) when cal-
culating the probability to survive for female passengerswith a second-class
ticket. Thus, the focus narrows down very quickly.

But maybe there’s an alternative. Maybe we can derive the probability of
P(Survived|SecondClass,Female) differently. Indeed, we can. This is where
Naïve Bayes comes into play. In simple terms, Naïve Bayes assumes that the
presenceofaparticular feature inadataset isunrelated to thepresenceofany
other feature. In our case, it implies a passenger being female is unrelated to
the ticket class.

But how can we calculate P(Survived|SecondClass,Female) = 0.92 from
P(Survived|Female) = 0.74 and P(Survived|SecondClass) = 0.47?

This is where Bayes’ Theorem comes into play and helps us.

4.2 Bayes’ Theorem
Bayes’ Theorem describes a way of finding a conditional probability when
you know certain other probabilities. The following equation 4.2 denotes
Bayes’ Theoremmathematically:

P(Hypothesis|Evidence)︸ ︷︷ ︸
posterior

= P(Hypothesis)︸ ︷︷ ︸
prior

· P(Evidence|Hypothesis)
P(Evidence)︸ ︷︷ ︸

modi f ier

(4.2)

Bayes’ Theorem says we can calculate the “posterior” probability from a
“prior” probability and some evidence-related “modifier”.

The “posterior” denoteswhatwe believe aboutHypothesis after gathering the
new information about the Evidence. It is a conditional probability such as
we discussed above. The “prior” probability denotes what we believed about
Hypothesisbeforewegathered thenew information. It is the overall probabil-
ity of ourHypothesis.

Themodifierof thenew informationdenotes the relative change of our belief
aboutHypothesis caused by the Evidence.

This modifier is the quotient of the backward probability
(P(Evidence|Hypothesis)) and the probability of the new piece of informa-
tion (P(Evidence)). The backward probability (the numerator of themodifier)
answers the question, “what is the probability of observing this evidence in
a world where our hypothesis is true?” The denominator is the probability
of observing the evidence on its own.



106 Chapter 4. Probabilistic Binary Classifier

Thus, when you see the evidence often in a world where the hypothesis is
true, but rarely on its own, this evidence seems to support the hypothesis.
On the contrary, if you usually see the evidence everywhere but you don’t
see it in a world where the hypothesis is true, then the evidence opposes the
hypothesis.

The farther themodifier is away from 1, the more it changes the probability.
Amodifier of precisely 1would not change the probability at all. Let’s define
the value of the informativeness as themodifier’s distance to 1.

In f ormativeness = |P(Evidence|Hypothesis)
P(Evidence)

−1|

IfwehaveonehypothesisH andmultiplepiecesof evidenceE1,E2, . . . ,En, then
we have nmodifiersM1,M2, . . . ,Mn:

P(H|E1,E2, . . . ,En)︸ ︷︷ ︸
posterior

=
P(E1|H)

P(E1)︸ ︷︷ ︸
M1

· P(E2|H)

P(E2)︸ ︷︷ ︸
M2

· · · · · P(En|H)

P(En)︸ ︷︷ ︸
Mn

·P(H)︸ ︷︷ ︸
prior

(4.3)

What does thatmean in practice?

Our Hypothesis is a passenger survived the Titanic shipwreck. We have two
pieces of evidence Female and SecondClass.

• P(Survived) is the overall probability of a passenger to survive.
• P(Female) is the probability of a passenger to be female,
• and P(SecondClass) is the probability of a passenger holding a second-
class ticket.
• P(Female|Survived) denotes how likely a passenger who survived is fe-
male.
• AndP(SecondClas|Survived)denotes how likely a passengerwho survived
had a second-class ticket.

The following equation 4.4 depicts how to calculate the probability of a fe-
male passengerwith a second class ticket to survive:

P(Survived|SecCl,Female) =
P(SecCl|Survived)

P(SecCl)
· P(Female|Survived)

P(Female)
·P(Survived)

(4.4)

Let’s have a look at the Python code.



4.2 Bayes' Theorem 107

Listing 4.7: Calculating the posterior probability

1 # calculate the backwards probability of a survivor having a
2 # second−class ticket
3 p_surv_seccl = len(survivors[survivors.Pclass.eq(2)])/len(survivors)
4
5 # calculate the modifier and the informativeness of the second−class

ticket
6 m_seccl = p_surv_seccl / (len(secondclass)/len(train))
7 i_seccl = abs(m_seccl−1)
8 print('The modifier of the second−class ticket is {:.2f}.\nThe

informativeness is {:.2f}'.format(m_seccl, i_seccl))
9

10 # calculate the backwards probability of a survivor being female
11 p_surv_female = len(survivors[survivors.Sex.eq("female")])/len(survivors)
12
13 # calculate the modifier and the informativeness of being female
14 m_female = p_surv_female / (len(females)/len(train))
15 i_female = abs(m_female−1)
16 print('The modifier of being female is {:.2f}.\nThe informativeness is

{:.2f}'.format(m_female,i_female))
17
18 # calculate the posterior probability
19 posterior = m_seccl * m_female * prob_survival
20 print('\nP(Survived|SecondClass,Female) is {:.2f}'.format(posterior))

The modifier of the second class ticket is 1.23.
The informativeness is 0.23
The modifier of being female is 1.93.
The informativeness is 0.93

P(Survived|SecondClass,Female) is 0.91

First, we calculate the modifier of the second class ticket (line 6) and of be-
ing female (line 14). As we can see, the modifier is a positive number that
scales our prior probability. Thus, we can see that both evidences increase
the chance a passenger survived because they are greater than 1. Andwe can
see the informativeness of being female is higher than the informativeness of
a second-class ticket because it has a bigger effect on the prior probability.

The Bayesian probability P(Survived|SecondClass,Female) = 0.91 does not ex-
actly match the forward probability (0.92) we calculated earlier. The reason



108 Chapter 4. Probabilistic Binary Classifier

is the assumed independence of conditions. However, the Bayesian probabil-
ity comes close enough.

Thefirstquestion toariseusually iswhyP(Evidence|Hypothesis) is easier toesti-
mate than P(Hypothesis|Evidence)? If I don’t knowwhat P(Hypothesis|Evidence)
is, how am I supposed to knowwhat P(Evidence|Hypothesis) is?

The explanation usually involves the more constrained perspective of
P(Hypothesis|Evidence). In our case, the probabilities P(Female|Survived) and
P(SecondClas|Survived) are narrowed down to the survivors. We calculated
them from the respective survivors subset (lines 3 and 11).

In a real-world setting, we could retrieve these data by surveying the sur-
vivors. The forward probability of P(Survived|SecondClass,Female) requires a
representative list of all the passengers.

This explanation, however, does not explain why we use the formula in the
case where we have such a list. In our case, it has simple, practical reasons.
As mentioned, if we calculated the forward probabilities directly, we would
need to do it for every single class of passengers. This is a number that
grows exponentially with the number of features. For instance, if we have
seven (useful) features andeach featurehasonly twovalues (somehavemany
more), thereare 27 = 128 classesofpassengers toconsider. If only twoof them
(ticket class and port of embarkation) have three possible values, we’re up to
288 classes (25 ∗32).

By contrast, Bayes’ Theorem lets us add a feature by calculating itsmodifier.
This is a quotient of two probabilities. With seven features, we need to cal-
culate 2 ∗ 2 ∗ 7 = 28 probabilities. If two features have three rather than two
possible values,weneed 2∗(2∗5+3∗2) = 32probabilities. Thisnumber grows
linearly, only.

Do you object: “I have a computer capable of running this number of calcula-
tions”?

While you’re certainly right about a problemwith seven features, youmight
be wrong about a problemwith 20 or 100 features. But even for the problem
at hand, if we considered every single group of passengers, we still had the
problem of too small groups that result in memorization rather than gener-
alizable learning.

Finally, a Naïve Bayes classifierworkswell withmissing data. Because if you
don’thave certainevidence, it isnoproblemto leave it unconsidered. Youup-
date your belief in the resulting probability based on the evidence you have.



4.3 Gaussian Naïve Bayes 109

4.3 Gaussian Naïve Bayes
So far, we have considered categorical data. There are two genders in our
dataset. There are three classes of tickets. These features have distinct val-
ueswe can treat as such.

But how about features such as the age or the paid fare. One way is to trans-
formnumerical features into their categorical counterparts. The question is
howandwhere to separate the categories fromeachother. For instance, a 29-
year old passenger has a different age than a 30-year old. But they are some-
what similar when compared to a 39-year old passenger. But when we split
by tens,wewouldput the 30-year old and the 39-year oldpassengers together
and separate them from the 29-year-old.

The other option we have is to treat numerical features as continuous distri-
butions. A continuous distribution cannot be expressed in tabular form. In-
stead, we use an equation to describe a continuous probability distribution.
A common practice is to assume normal (Gaussian) distributions for numer-
ical variables. The following equation 4.5 denotes the general form of the
Gaussian density function

P(x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )2 (4.5)

The parameter µx is themean of the evidence’s probability distribution. The
parameter σx is its standard deviation.

The following image depicts such a distribution.

Figure 4.2: Gaussian probability distribution

Before we use this formula and calculate how the age affects the chances to



110 Chapter 4. Probabilistic Binary Classifier

survive, let’s first have a look at the actual distribution of the passenger age.

Listing 4.8: The actual distribution of the passenger age

1 train["Age"].hist(bins=80)

Figure 4.3: The actual distribution of the passenger age

Pandas lets us quickly create a histogramof each series in the DataFrame. A his-
togram is a representation of the distribution of data. The named parameter
bins=80 tells Pandas the number of data points (on the x-axis) the histogram
should have.

While it is not perfectly normal distributed, we can see many passengers in
the center between 15 and 35. Next, we calculate themean and the standard
deviation.
Listing 4.9: Calculating the mean and the standard deviation of the passenger age

1 age_mean = train["Age"].mean()
2 age_std = train["Age"].std()
3 print('The average passenger age is {:.1f}. The standard deviation is

{:.1f}'.format(age_mean, age_std))

The average passenger age was 29.7. The standard deviation was 14.5



4.3 Gaussian Naïve Bayes 111

Pandas also provides convenience functions to calculate the mean and the
standard deviation of a data series, such as a column in a DataFrame.

Now, we’re ready to calculate the modifier of a certain age. We can use our
formula fromabove. Let’s calculate the informativeness of an age of 29 years.

Modi f ierAge=29 =
P(Age = 29|Survived)

P(Age = 29)
(4.6)

Again, we use the backward probability. To calculate P(Age = 29|Survived), we
need to use the age distribution among the survivors.

Listing 4.10: Calculating modifier and informativenesses of the age of 29

1 from math import exp, sqrt, pi
2
3 def density(mu,sigma,age):
4 return 1/(sigma*sqrt(2*pi))*exp(−0.5*((age−mu)/sigma)**2)
5
6 survivor_age_mean = survivors["Age"].mean()
7 survivor_age_std = survivors["Age"].std()
8 print('The average survivor age is {:.1f}. The standard deviation is {:.1

f}'.format(survivor_age_mean, survivor_age_std))
9

10 # calculate the Informativeness of the age of 29
11 p_surv_age29 = density(survivor_age_mean, survivor_age_std, 29)
12 p_age29 = density(age_mean, age_std, 29)
13 m_age29 = p_surv_age29 / p_age29
14 i_age29 = abs(m_age29−1)
15 print('The modifier of the age of 29 is {:.2f}.'.format(m_age29))
16 print('Its informativeness is {:.2f}.'.format(i_age29))

The average survivor age is 28.3. The standard deviation is 15.0
The modifier of the age of 29 is 0.97.
Its informativeness is 0.03.

We create a convenience function density to calculate P(x) (lines 3-4). We use
this function to calculate P(Age = 29|Survived) (line 11) and P(Age = 29) (line 12).
We calculate themodifier as the quotient of both (line 13).

We see that the age of 29 does not have a great effect on the probability to sur-
vive. Itsmodifier is close to 1 and thus,its informativeness is pretty small (0.03).



112 Chapter 4. Probabilistic Binary Classifier

Let’s calculate the informativeness of 70-year-old and 5-year-old passengers
as a comparison.

Listing 4.11: Calculating informativenesses of other ages

1 # calculate the Informativeness of the age of 70
2 p_surv_age70 = density(survivor_age_mean, survivor_age_std, 70)
3 p_age70 = density(age_mean, age_std, 70)
4 m_age70 = p_surv_age70 / p_age70
5 i_age70 = abs(m_age70−1)
6 print('The modifier of the age of 70 is {:.2f}.'.format(m_age70))
7 print('Its informativeness is {:.2f}.\n'.format(i_age70))
8
9 # calculate the Informativeness of the age of 5

10 p_surv_age5 = density(survivor_age_mean, survivor_age_std, 5)
11 p_age5 = density(age_mean, age_std, 5)
12 m_age5 = p_surv_age5 / p_age5
13 i_age5 = abs(m_age5−1)
14 print('The modifier of the age of 5 is {:.2f}.'.format(m_age5))
15 print('Its informativeness is {:.2f}.'.format(i_age5))

The modifier of the age of 70 is 0.94.
Its informativeness is 0.06.

The modifier of the age of 5 is 1.22.
Its informativeness is 0.22.

Themodifierof the ageof 70 is notmuchdifferent fromthemodifierof the age
of 29. But an age of 5 years resulted in an increased probability of survival.



5. Working with Qubits

5.1 You Don’t Need To Be AMathematician
Scientific papers and textbooks about quantum computing are full ofmathe-
matical formulae. Even blog posts on quantum computing are loaded with
mathematical jargon. It starts with the first concept you encounter. The
quantum superposition:

|ψ⟩= α|0⟩+β |1⟩=
[

α
β

]
, with α2 +β 2 = 1

Figure 5.1: Hieroglyphs

As a non-mathematician, this formula might already be toomuch. If you’re



114 Chapter 5. Working with Qubits

not familiar with the used Dirac-notation (|ψ⟩) or if you’re not used to work-
ingwith vectors, then such a formula is as good as Egyptian hieroglyphs:

Don’tgetmewrong. Math is agreatwaytodescribe technical concepts. Math
is concise yet precise language. Our natural languages, such as English, by
contrast, are lengthy and imprecise. It takes awhole book full of natural lan-
guage to explain a small collection ofmathematical formulae.

But most of us are far better at understanding natural language than math.
We learn ourmother tongue as a young child, andwe practice it every single
day. We even dream in our natural language. I couldn’t tell if some fellows
dream inmath, though. Formost of us,math is, at best, a foreign language.

Whenwe’reabout to learnsomethingnew, it is easier forus touseourmother
tongue. It is hard enough to grasp themeaning of the new concept. If we’re
taught in a foreign language, it is even harder. If not impossible.

Of course, math is the native language of quantummechanics and quantum
computing, if youwill. Butwhy shouldwe teachquantumcomputingonly in
its own language? Shouldn’t we try to explain it in a waymore accessible to
the learner? I’d say “absolutely”!

Teaching something in the learner’s language doesn’t mean we should not
have a look at the math. We should! But, we use math when its precision
helps us to explain how thingswork.

Math is not the only precise language we have. We have languages that are
as precise as mathematical formulae. And nowadays, these languages come
almost natural tomany. These languages are programming languages.

I do notmean the syntax of a specific programming language. Rather, I refer
to away of thinking almost all programming languages share. From Python
to Java, from Javascript to Ruby, even from C to Cobol. All these languages
build upon boolean logic. Thus, regardless of programming language, a pro-
grammerworks a lot with boolean logic.

Most prominently, boolean logic appears in conditional statements: if then
else.

Listing 5.1: If then else in Python

1 if x and y:# A statement to evaluate in boolean logic
2 doSomething () # if the statement evaluiates to True
3 else:
4 doSomethingElse () #otherwise



5.1 You Don't Need To Be A Mathematician 115

The if-part of a conditional statement is pure boolean logic. Often, it con-
tains the basic boolean operators not, and, and or.

If some statement is True, then itsnegation is False. Conversely, if a statement
is False, then its negation is True. For example, if a statement consists of two
parts P and Q, then P and Q is only True if P is True and Q is True. But P or Q is True
if either P or Q is True.

Here are three examples of boolean logic in Python.
Listing 5.2: Boolean logic in Python

1 P = True
2 Q = False
3
4 print('not P is {}'.format(not P))
5 print('P and Q is {}'.format(P and Q))
6 print('P or Q is {}'.format(P or Q))
7 print('P and not Q is {}'.format(P and not Q))

not P is False
P and Q is False
P or Q is True
P and not Q is True

While Python uses these exact keywords, in math, symbols represent these
operators:

• ¬means not
• ∧means and
• ∨means or

If you’re not a mathematician, these symbols and all the other symbols you
encounter on your quantum machine learning journey may appear cryptic.
But while the representation of a conceptmay differ when you describe it in
Python ormath, the concept itself is the same.

Youdon’tneed tobeamathematician tounderstandboolean logic. Youdon’t
need to be a programmer, either, because we can even describe the boolean
logic by truth tables.

We have two variables, P and Q. Each variable is either true (T) or false (F). De-
pending on the combination of their values, we can deduce the value of any



116 Chapter 5. Working with Qubits

boolean statement. For instance, the following figure 5.2 depicts the truth
table for P, Q, not P, not Q, not P and not Q, not (not P and not Q), and P or Q.

P Q P Q¬ (¬P ¬Q)¬P ¬Q ¬P ¬Q
F
F
T
T

T
T
F
F

T
F
T
F

F
T
F
T

F
F
F
T

T
T
T
F

T
T
T
F

Figure 5.2: Truth table

This truth table reveals that P or Q is equivalent to not (not P and not Q). This
logical equivalence tellsus thatwedonotevenneedtheoperator or. Wecould
replace it by not (not P and not Q).

But P or Q is concise andmuch easier to understand.

“What if therewas no or operator in our programming language?”

The savvy programmerwouldwrite her customoperator.

Listing 5.3: A reimplementation of or

1 def my_or(p, q):
2 return not (not p and not q)
3
4 print('P | Q | P or Q')
5 print('−−−−−−−−−−−−−−')
6 print('T | T | {}'.format(my_or(True, True)))
7 print('T | F | {}'.format(my_or(True, False)))
8 print('F | T | {}'.format(my_or(False, True)))
9 print('F | F | {}'.format(my_or(False, False)))

P | Q | P or Q
--------------
T | T | True
T | F | True
F | T | True
F | F | False



5.1 You Don't Need To Be A Mathematician 117

This is what programming is all about. Programmers write functions that
produce a particular behavior. They use and combine these functions to cre-
ate evenmore functions that exhibit even complex behavior. Thewhole pro-
gram they write comes down to a set of functions savvily combined. Pro-
grammers have their compiler (or interpreter) to translate the higher-level
functions down to basic boolean logic. And this basic boolean logic can be
performedusingelectrical switches. Theswitchesandtheircombinationare
called gates. Whenwe connect gates, they form a circuit.

At a discrete interval, the computer sends a pulse of electricity through the
circuit. If we receive a pulse of electricity at the appropriate time, we inter-
pret it as 1 (true). If we don’t receive a pulse, we interpret it as 0(false).

Despite the name, there is nothing circular about circuits. They are linear
and are read from left to right. Let’s look at an example that corresponds to
the boolean functions thatwe looked at earlier.

The following figure 5.3 depicts the circuit diagram of not (not P and not Q).
The circuit receives the input from the left and outputs it to the right.

P

Q

¬P

¬Q

not

not

and not¬P ¬Q
¬(¬P ¬Q)

Figure 5.3: Classical circuit

Suchgatesandcircuits are thebuildingblocksof anymoderncomputer. This
includes quantum computers. While theworld of quantummechanics is dif-
ferent, theworld of quantum computing is surprisingly similar.

Don’t let yourself be dazzled by all themathematical formulae. They are rep-
resentations of concepts. Notmore, not less.

Let’s return to our introductory formula:

|ψ⟩= α|0⟩+β |1⟩=
[

α
β

]
, with α2 +β 2 = 1

It is the mathematical notation of the quantum state |ψ⟩ (“psi”). While the
state of a classical bit is boolean (either 0meaning false or 1meaning true),



118 Chapter 5. Working with Qubits

the stateof thequantumbit (qubit) is the superpositionof thequantumstates
|0⟩ and |1⟩weighted by α and β .

In this state of superposition, the quantum system is neither 0 nor 1 unless
you measure it. Only when you measure the qubit, the state collapses to ei-
ther 0 or 1. The squares of the two weights (α2) and (β 2) denote the probabil-
ities of measuring either 0 or 1. The larger α is, the higher the probability of
measuring 0. Respectively, the larger β is, the higher the probability of mea-
suring 1.

The formula says somethingmore. It says the quantum state is the vector of

the twoweights
[

α
β

]
.

Avector isageographicalobject thathasa length (magnitude)andadirection.
Ifdrawninacoordinate system, thevector starts in thecenterandendsat the
point specified by the numbers in the vector.

x

y

Figure 5.4: A vector

In Python, a vector is an array. Thus, the state of a qubit is the array [alpha,
beta]. alpha and beta are numerical variables. The quantum state is an array
of two numbers.

Butanarrayof twonumbers is amuchmorecomplexdatatype thanaboolean
value is. A boolean is either True or False. You can transform boolean values
withsimpleoperators, suchas not, and, and or. Youcanreasonabout the trans-
formation of boolean values in a truth table.

But how do you transform an array of two numbers? And how can you reason
about such transformations?

The apparent answer ismath. But it is not the only possible answer. So, let’s
use Python for that.



5.1 You Don't Need To Be A Mathematician 119

Listing 5.4: Reversing the qubit states

1 from math import sqrt
2
3 # define the initital states
4 psi = [0.5, sqrt(3)/2]
5 always_0 = [1, 0]
6 always_1 = [0, 1]
7
8 def transform(name, state, f):
9 print ('{}: [{:.2f}, {:.2f}] result: [{:.2f}, {:.2f}]'.format(name, *

state, *f(state)))
10
11 def reverse_state(arr):
12 return list(reversed(arr))
13
14 print("−−−−−−−−−−− Reversed states: −−−−−−−−−−")
15 transform("psi", psi, reverse_state)
16 transform("|0>", always_0, reverse_state)
17 transform("|1>", always_1, reverse_state)

----------- Reversed states: ----------
psi: [0.50, 0.87] result: [0.87, 0.50]
|0>: [1.00, 0.00] result: [0.00, 1.00]
|1>: [0.00, 1.00] result: [1.00, 0.00]

We start with the initialization of three states. Each state is an array of two
numbers. The state psi has the values 1

2 and
√

3
2 (line 4). The probability of

measuring 0 in this state is (1
2)

2 = 1
4 = 0.25. The probability of measuring 1 is

(
√

3
2 )2 = 3

4 = 0.75.

The state always_0 has the values 1 and 0. The probability of measuring 0 in
this state is 12 = 1 (line 5). The probability of measuring 1 is 02 = 0. Whenwe
measure a qubit in this state, we always measure it as 0. The state always_1 is
the respective opposite. We consistentlymeasure it as 1 (line 6).

Next,wecreate a convenience function transform (lines 8-9). Did I tell you that
writing functions to make things easier is what programming is all about?
This is an example. The function takes the name of the quantum state (an
arbitrary string to show), the state, and a function f. transform prints to the
console the original state and the state after having applied the function f on
it.



120 Chapter 5. Working with Qubits

Finally, we create a function reverse_statewe can feed into transform (lines 11-
12). reverse_state calls Python’sdefault reversed function that returnsanarray
of the same length in the opposite order.

In the output, we can see that the numbers in the state arrays have switched
their positions. Thus, the probability of measuring 0 or 1 switched, respec-
tively. The reversed psi has a 0.75 chance ofmeasuring 0 and a 0.25 chance of
measuring 1. The reversed always_0 is similar to the original always_1.

These are only three possible states. Listing all possible states in a kind of
truth table is impossible. But I think the behavior of the reverse_state func-
tion is quite clear. It is the behavior of the X-gate in quantum computing. It
is one of the fundamental transformations of the quantum state.

Let’s have a look at this gate in practice. We use IBM’s quantum computing
SDKQiskit.

Listing 5.5: The measured qubit

1 from qiskit import execute, Aer, QuantumCircuit
2 from qiskit.visualization import plot_histogram
3
4 # Create a quantum circuit with one qubit
5 qc = QuantumCircuit(1)
6
7 # Define initial_state
8 qc.initialize(psi, 0)
9

10 # Apply the X−gate
11 qc.x(0)
12
13 # Tell Qiskit how to simulate our circuit
14 backend = Aer.get_backend('statevector_simulator')
15
16 # Do the simulation, returning the result
17 result = execute(qc,backend).result()
18 counts = result.get_counts()
19 plot_histogram(counts)



5.1 You Don't Need To Be A Mathematician 121

Figure 5.5: The effect of the X-gate

The fundamental unit ofQiskit is the quantumcircuit. Aquantumcircuit is a
model for quantum computation. The program, if youwill. Our circuit con-
sists of a single one qubit (line 5).

We initialize our qubit with the state psi (line 8), and we apply the X-gate on
it (line 11).

Qiskit provides the Aer package (that we import at line 1). In addition, it of-
fers different backends for simulating quantum circuits. Themost common
backend is the statevector_simulator (line 14).

The execute function (that we import at line 1) runs our quantum circuit (qc)
at the specified backend. It returns a job object that has a useful method job.
result() (line 17). This returns the result object once our program completes
it.

Qiskit uses Matplotlib to provide insightful visualizations. A simple his-
togram will do. The result object provides the get_countsmethod to obtain
the histogramdata of an executed circuit (line 18).

Themethod plot_histogram returns aMatplotlib figure that Jupyter draws au-
tomatically (line 19).

We see we have a 75% chance of observing the value 0 and a 25% chance of
observing the value 1–The exact opposite of the initial state.

You can run the circuit with different initial states to get a better feeling for
this gate.

In general, quantumcircuits are not different fromclassical circuits. We can
represent them in a diagram. Qiskit’s QuantumCircuit class provides the draw



122 Chapter 5. Working with Qubits

method that does the job for us.

Listing 5.6: The measured qubit

1 qc.draw('mpl')

Figure 5.6: A circuit with an X-gate

Wecanseeouronlyqubit (q), its initializationwith thearray [0.5, 0.866], and
the applied X-gate.

You’ve completed the first step towards quantum computing mastery with-
out being a mathematician. Getting a conceptual understanding of quan-
tum gates as the quantumic peers of classical circuit gates does not depend
onmath. The combination of plain English and a little bit of Python is well-
suited. And formany, this combination ismuchmore accessible.

But, math remains paramount to quantum computing. So, if you want to
gain a deep understanding of the concepts, you’ll cope with the mathemat-
ical formulae sooner or later. And as I said, math is a great way to describe
technical concepts.

Let’shavea lookat theunderlyingmathof theX-gate. Don’tworry. I don’t ex-
pectyoutobeamathematician. A littleaffinity toalgebra (that is, thestudyof
mathematical symbols and the rules frommanipulating them) doesn’t hurt,
though.

So far, we used Python’s built-in function reversed. While this is convenient,
we do not see how it works internally. So let’s use another function–a self-
made function.



5.1 You Don't Need To Be A Mathematician 123

Listing 5.7: Self‐made reverse function

1 def adjust_weight(state, weights):
2 return state[0]*weights[0]+state[1]*weights[1]
3
4 print ('reversed psi: [{:.2f}, {:.2f}]'.format(
5 adjust_weight(psi, [0,1]),
6 adjust_weight(psi, [1,0])
7 ))

reversed psi: [0.87, 0.50]

Wedefinea function adjust_weight(line 1). It takes aquantum stateand weights.
Both are arrays with two items. It multiplies the values at position 0, and it
multiplies the values at position 1. It returns the sum of these two products
(line 2).

Wecanuse this function toreverse psi. For adjust_weight returnsa singlenum-
ber,we call it twice to get back an array of two items (lines 5 and 6). In this ex-
ample,we donot explicitly create an array, butwe directly print these values
to the console (line 4).

In both calls, we provide the original psi as the state parameter. For the first
call, whose result is the first number of the reversed psi, we provide [0,1] as
weights. It means we get the sum of 0 times the first number of psi and 1 time
the second number of psi. This sum is the second number of psi.

For the secondcall,whose result is the secondnumberof the reversedpsi,we
provide [1,0] as weights. This is 1 time the first number of psi and 0 times the
second number of psi. This equals the first number of psi.

With these weights, we have effectively switched the places of the numbers
of psi.

In math, this is matrix multiplication. The general formula for multiplying
amatrixM and a vector υ is:

M · |υ⟩=
[

a b
c d

]
·
[

υ0
υ1

]
=

[
a ·υ0 +b ·υ1
c ·υ0 +d ·υ1

]
a and b are the weights we used to calculate the first number of the resulting
vector. c and d are theweights for the second number, respectively.



124 Chapter 5. Working with Qubits

Mathematically, the X-gate quantumoperator is thematrix: X =

[
0 1
1 0

]
Let’s apply this operator to our three exemplary states:

Reversing the state |0⟩ results in |1⟩:

X · |0⟩=
[

0 1
1 0

]
·
[

1
0

]
=

[
0 ·1+1 ·0
1 ·1+0 ·0

]
=

[
0
1

]
= |1⟩

Reversing the state |1⟩ results in |0⟩:

X · |1⟩=
[

0 1
1 0

]
·
[

0
1

]
=

[
0 ·0+1 ·1
1 ·0+0 ·1

]
=

[
1
0

]
= |0⟩

And, applying thematrix at |ψ⟩ results in its reversal, too:

X · |ψ⟩=
[

0 1
1 0

]
·

[
1
2√
3

2

]
=

[
0 · 1

2 +1 ·
√

3
2

1 · 1
2 +0 ·

√
3

2

]
=

[√
3

2
1
2

]

In classical computing, we have a small set of boolean operators whose be-
havior we can easily represent in truth tables. But in quantum computing,
matrices denote the operators called gates. And there are myriads of possi-
blematriceswe can apply. Math is a concise yet preciseway to describe these
operators. But you don’t need to be amathematician to use these operations.

Of course, it is desirable to understand the underlying math of a gate when
you apply it. But more importantly, you need to have an understanding of
what the gate does. If you knowwhat the X-gate does, you don’t need to cope
with themath all the time.

5.2 Quantumic Math - Are You Ready
For The Red Pill?
After this, theMatrix is no longer cryptic symbols falling fromthe top, but
you’ll see thewoman in the reddress…

…at least concerning theHadamard gate.

“You take the blue pill — the story ends, you wake up in your bed
and believe whatever you want to believe. You take the red pill —
you stay inWonderland, and I show you howdeep the rabbit-hole
goes.”Morpheus, TheMatrix



5.2 Quantumic Math ‐ Are You Ready For The Red Pill? 125

Figure 5.7: Can you see the woman in the red dress?

Aqubit resembles the ideaof the spinof anelectron. It is in a state of superpo-
sition. While the electron’s superposition consists of the states up anddown,
the qubit’s superposition consists of the states |0⟩ and |1⟩.

A popular notion of superposition is that the system is in different states con-
currently unless youmeasure it. But,when you look at the electron, youfind
it either up or down. When you look at the qubit, it is either 0 or 1. Another
notion is that the system is truly random and not just sensitive dependent on
initial conditions (see 3.1). But superposition does notmean and. And it does
not mean or. It is a combination of states that does not map onto classical
concepts.

“This is your last chance. After this, there is no turning back.”
Morpheus, TheMatrix

The basic model of superposition is given by a vector space. A vector space
is a collection of all valid qubit state vectors along with the operations you
canperformon them. Wegot to know the qubit state vector by the following
equation:

|ψ⟩ = α|0⟩+ β |1⟩ =
[

α
β

]
, with α2 + β 2 = 1. In Python, the array [alpha, beta]

denotes this vector.



126 Chapter 5. Working with Qubits

! α and β are the probability amplitudes. They are not probabili-
ties. They can be positive or negative. But their squares α2 and
β 2 denote the probabilities.

When we measure a qubit, it will collapse to either one of the possible mea-
surements. The number of possible measurements determines the dimen-
sion of this underlying vector space. There are two possible measurements
of a qubit, 0 or 1. Thus, the vector space is two-dimensional. All vectors in
this vector space consist of two numbers. These are the probability ampli-

tudes α and β as in the vector
[

α
β

]
.

When we measure a qubit, we observe it as either 0 or 1. We know the state
|0⟩ says our qubit will result in the value 0 when observed. And |1⟩ says our
qubit will result in the value 1 when observed. In general, |ψ⟩ = α|0⟩+ β |1⟩
says our qubit will result in the value 0with the probability of α2 and 1with
the probability of β 2

The probability is a single number, called a scalar. How can we obtain this
scalar from a qubit state? There’s one way of vector multiplication that pro-
duces a scalar. This is called the inner product. And it results frommultiply-

ing a column vector such as
[

1
0

]
with a row vector, such as

[
1 0

]
In section 3.1, we introduced theDirac notation and its “ket”-construct that
denotes a column vector. For instance, |0⟩ =

[
1
0

]
. Now, we introduce the

“bra”-construct (⟨0|). The bra is a row vector, such as ⟨0|=
[
1 0

]
The inner product is defined as:

⟨a|b⟩=
[
a0 a1 . . . an

]
·


b0
b1
...

bn

= a0 ·b0 +a1 ·b1 + · · ·an ·bn

We can use the inner product to obtain the probability amplitude ofmeasur-
ing a particular value fromaqubit state. And its square denotes the probabil-
ity.

So, what’s the probability of measuring 1 from the state |0⟩? Let’s build the



5.2 Quantumic Math ‐ Are You Ready For The Red Pill? 127

inner product to find out:

(⟨1|0⟩)2 =

([
0 1

]
·
[

1
0

])2

= (0 ·1+1 ·0)2 = 02 = 0

Andwhat’s the probability ofmeasuring 0?

(⟨0|0⟩)2 =

([
1 0

]
·
[

1
0

])2

= (1 ·1+0 ·0)2 = 12 = 1

This alsoworks for anarbitrary state vector |ψ⟩= α|0⟩+β |1⟩=
[

α
β

]
. Theprob-

ability ofmeasuring 1 is:

(⟨1|ψ⟩)2 =

([
0 1

]
·
[

α
β

])2

= (0 ·α +1 ·β )2 = β 2

Andwhat’s the probability ofmeasuring |ψ⟩ as 0?

(⟨0|ψ⟩)2 =

([
1 0

]
·
[

α
β

])2

= (1 ·α +0 ·β )2 = α2

Great! Even though this is quite mathematical, it illustrates how we can ob-
tain a value from our quantum state by multiplying our state vector with a
row vector. In layman’s terms, the “bra-ket” ⟨e|ψ⟩ denotes the probability
amplitude ofmeasuring |ψ⟩ as e. Its square represents the probability.

In the previous section 5.1, we got to know the matrix multiplication. We
learned that when we multiply a matrix with a vector, the result is another
vector:

M · |υ⟩=
[

a b
c d

]
·
[

υ0
υ1

]
=

[
a ·υ0 +b ·υ1
c ·υ0 +d ·υ1

]

Wesaw that theX-gate quantumoperatorX =

[
0 1
1 0

]
switches the amplitudes

of the quantum state.

The X-gate applied to |0⟩ results in |1⟩:

X · |0⟩=
[

0 1
1 0

]
·
[

1
0

]
=

[
0 ·1+1 ·0
1 ·1+0 ·0

]
=

[
0
1

]
= |1⟩

The X-gate applied to |1⟩ results in |0⟩:

X · |1⟩=
[

0 1
1 0

]
·
[

0
1

]
=

[
0 ·0+1 ·1
1 ·0+0 ·1

]
=

[
1
0

]
= |0⟩



128 Chapter 5. Working with Qubits

In the Dirac notation, a ket and a bra arranged like |a⟩⟨b| denotes the outer
product. Therefore, we can interpret the outer product as amatrixmultipli-
cation:

|a⟩⟨b|=


a0
a1
...

an

 · [b0 b1 . . . bn
]
=


a0 ·b0 a0 ·b1 . . . a0 ·bn
a1 ·b0 a1 ·b1 . . . a1 ·bn
... ... . . . ...

an ·b0 an ·b1 . . . an ·bn


Therefore, the term |a⟩⟨b| denotes a matrix. And, we can write our matrices
in terms of vectors:

X = |0⟩⟨1|+ |1⟩⟨0|=
[

0 1
0 0

]
+

[
0 0
1 0

]
=

[
0 1
1 0

]
In layman’s terms (and only for specific base cases), the “ket-bra” |a⟩⟨b| turns
your |b⟩ into |a⟩.

Accordingly, theX-gate turns |1⟩ into |0⟩ (because of |0⟩⟨1|) and it turns |0⟩ into
a |1⟩ (because of |1⟩⟨0|).

Wehave talked a lot about the state of quantumsuperposition. Butwhenever
we worked with a qubit in such a state, we initialized the qubit with the cor-
responding probability amplitudes α and β . But what if we wanted to put a
oncemeasured qubit back into superposition?

Now,we have somemeans to do it. What do you think about this?

H = |+⟩⟨0|+ |−⟩⟨1|

According to our notion, it means we turn the state |0⟩ into |+⟩ and we turn
the state |1⟩ into |−⟩.

Do you remember the states |+⟩ and |−⟩? We introduced them in section 3.2.
They are defined as:

|+⟩= |0⟩+ |1⟩√
2

=

[
1√
2

1√
2

]

|−⟩= |0⟩− |1⟩√
2

=

[
1√
2

−1√
2

]
These states yield the same probability of measuring 0 or 1. This is because
they reside on the horizontal axis. But although these states share identical
probabilities, they aredifferent because the amplitudeof state |−⟩ is negative.



5.2 Quantumic Math ‐ Are You Ready For The Red Pill? 129

Let’s have a look at this operator.

H = |+⟩⟨0|+ |−⟩⟨1|

=

[
1√
2

1√
2

]
·
[
1 0

]
+

[
1√
2

−1√
2

]
·
[
0 1

]
=

[
1√
2

0
1√
2

0

]
+

[
0 1√

2
0 −1√

2

]

=

[
1√
2

1√
2

1√
2

−1√
2

]

=
1√
2
·
[

1 1
1 −1

]
(5.1)

This operator is knownas theHadamardgate, orH-gate. It allowsus tomove
away from the basis state vectors |0⟩ and |1⟩. It puts the qubit into a balanced
state of superposition.

In short, it has thematrix:

H =
1√
2

[
1 1
1 −1

]

i Whydoweneed to distinguish these two states?

In section 1.5, we mentioned the high precision with which
quantum computers must work because quantum algorithms
build on precisemanipulations of continuously varying param-
eters. Therefore, even the noise caused by heat can ruin the
computation.

This is problematic because the computerswecanbuild thus far
are, essentially, expensive electric heaters that happen to per-
form a small amount of computation as a side effect.

Our computers operate in away thatdependson the intentional
loss of some information. Whenwe look at the and operator,we
getanoutputof 1 if both inputvaluesare1. Inall other cases,we
get a 0. Given the output of 0, we have noway of knowingwhat
the inputwas.



130 Chapter 5. Working with Qubits

P Q
T
T
F
F

T
F
T
F

T
F
F
F

P Q

In theprocess of performing suchanoperator, the computerde-
structivelyoverwrites its input. Then, itphysicallydestroys the
old information by pushing it out into the computer’s thermal
environment. Thus, it becomes entropy thatmanifests as heat.

Quantum computers operate at shallow temperatures - below 1
kelvin or -273°C. As a result, quantum computers must be very
energy efficient. Not because energy is a valuable resource. But
because any loss of energy inevitably overheats the computer.

It is possible to carry out computationswithout losing informa-
tion and thus, without producing heat. This is known as re-
versible computation.

EnablingourH-operator todistinguishbetweenthe input states
|0⟩ and |1⟩, it becomes reversible and, thus, suited for aquantum
computer.

i Whyare thereno states −|0⟩−|1⟩√
2
and −|0⟩+|1⟩√

2
?

Let’s say you have a qubit in state −|0⟩−|1⟩√
2
. What does thismean?

It means that α and β as in |ψ⟩ = α|0⟩+ β |1⟩ are both negative
− 1

sqrt2 .

α and β are the probability amplitudes. Their squares are the
probabilities of measuring 0 or 1. Therefore, we get the same
probabilities for α = 1

sqrt2 and α =− 1
sqrt2 (β accordingly).

Thus, there is no way to tell the difference between the states
−|0⟩−|1⟩√

2
and |0⟩+|1⟩√

2
. And there is no way to tell the difference be-

tween −|0⟩+|1⟩√
2
and |0⟩−|1⟩√

2



5.2 Quantumic Math ‐ Are You Ready For The Red Pill? 131

But how about |0⟩−|1⟩√
2
and |0⟩+|1⟩√

2
? Aren’t these indistinguishable,

too?

Our newly introduced operator H proves the difference. While
these twostatesdonotdiffer intermsof theirprobabilities, they
differ in computation. This is because they originate from two
different inputs.

Let’s see theHadamard gate in action.

Listing 5.8: The Hadamard gate

1 from qiskit import QuantumCircuit, Aer, execute
2 from qiskit.visualization import plot_histogram
3 import matplotlib.pyplot as plt
4
5 # Create a quantum circuit with one qubit
6 qc = QuantumCircuit(1)
7
8 # Define initial_state as |0>
9 initial_state = [1,0]

10 qc.initialize(initial_state, 0)
11
12 # apply the Hadamard gate to the qubit
13 qc.h(0)
14
15 # Tell Qiskit how to simulate our circuit
16 backend = Aer.get_backend('statevector_simulator')
17
18 # Do the simulation, returning the result
19 result = execute(qc,backend).result()
20
21 # get the probability distribution
22 counts = result.get_counts()
23
24 # Show the histogram
25 plot_histogram(counts)



132 Chapter 5. Working with Qubits

Figure 5.8: The Hadamard gate

We have used and discussed most lines of this code listing before. However,
you should note, we initialize our qubit with the state |0⟩, in Python [1, 0].
The only new thing is the Hadamard gate we apply to our qubit at position 0
(line 13).

Wecanseethateventhoughweinitializedthequbitwiththestate |0⟩,wemea-
sure it with a 50% probability for 0 and 1, each.

We mentioned the reversibility of the Hadamard gate. The Hadamard gate
reverses itself.

In this code snippet,we initialize thequbitwith state |1⟩ (line9). Weapply the
Hadamard gate two times. It results in a 100% chance ofmeasuring 1. Exactly
what the state |1⟩ denotes.

TheHadamard gate is a fundamental quantum gate. It shows up everywhere
in quantumcomputing. It turns a qubit from the state |0⟩ into |+⟩ and a qubit
from the state |1⟩ into the state |−⟩. And it reverses these transformations.



5.2 Quantumic Math ‐ Are You Ready For The Red Pill? 133

Listing 5.9: The Hadamard gate reverses itself

1 from qiskit import QuantumCircuit, Aer, execute
2 from qiskit.visualization import plot_histogram
3 import matplotlib.pyplot as plt
4
5 # Create a quantum circuit with one qubit
6 qc = QuantumCircuit(1)
7
8 # Define initial_state as |1>
9 initial_state = [0, 1]

10 qc.initialize(initial_state, 0)
11
12 # apply the Hadamard gate to the qubit
13 qc.h(0)
14
15 # apply the Hadamard gate again to reverse it
16 qc.h(0)
17
18 # Tell Qiskit how to simulate our circuit
19 backend = Aer.get_backend('statevector_simulator')
20
21 # Do the simulation, returning the result
22 result = execute(qc,backend).result()
23
24 # get the probability distribution
25 counts = result.get_counts()
26
27 # Show the histogram
28 plot_histogram(counts)

Figure 5.9: The Hadamard gate reverses itself



134 Chapter 5. Working with Qubits

5.3 If You Want To Gamble With
Quantum Computing…
…ensure the probabilities to favor you

Are you into gambling? If yes, quantum computing is for you.

Figure 5.10: Gambling without a quantum computer

Becausewhenyoumeasureaqubit,whatyouobservedependsonchance. Un-
less youmeasure it, the qubit is in a state of superpositionof the states |0⟩ and
|1⟩. But once you measure it, it will be either 0 or 1. If you measure a hun-
dred qubits in the same state, you don’t get the same result a hundred times.
Instead, you’ll get a list of 0s and 1s. The proportion of 0s and 1s you get corre-
sponds to the probability distribution the qubit state entails.

In the last section 5.2, we got to know theHadamard gate. It allows us to put
a qubit into superposition. For instance, if you start with a qubit in the state



5.3 If You Want To Gamble With Quantum Computing… 135

|0⟩, applying theHadamard gate results in a qubit in the state |+⟩.

|+⟩= |0⟩+ |1⟩√
2

=
1√
2
|0⟩+ 1√

2
|1⟩=

[
1√
2

1√
2

]

The resulting probability amplitudes for both states |0⟩ and |1⟩ are 1√
2
. Their

squares denote the probabilities of measuring 0, respectively 1. Both proba-
bilities are 1

2 . So, we got a 50:50 chance.

If youwere to bet on either one outcome, therewould beno good advice. But,
if you played long enough, you’d end up with the same number of wins and
losses–a fair game.

But if you were a casino, offering such a fair game wouldn’t earn you any
money. Instead, you’d need to increase your chance ofwinning. This iswhat
casinos do. And this is the origin of the phrase “the bank always wins”. For
instance, theWheel of Fortune and the popular slot machines disadvantage
the players the most. These games have a house edge of 10 percent or more.
But even inBlackjack, the fairest game if playedoptimal, there’s ahouse edge
of about 1 percent.
Listing 5.10: Weighted initial state

1 from math import sqrt
2 from qiskit import QuantumCircuit, Aer, execute
3 from qiskit.visualization import plot_histogram
4 import matplotlib.pyplot as plt
5
6 # Define state |psi>
7 initial_state = [sqrt(0.4), sqrt(0.6)]
8
9 # Redefine the quantum circuit

10 qc = QuantumCircuit(1)
11
12 # Initialise the 0th qubit in the state `initial_state`
13 qc.initialize(initial_state, 0)
14
15 # Tell Qiskit how to simulate our circuit
16 backend = Aer.get_backend('statevector_simulator')
17
18 # execute the qc
19 results = execute(qc,backend).result().get_counts()
20
21 # plot the results
22 plot_histogram(results)



136 Chapter 5. Working with Qubits

Figure 5.11: Probabilities of a weighted initial state

Let’s say the casino wins when we measure 1, and the player wins when we
measure 0. As the casino, we want to increase the chance of winning by 10%
towin in 60% of the cases.

We already know one way. We can specify the probability amplitudes of the
qubit during its initialization. For the probabilities are the squares of the
probability amplitudes, we need to provide the square roots of the probabili-
ties wewant to specify (line 7).

But how can we change the probabilities of measuring 0 or 1 outside of the
initialization?

In section 3.2, rather than specifying the exact probabilities, we controlled
the probabilities by an angle θ (theta). This is the angle between the basis
statevector |0⟩and thequbit state |ψ⟩. θ controls theproximitiesof thevector
head to the top and the bottom of the system (dashed lines). And these prox-
imities represent theprobability amplitudeswhose squares are theprobabili-
ties ofmeasuring 0 or 1 respectively. α2 denotes the probability ofmeasuring
|ψ⟩ as 0. β 2 indicates the probability ofmeasuring it as 1.

We can deduct the values of α and β and thus the state |ψ⟩:

|ψ⟩= cos
θ
2
|0⟩+ sin

θ
2
|1⟩=

[
cosθ

2
sinθ

2

]
In the previous section 5.2, we learned how we could use matrices to trans-
form the state of a qubit. And we used the layman’s interpretation that the
“ket-bra” |a⟩⟨b| turns our qubit from the state |b⟩ into the state |a⟩.

So, why don’twe use this interpretation to rotate our qubit state? θ is the an-



5.3 If You Want To Gamble With Quantum Computing… 137

|0⟩

|1⟩

|ψ⟩

θ

β

α

Figure 5.12: 2-dimensional qubit system

gle between the state |0⟩ and the qubit state vector |ψ⟩. Consequently, rotat-
ing |0⟩ by θ turns it into |ψ⟩. The ket-bra |ψ⟩⟨0| denotes this part of our trans-
formation.

The qubit state we name |ψ ′⟩ in the following image 5.13 depicts the rotation
of the state |1⟩ by θ . The ket-bra |ψ ′⟩⟨1| denotes this second part of our trans-
formation.

|0⟩

|1⟩

θ

β = sinθ
2

θ

α ′ =−sinθ
2

β ′ = cosθ
2

α = cosθ
2

|+⟩= |0⟩+|1⟩√
2|−⟩= |0⟩−|1⟩√

2

|ψ⟩

|ψ ′⟩

Figure 5.13: Qubit rotation



138 Chapter 5. Working with Qubits

The following equation describes the rotation of our qubit:

Ry = |ψ⟩⟨0|+ |ψ ′⟩⟨1|=
[

cosθ
2

sinθ
2

]
·
[
1 0

]
+

[
−sinθ

2
cosθ

2

]
·
[
0 1

]
=

[
cosθ

2 −sinθ
2

sinθ
2 cosθ

2

]
Thismatrix is knownas the rotationmatrix. Theonlyquantum-specifichere
is that we take the sin and cos of θ

2 rather than θ . The reason for this is the
specific way we represent our qubit with the states |0⟩ and |1⟩ opposing each
other on the same axis.

i Usually, the rotation matrix implies a counter-clockwise rota-
tion because in a standard representation, increasing angles
”open” counter-clockwise. But the qubit state vector ”opens”
clockwise starting from the state |0⟩. Therefore, the rotation
matrix implies a clockwise rotation.

Another question that arises is why there is a−sinθ
2 in the formula?

When you look at the figure 5.13, you can see that the qubit state |ψ ′⟩ ends
at the left-hand side. The probabilities of states on that side equal the prob-
abilities of states on the right-hand side (if mirrored on the vertical axis).
But in the previous section 5.2, we also learned the importance of reversible
transformations. So, we need to distinguish a clockwise rotation from a
counter-clockwise rotation. As we need to distinguish whether we applied
theHadamard gate on the state |0⟩ (resulting in |+⟩) or on the state |1⟩ (result-
ing in |−⟩). It is the same justification.

Butwhydowespecify anegativevalue forα ′ andnot forβ ′? In section3.2,we
saidwewould interpret all vectors on the left-hand side of thevertical axis to
have a negative value for β . While this is true, there is, in fact, noway to tell
the difference between the states −α|0⟩+β |1⟩√

2
and α|0⟩−β |1⟩√

2
. Andwhenwe look at

a rotationmatrix in a classical, two-dimensional vector space with orthogo-
nal axes, we can see that it is the value for α ′ that is in the negative area, not
the value for β ′.

As you can see, the vector |ψ ′⟩ ends in the negative area of X (it is left to the
y-axis). The distance to the y-axis is sinθ . Therefore, the upper value (repre-
senting the x-coordinate) is negative.

Using the same rotation matrix for our quantum system, we use a formula
manymathematicians are familiarwith.



5.3 If You Want To Gamble With Quantum Computing… 139

x

y

θ
θ sinθ

cosθ

sinθ

cosθ

|ψ⟩=
[

cosθ
sinθ

]|ψ ′⟩=
[
−sinθ
cosθ

]

Figure 5.14: Rotation matrix

Let’s have a look at our transformation in action.
Listing 5.11: Rotate the qubit state

1 from math import pi
2
3 # Define state |0>
4 initial_state = [1, 0]
5
6 # Redefine the quantum circuit
7 qc = QuantumCircuit(1)
8
9 # Initialise the 0th qubit in the state `initial_state`

10 qc.initialize(initial_state, 0)
11
12 # Rotate the state by a quarter of a half circle.
13 qc.ry(pi/4,0)
14
15 # Tell Qiskit how to simulate our circuit
16 backend = Aer.get_backend('statevector_simulator')
17
18 # execute the qc
19 results = execute(qc,backend).result().get_counts()
20
21 # plot the results
22 plot_histogram(results)



140 Chapter 5. Working with Qubits

Figure 5.15: Probabilities of the rotated qubit state

The Qiskit QuantumCircuit object provides the ry function (line 13). ry is for Ry
gate. Because it rotates the qubit around the y-axis of the quantum system,
this function takes the angle θ (in Radians) as the first parameter. The value
of 2*pi denotes a full rotation of 360°. The second parameter of the function
is the position of the qubit to apply the gate to.

However, youneed to be careful. The angle θ does not stopwhen it “reaches”
the state |1⟩. You can rotate your qubit state beyond it. Then, rather than
increasing the probability ofmeasuring 1 you decrease it.

The Ry gate is easily reversible. Apply another Ry gatewith−θ as the parame-
ter.

We startedwith the goal to increase the casino’s chance towin by 10%. What
is 10% in terms of the angle θ?

θ denotes the angle between the basis state |0⟩ and |ψ⟩. From our quantum

state formula, |ψ⟩= cosθ
2 |0⟩+sinθ

2 |1⟩=
[

cosθ
2

sinθ
2

]
,wecansee thatwehaveaproba-

bility amplitude for the state |1⟩of sin
(θ

2

)
. Thus, theprobability ofmeasuring

a qubit in the state |ψ⟩ as a 1 is the squared probability amplitude.

sin2
(

θ
2

)
= P1(ψ) (5.2)



5.3 If You Want To Gamble With Quantum Computing… 141

Let’s solve this equation for the angle θ .

sin
(

θ
2

)
=
√

P1(ψ)

θ
2
= sin−1

√
P1(ψ ′)

θ = 2 · sin−1
√

P1(ψ ′)

(5.3)

This formula shows the angle θ that represents the probability ofmeasuring
|ψ⟩ as a 1.

The following function prob_to_angle implements this equation in Python. It
takes a probability tomeasure the qubit as a 1 and returns the corresponding
angle θ .

Listing 5.12: Calculate the angle that represents a certain probability

1 from math import asin
2
3 def prob_to_angle(prob):
4 """
5 Converts a given P(psi) value into an equivalent theta value.
6 """
7 return 2*asin(sqrt(prob))

Let’s use this function to set the probability of measuring our qubit as a 1 to
60%.

We initialize our qubit with the state |0⟩ (line 4). Then, we apply the Ry gate
on the qubit and pass as the first parameter the result of calling prob_to_angle
with the probability value of 0.6 (line 13). The rest of the code remains un-
changed.

As a result, we see a 60% chance tomeasure the qubit as the value 1. We have
found an effective way to control the probabilities of measuring 0 and 1, re-
spectively.

Let’s see what happens if we apply the Ry gate on a qubit in another state, for
instance, in

|+⟩= |0⟩+|1⟩√
2
.



142 Chapter 5. Working with Qubits

Listing 5.13: Rotate the qubit state by 0.8

1 from math import pi, sqrt
2
3 # Define state |0>
4 initial_state = [1,0]
5
6 # Redefine the quantum circuit
7 qc = QuantumCircuit(1)
8
9 # Initialise the 0th qubit in the state `initial_state`

10 qc.initialize(initial_state, 0)
11
12 # Rotate the state by 60%
13 qc.ry(prob_to_angle(0.6), 0)
14
15 # Tell Qiskit how to simulate our circuit
16 backend = Aer.get_backend('statevector_simulator')
17
18 # execute the qc
19 results = execute(qc,backend).result().get_counts()
20
21 # plot the results
22 plot_histogram(results)

Figure 5.16: Probabilities of the rotated qubit state

In the following example,we initialize thequbit in the state |+⟩. It has aprob-
ability of 50%measuring the qubit in either state 0 or 1 (line 4). Andwe rotate
it by the anglewe calculate from the probability of 10% (line 13).



5.3 If You Want To Gamble With Quantum Computing… 143

Listing 5.14: Rotate the qubit state with initial state

1 from math import pi, sqrt
2
3 # Define state |+>
4 initial_state = [1/sqrt(2), 1/sqrt(2)]
5
6 # Redefine the quantum circuit
7 qc = QuantumCircuit(1)
8
9 # Initialise the 0th qubit in the state `initial_state`

10 qc.initialize(initial_state, 0)
11
12 # Rotate the state by 10%
13 qc.ry(prob_to_angle(0.1), 0)
14
15 # Tell Qiskit how to simulate our circuit
16 backend = Aer.get_backend('statevector_simulator')
17
18 # execute the qc
19 results = execute(qc,backend).result().get_counts()
20
21 # plot the results
22 plot_histogram(results)

Figure 5.17: Probabilities of the rotated qubit state

Wait, this is not correct. We get an 80% chance ofmeasuring the qubit as a 1.
Butwewould have expected only 60%.

The problem is how we calculated the angle θ from the probability it repre-



144 Chapter 5. Working with Qubits

sents. θ is the angle between the vector |ψ⟩ and the basis state vector |0⟩. But
the gradients of trigonometric functions (such as sine and arcsine) are not
constant. Thus, the probability an angle represents that starts at the top of
the circle (state |0⟩) is another probability that the sameangle represents that
starts at the horizontal axis such as the state |+⟩.

We can fix this. We calculate the overall angle θ that represents the sum
of the prior probability and the probability we want our qubit to change
(2 ∗ asin

√
prob+ prior). We subtract from it the angle that represents the

prior (−2∗asin
√

prior). The result is the angle that represents the probability
change at the current state of the qubit.

Listing 5.15: Rotate the qubit state correctly

1 from math import asin
2
3 def prob_to_angle_with_prior(prob, prior):
4 """
5 Converts a given P(psi) value into an equivalent theta value.
6 """
7 return 2*asin(sqrt(prob+prior))−2*asin(sqrt(prior))
8
9 # Define state |+>

10 initial_state = [1/sqrt(2), 1/sqrt(2)]
11
12 # Redefine the quantum circuit
13 qc = QuantumCircuit(1)
14
15 # Initialise the 0th qubit in the state `initial_state`
16 qc.initialize(initial_state, 0)
17
18 # Rotate the state by 10%
19 qc.ry(prob_to_angle_with_prior(0.1, 0.5), 0)
20
21 # Tell Qiskit how to simulate our circuit
22 backend = Aer.get_backend('statevector_simulator')
23
24 # execute the qc
25 results = execute(qc,backend).result().get_counts()
26
27 # plot the results
28 plot_histogram(results)



5.3 If You Want To Gamble With Quantum Computing… 145

Figure 5.18: Probabilities of the rotated qubit state

We write a new function prob_to_angle_with_prior (lines 3-7). This function
takes theprobabilitywewant ourqubit to change as thefirst parameter. And
it takes the prior probability of the qubit as the second parameter.

Whenwe run the code, we see the result we expected.

Rotating thequbit around they-axis allowsyou to control theprobabilities of
measuring 0 and 1 by the angle θ . And you can represent θ by the change of
probability ofmeasuring the qubit as 1 (P1(ψ ′)) andby the prior probability of
measuring 1 (P1(ψ))

θ = 2 · sin−1
√

P1(ψ)−2 · cos−1
√

P1(ψ ′)

But for once, this is not an all-around carefree way to push probabilities in
a certain direction. While you can rotate the angle θ further and further,
the effect that it has on the resulting probabilities depend on the direction
of yourqubit state vector |ψ⟩. If thevector |ψ⟩points to the right-hand side of
the y-axis, rotating it by θ increases the probability ofmeasuring 1. But if the
vector |ψ⟩ points to the left-hand side of the y-axis, rotating it by θ decreases
the probability ofmeasuring 1.

In quantum computing, where you go always depends on where you come
from.

To the second, even more importantly, from a practical perspective, if you
want to change the measurement probabilities by a certain percentage, you
need to know the prior probabilities. You need to know the state the qubit is
in. Remember, measuring the qubit collapses it to either 0 or 1. Measuring
destroys the qubit superposition. But, if you’re not allowed to measure the
qubit, how could you specify the prior probability?



146 Chapter 5. Working with Qubits

In the trivial examplesweused in this section,we can keep track of the qubit
states by hand. But for any meaningful quantum circuit, this becomes im-
possible. Thus, the advantage of a quantumcircuit over a classical algorithm
builds upon the qubit’s ability to explore stateswe can’t trace classically.

To succeed beyond the traceable manipulation of qubit states, we need to
workwithmultiple qubits concurrently. Whenwe combine qubits, more so-
phisticated transformations become possible. In the next chapter, we will
explorewhat itmeans toworkwithmultiple qubits.



6. Working With Multiple Qubits

6.1 Hands-On Introduction ToQuantum Entanglement

Spooky-Action-
At-A-Distance

(Spukhafte Fernwirkung)

Figure 6.1: Albert Einstein

Thus far, you may wonder what the big deal with quantum computing is.
Why does everyone seem to be freaking out about this?

Some emphasize the notion of the qubit being in the two states concurrently.
And that’s so different from anything we know. In the world we live in, the
worldwe experience, there is no such thing that is in twomutually exclusive
states at the same time.

Others counter this notion iswrong. Thequbit is not 0 and 1 at the same time.



148 Chapter 6. Working With Multiple Qubits

Rather, it is a truly random system. And that’s so different from anything
we know. In the world we live in, the world we experience, there is no truly
random thing. Everything is sensitively dependent on initial conditions. If
you were able to measure everything with absolute precision, randomness
would disappear.

Again others object this notion iswrong, too. But thewhole concept of quan-
tum superposition is so different from anything we know. In the world we
live in, the world we experience, there is nothing comparable. So any anal-
ogy to somethingwe know is simply inadequate.

But thus far, the only aspect of the quantum superpositionwe covered is the
probabilities of measuring it as either 0 or 1. Yes, it is interesting. It may
even seem a little strange. But a system whose value depends on chance is
not unimaginable. Thus far, it doesn’t matter if the qubit is in both states
concurrently, purely random, or something completely different. Thus far,
it is a probabilistic system. Notmore. Not less.

But, so far, we only considered a single qubit. It’s going to change if we start
toworkwithmultiple qubits.

Wealreadyknowsomeoperations thatworkwithmultiple classicalbits. For
instance, andand or. A lookat the truthtablesdiscloses theyare inappropriate
for qubit transformation. They are irreversible.

P Q P QP Q
T
T
F
F

T
F
T
F

T
F
F
F

T
T
T
F

Figure 6.2: Truth table of AND and OR

While there are two input values (P andQ), either andor oron its ownhas only
oneoutputvalue. It is impossible to reconstruct the two inputbits if youonly
got one output bit as information. Thus,whenweworkwith two qubits, any
operator (transformation gate)must have two inputs and two outputs.

Canweuse and and or as the twooutputs?

No, we can’t. These two operations don’t allow us to tell the difference be-
tween the states inwhich either one of P andQ is true and the other false.

Let’s try something different. We replace the and-operatorwith the plain and



6.1 Hands‐On Introduction To Quantum Entanglement 149

unchanged value of P. We can now tell the difference between the two states

• P is true, andQ is false
• P is false, andQ is true.

P Q P
T
T
F
F

T
F
T
F

T
T
T
F

T
T
F
F

P Q

Figure 6.3: Truth table of AND and P

But we can’t tell the difference between the state when P and Q are true and
the statewhen only P is true anymore.

The reason is, both operations and and or, are imbalanced. And is false in three
cases. Or is true in three cases. The other output bit of the transformation
would need to tell the difference between the three cases. That’s impossible
for a single bit of information.

So, we also need to replace or. We can use the “exclusive or” (XOR) operator
instead. In math, the symbol ⊕ represents the “exclusive or” operator. It is
true, for precisely one of its inputs is true. Otherwise, it is false. The follow-
ing truth table depicts the definition of “exclusive or.”

P Q
T
T
F
F

T
F
T
F

F
T
T
F

P Q

Figure 6.4: Truth table of exclusive or

The combination of P and P⊕Q is reversible. It is not just reversible, but it
inverses itself. If we apply it twice, the output is P andQ again.

At first sight, there’s nothing special about this transformation. We can even
draw a classical circuit diagram.



150 Chapter 6. Working With Multiple Qubits

P Q
T
T
F
F

T
F
T
F

F
T
T
F

P QP
T
T
F
F

T
F
T
F

P (P Q)P
T
T
F
F

Figure 6.5: The combination of P and P XOR Q is reversible

P

Q

P

P Q

Figure 6.6: A classical circuit with P, P XOR Q

The dot is the fan-out operation. In this classical circuit, where the lines are
wires, it copies the value of P. We interpret voltage at the wire as 1 and the
absence of voltage as 0. If we connect a wire with another wire, it receives
the same output at both ends. One wire coming from P connects to the XOR
gate. The other serves as the output. It is the unchanged value of P.

In quantum computing, the situation is different. First, it is impossible to
copy a qubit (we’ll cover this topic later in this chapter). Second, the trans-
formation does not provide an unchanged P as an output.

Therefore, we use a different representation of this transformation in quan-
tum computing.

P : α|0⟩+β |1⟩

Q : |0⟩

CNOT (P,Q) :
α|00⟩+β |11⟩

Figure 6.7: The quantum CNOT gate



6.1 Hands‐On Introduction To Quantum Entanglement 151

While there is a fan-out at the P qubit, it does not imply copying the qubit.
Instead, the fan-out indicates that the qubit P controls the transformation
of the target qubit Q. To understand what this means, let’s apply a different
perspective on the truth table. We split it into two blocks.

P Q
0
0

1
1

0
1

0
1

0
1

1
0

P QP
0
0

1
1

=

X

Figure 6.8: Truth table of the CNOT gate

In the first block, P is 0, and P⊕Q is equal toQ. So, nothing changes at all.

But in the second block, when P is 1, P⊕Q is equal to ¬Q (“not Q”). In other
words, if P is 1, we apply the quantumX-gate onQ.

The qubit P controls whether we apply an X-gate on the qubit Q. Therefore,
this gate is named the “controlled not” or CNOT-gate. In Qiskit, it is the cx-
gate.

The following code shows the CNOT-gate in action.



152 Chapter 6. Working With Multiple Qubits

Listing 6.1: Apply the CNOT‐gate with |0> as control qubit

1 from math import sqrt
2 from qiskit import QuantumCircuit, Aer, execute
3 from qiskit.visualization import plot_histogram
4
5 # Redefine the quantum circuit
6 qc = QuantumCircuit(2)
7
8 # Initialise the qubits
9 qc.initialize([1,0], 0)

10 qc.initialize([1,0], 1)
11
12 # Apply the CNOT−gate
13 qc.cx(0,1)
14
15 # Tell Qiskit how to simulate our circuit
16 backend = Aer.get_backend('statevector_simulator')
17
18 # execute the qc
19 results = execute(qc,backend).result().get_counts()
20
21 # plot the results
22 plot_histogram(results)

Figure 6.9: Result of the CNOT-gate with |0> as control qubit

Whenwe initialize both qubitswith |0⟩ (lines 9-11) beforewe apply theCNOT-
gate (line 13), we alwaysmeasure 00. Nothing happens.



6.1 Hands‐On Introduction To Quantum Entanglement 153

Whenwe initialize the control qubitwith |1⟩ and the target qubitwith |0⟩, we
alwaysmeasure 11.

Listing 6.2: Apply the CNOT‐gate with |1> as control qubit

1 # Redefine the quantum circuit
2 qc = QuantumCircuit(2)
3
4 # Initialise the 0th qubit in the state `initial_state`
5 qc.initialize([0,1], 0)
6 qc.initialize([1,0], 1)
7
8 # Apply the CNOT−gate
9 qc.cx(0,1)

10
11 # Tell Qiskit how to simulate our circuit
12 backend = Aer.get_backend('statevector_simulator')
13
14 # execute the qc
15 results = execute(qc,backend).result().get_counts()
16
17 # plot the results
18 plot_histogram(results)

Figure 6.10: Result of the CNOT-gate with |1> as control qubit

When we only look at the basis states, there is still nothing special going on
here. The result equals the result that a classical circuit produces.

But it becomes interesting when the control qubit is in a state of superposi-



154 Chapter 6. Working With Multiple Qubits

tion. We initialize both qubits in the state |0⟩, again. Then, the Hadamard
gate puts the qubitQ into the state |+⟩. Whenmeasured, a qubit in this state
is either 0 or 1, with a probability of 50% each. The following figure depicts
the quantum circuit diagram.

Figure 6.11: A CNOT-gate with a control qubit in state |+>

Listing 6.3: Apply the CNOT‐gate with |+> as control qubit

1 # Redefine the quantum circuit
2 qc = QuantumCircuit(2)
3
4 # Initialise the 0th qubit in the state `initial_state`
5 qc.initialize([1,0], 0)
6 qc.initialize([1,0], 1)
7
8 # Apply the Hadamard gate
9 qc.h(0)

10
11 # Apply the CNOT−gate
12 qc.cx(0,1)
13
14 # Tell Qiskit how to simulate our circuit
15 backend = Aer.get_backend('statevector_simulator')
16
17 # execute the qc
18 results = execute(qc,backend).result().get_counts()
19
20 # plot the results
21 plot_histogram(results)



6.1 Hands‐On Introduction To Quantum Entanglement 155

Figure 6.12: Result of the CNOT-gate with |+> as control qubit

Wemeasure the control qubit P as either 0 or 1with a probability of 50% each.
This is exactly what we expect for a qubit in the state |+⟩. And, we measure
the target qubit Q as either 0 or 1, too. Its value perfectly matches the first
qubit.

“Of course it does!” you may think. If the control qubit P is 0, we leave the
target qubitQuntouched in its state |0⟩. Wemeasure it as 0. But if the control
qubit is 1, we apply the X-gate on the qubitQ. We turn it from |0⟩ into |1⟩ and
measure it as 1.

“There is a true causal relationship,” youmay think, ”just like in a classical cir-
cuit.” If it was, what if wemeasured the target qubitQ first?

The control qubitP is in a state of superpositionunless youmeasure it. It con-
trolswhetherwe apply anX-gate on the second qubitQ. If therewere a cause
and an effect, how couldwe see the effect before the cause?

Let’s have a look.



156 Chapter 6. Working With Multiple Qubits

Listing 6.4: Measure the controlled qubit first

1 from qiskit import ClassicalRegister, QuantumRegister
2
3 # Prepare a register of two qubits
4 qr = QuantumRegister(2)
5
6 # Prepare a register of two classical bits
7 cr = ClassicalRegister(2)
8
9 # Redefine the quantum circuit

10 qc = QuantumCircuit(qr, cr)
11
12 # Initialise the 0th qubit in the state `initial_state`
13 qc.initialize([1,0], 0)
14 qc.initialize([1,0], 1)
15
16 # Apply the Hadamard gate
17 qc.h(0)
18
19 # Apply the CNOT−gate
20 qc.cx(0,1)
21
22 # Measure the qubits to the classical bits, start with the controlled

qubit
23 qc.measure(qr[1], cr[1])
24 qc.measure(qr[0], cr[0])
25
26 # Tell Qiskit how to simulate our circuit
27 backend = Aer.get_backend('qasm_simulator')
28
29 # execute the qc
30 results = execute(qc,backend,shots = 1000).result().get_counts(qc)
31
32 # plot the results
33 plot_histogram(results)



6.1 Hands‐On Introduction To Quantum Entanglement 157

Figure 6.13: Result of measuring the controlled qubit first

To specify the order of measurement, we need to edit our code a lit-
tle bit. First, we create two registers (lines 4 and 7) and initialize the
QuantumCircuitwith them (line 10). A QuantumRegister is a collection of qubits. A
ClassicalRegister is a collection of regular bits. The registers allow us to com-
bine these twokinds of bits in a single circuit. The classical bits take themea-
surement results of the qubits (lines 23-24).

This time, we choose another backend simulator. We use the qasm_simulator
(line 27) because it supports multiple executions of a quantum circuit. The
statevector_simulator we used thus far is ideal for the examination of qubits
in a state of superposition. But it only supports a single execution of the cir-
cuit. But this time, we include themeasurement in our circuit that collapses
the state of superposition. As a result, we receive a single pair of regular bits
whosemeasurement probability is always 100%.

To investigate the probability of the underlying quantum system, we have
to execute the circuit several times, for whichwe use the qasm_simulator. The
parameter shots=1000 (line 30) specifies the number of executions we want to
run.

Sincewedonot calculate the real probabilities but retrieve themempirically,
the result is not entirely accurate. But it is close enough.

Themeasured values of both qubits stay perfectly aligned.

If we measured only the target qubit, it would appear to be random despite
its initialization with the state |0⟩. But once we look at the control qubit, we
see that both values are equal. Always.



158 Chapter 6. Working With Multiple Qubits

It doesnotmatterwhichqubitwemeasurefirst. It seems as if the other qubit
knows the outcome and chooses its state accordingly. The measurement of
one qubit affects the other qubit. But it only appears thatway.

In a classical circuit, the first bit remains unchanged. Wires connect both
bits physically and there is a clear causal relationship. The input voltage (or
its absence) of the control bit determines the output voltage of bothwires. It
directly determines the output of the directly connected wire, and it deter-
mines the output of the “exclusive or” wire (together with the other input
voltage).

But unlike its classical counterpart, theCNOT-quantumgate doesnot output
an unchanged qubit P alongside the qubitQwhose output is P⊕Q. It outputs
an entangled pair of qubits. They are in a state of superposition. Once you
measure any part of this entangled quantum system, the whole system col-
lapses.

This happens without any information exchange between the entangled
qubits. Because qubits are not physically connected. We could even separate
themby a large distance, and still,measuring one qubitwould collapse them
both. Einstein did not believe this. He termed this phenomenon as “spooky
action at a distance.”

But this is the point. The CNOT-gate does not change the value of the target
qubit Q depending on the control qubit P. But it entangles the two qubits. It
puts them into a shared state–an entangled state.

While we can describe the quantum state of an entangled system as a whole,
we can’t describe it independently per single qubit anymore.

“But how is that useful at all?” you ask?

It is helpful because it enables us to construct a quantum system beyond a
single qubit. A qubit is a probabilistic system that collapses to either 0 or 1.
Entangled qubits can collapse to a broader range of values.

Evenmore importantly, a set of entangled qubits can represent the problem
at hand more accurately. A set of qubits can represent the structure of this
problem to be solved. Once the quantum circuit concerts all qubits in a way
that represents the problem, then a singlemeasurement collapses thewhole
system. And themeasured values disclose the solution.

In classical computing, we think a lot about cause and effect. Given some in-
put,which transformations doweneed to apply to produce a certain output?
The desired output.



6.2 The Equation Einstein Could Not Believe 159

In quantum computing, we think about the structure of the problem. Given
thespecificitiesof theproblem,whichtransformationsdoweneedtoconcert
the qubits so that, whenmeasured, results in the solution?

Working with multiple qubits and entanglement are fundamental building
blocks of quantum computing. And they havemany facets.

In the remainder of this chapter,we shed some light on theunderlyingmath,
the theoretical consequences, and the proof that the quantumsuperposition
is, in fact, different from a classical system that appears random but is sensi-
tively dependent on initial conditions. While I try to explain all these topics
as practical and accessible, they remain pretty theoretical.

If you feel ready for thisdeepdive into entanglement, then just readon. How-
ever, if you prefer to continue with the practical consequences of entangle-
ment onquantummachine learning algorithms, then youmaywant to jump
to section 6.3. In that case, I recommend you come back to this chapter later.
While the theoretic background is not necessary to apply quantum gates on
multiple qubits, it undoubtedly fosters a deeper understanding andprepares
you for the upcoming challenges.

6.2 The Equation Einstein Could Not
Believe
Albert Einstein colorfully rejected the idea of quantum entanglement as
“spooky-action-at-a-distance.”

In layman’s terms, quantum entanglement is the ability of distributed parti-
cles to share a state–a state of quantum superposition, to be precise.

Doesn’t it sound spooky? Maybe we should refresh the notion of superposi-
tion.

Particleshaveaspin. Upordown. Thedirectionof thespin isnotdetermined
until you measure it. But once you measure it, it will instantly collapse to
either one spin direction for you to observe. This is the superposition of a
single particle.

Quantumentanglement says two particles can share a state of superposition.
Their spins correlate. Once youmeasure one particle’s spin, the state of the
other particle changes immediately.

Doesn’t it sound spooky? Maybewe should talk about scales.



160 Chapter 6. Working With Multiple Qubits

Whenwe say the two particles are distributed, then they can be direct neigh-
borswithin the sameatom. They canbe a few feet away fromeachother. But
they can also be light-years apart. It doesn’tmatter!

When we say the state of the particle changes instantly, we mean instantly.
Not after a few seconds. Not after a tiny fraction of a second. But instantly.

The two particles can be light-years away from each other, yetwhenwemea-
sure one of them, the other changes its state simultaneously.

Sounds spooky, right?

“But how dowe know?”

We have not tested such a setting with particles light-years away. But we
know the underlyingmath.

Long before the first experiment provided evidence, a group of geniuses de-
veloped formulae that predictedhowanentangledpair of particleswouldbe-
have. Einstein was one of them. And while he was able to understand the
language of math like no one else could (very few could, maybe), he didn’t
likewhatmath told him this time.

6.2.1 Single Qubit Superposition
In quantummechanics,we use vectors to describe the quantum state. A pop-
ular way of representing quantum state vectors is the Dirac notation’s “ket”-
construct that looks like |ψ⟩.

In a quantumsystemwith twovalues thatwe couldmeasure, such as the par-
ticle spin that canbeupordown,or thequantumbit (qubit) that canbeeither
0 or 1, there are two basis vectors.

For the quantumbit, these are: |0⟩=
[

1
0

]
and |1⟩=

[
0
1

]
The quantum superposition is a combination of these two basis states.

|ψ⟩= α|0⟩+β |1⟩=
[

α
β

]
The values α and β are the probability amplitudes. Their squares denote the
probabilities of measuring the qubit as a 0 (α2) or a 1 (β 2). The larger α, the
larger theprobability is tomeasure thequbit as 0. The larger β , the larger the
probability is tomeasure the qubit as 1.



6.2 The Equation Einstein Could Not Believe 161

Since the probabilitiesmust add up to 1, we can say that their summust be 1.

|α|2 + |β |2 = 1

6.2.2 Quantum Transformation Matrices
In quantum mechanics, we also use vectors to transform qubit states. The
Dirac notation’s “bra”-construct (⟨0|) represents a rowvector. Whenwemul-
tiply a columnvectorwitha rowvector,webuild theouterproduct. It results
in amatrix, like this

|a⟩⟨b|=


a0
a1
...

an

 · [b0 b1 . . . bn
]
=


a0 ·b0 a0 ·b1 . . . a0 ·bn
a1 ·b0 a1 ·b1 . . . a1 ·bn
... ... . . . ...

an ·b0 an ·b1 . . . an ·bn


So, we can create matrices from vectors. For instance, we can make three
simplematrices.

• The Identity (I) matrix

I = |0⟩⟨0|+ |1⟩⟨1|=
[

1 ·1 1 ·0
0 ·1 0 ·0

]
+

[
0 ·0 0 ·1
1 ·0 1 ·1

]
=

[
1 0
0 1

]
• TheNot (X) matrix

X = |0⟩⟨1|+ |1⟩⟨0|=
[

1 ·0 1 ·1
0 ·0 0 ·1

]
+

[
0 ·1 0 ·0
1 ·1 1 ·0

]
=

[
0 1
1 0

]
• TheHadamard (H) matrix

H = |+⟩⟨0|+ |−⟩⟨1|

=

[
1√
2

1√
2

]
·
[
1 0

]
+

[
1√
2

−1√
2

]
·
[
0 1

]
=

[
1√
2

0
1√
2

0

]
+

[
0 1√

2
0 −1√

2

]

=

[
1√
2

1√
2

1√
2

−1√
2

]

=
1√
2
·
[

1 1
1 −1

]



162 Chapter 6. Working With Multiple Qubits

6.2.3 Transforming Single Qubits
When we multiply a matrix with a column vector (our quantum state), the
result is another column vector, like this:

M · |v⟩=
[

a b
c d

]
·
[

v0
v1

]
=

[
a · v0 +b · v1
c · v0 +d · v1

]
Whenwemultiply the I-gatematrixwith a vector, we get the unchanged vec-
tor as the output.

I · |ψ⟩=
[

1 0
0 1

]
·
[

α
β

]
=

[
1 ·α +0 ·β
0 ·α +1 ·β

]
=

[
α
β

]
The X-gatematrix flips the probability amplitudes of the vector.

X · |ψ⟩=
[

0 1
1 0

]
·
[

α
β

]
=

[
0 ·α +1 ·β
1 ·α +0 ·β

]
=

[
β
α

]
TheH-gate puts a qubit from a basis state into superposition.

H · |0⟩= 1√
2

[
1 1
1 −1

]
·
[

1
0

]
=

1√
2

[
1 ·1+1 ·0
1 ·1−1 ·0

]
=

1√
2

[
1
1

]
=

[
1√
2

1√
2

]

6.2.4 Two-Qubit States
Now, let’s say we have two qubits. Let’s call them |a⟩ and |b⟩. Each of the

two qubits has its own probability amplitudes: |a⟩ = a0|0⟩+ a1|1⟩ =
[

a0
a1

]
and

|b⟩= b0|0⟩+b1|1⟩=
[

b0
b1

]
. Whenwelookat these twoqubits concurrently, there

are four different combinations of the basis states. Each of these combina-
tions has its probability amplitude. These are the products of the probability
amplitudes of the two corresponding states.

• a0|0⟩b0|0⟩
• a0|0⟩b1|1⟩
• a1|1⟩b0|0⟩
• a1|1⟩b1|1⟩

These four states form a quantum system on their own. Therefore, we can
represent them in a single equation. Whilewe are free to choose an arbitrary
name for the state, we use |ab⟩ because this state is the collective quantum
state of |a⟩ and |b⟩.

|ab⟩= |a⟩⊗ |b⟩= a0b0|0⟩|0⟩+a0b1|0⟩|1⟩+a1b0|1⟩|0⟩+a1b1|1⟩|1⟩



6.2 The Equation Einstein Could Not Believe 163

In this equation, |ab⟩ is an arbitrary name. The last term is the four combi-
nations reordered to have the amplitudes at the beginning. But what does
|a⟩⊗ |b⟩mean?

The term |a⟩⊗ |b⟩ is the tensor product of the two vectors |a⟩ and |b⟩.

The tensor product (denotedby the symbol⊗) is themathematicalwayof cal-
culating the amplitudes. In general, the tensor product of two vectors v and
w is a vector of all combinations. Like this:

With v =


v0
v1
...

vn

andw =


w0
w1
...

wn

then v⊗w =



v0w0
v0w1
...

v0wn
v1w0
v1w1
...

v1wn
...

vnwn



For our system of two qubits, it is |a⟩⊗ |b⟩=

a0 ·
[

b0
b1

]
a1 ·
[

b0
b1

]
=


a0b0
a0b1
a1b0
a1b1

.
The tensor product |a⟩⊗|b⟩ is the explicit notation of |a⟩|b⟩. Both termsmean
the same.

Wecan represent aqubit system ina columnvectoror as the sumof the states
and their amplitudes.

|ab⟩= |a⟩⊗ |b⟩= a0b0|0⟩|0⟩+a0b1|0⟩|1⟩+a1b0|1⟩|0⟩+a1b1|1⟩|1⟩=


a0b0
a0b1
a1b0
a1b1


This representation of the qubit state is similar to the representation of the
single-qubit state |ψ⟩. Theonlydifference is the largernumberofdimensions
the two-qubit systemhas. It has four basis state vectors instead of two.

All the rules that govern a single qubit apply to a system that consists of two
qubits. It works similarly. Accordingly, the sum of all probabilities (remem-



164 Chapter 6. Working With Multiple Qubits

ber the probability of a state is the amplitude square)must be 1:

|a0b0|2 + |a0b1|2 + |a1b0|2 + |a1b1|2 = 1

Unsurprisingly, working with a two-qubit systemworks similar to working
withaone-qubit system, too. Theonlydifference is, again, the largernumber
of dimensions the vectors andmatrices have.

6.2.5 Two-Qubit Transformations
Let’s saywewant to apply theH-gate to thefirst qubit |a⟩ and theX-gate to the
second qubit |b⟩ as depicted in the following figure.

a

b

H

X

Figure 6.14: Two-qubit transformation circuit

Aswementioned above, we can express the application of a gate by prepend-
ing the transformationmatrix to thevector, likeM ·v. Inourspecificexample,
we prepend amatrix to each of the vectors, likeH|a⟩⊗X |b⟩. Further, the ten-
sor product is associative. Thismeanswe can regroup the terms as follows:

H|a⟩⊗X |b⟩= (H ⊗X)(|a⟩⊗ |b⟩) = (H ⊗X)|ab⟩

So, let’s calculate thematrix denoted byH ⊗X.

We can see that thematrix of a two-qubit transformation gate has four times
four dimensions. It corresponds to the four dimensions the two-qubit state
vector has.

Except for the larger number of dimensions, there is nothing extraordinary



6.2 The Equation Einstein Could Not Believe 165

going on here. We can prepend thismatrix to a two-qubit system.

H ⊗X =
1√
2

[
1 1
1 −1

]
⊗
[

0 1
1 0

]
=

1√
2

[
X X
X −X

]

=
1√
2

1 ·
[

0 1
1 0

]
1 ·
[

0 1
1 0

]
1 ·
[

0 1
1 0

]
−1 ·

[
0 1
1 0

]


=


0 1√

2
1√
2

1√
2

1√
2

0 1√
2

0
0 1√

2
0 − 1√

2
1√
2

0 − 1√
2

0



(6.1)

Working withmatrices of this size by hand is cumbersome. Fortunately, we
have a computer to calculate thematrices and the tensor products for us.

Listing 6.5: Calculate the transformation matrix

1 from qiskit import QuantumCircuit, Aer, execute
2
3 # Create a quantum circuit with one qubit
4 qc = QuantumCircuit(2)
5
6 # apply the Hadamard gate to the qubit
7 qc.i(0)
8 qc.h(1)
9

10 backend = Aer.get_backend('unitary_simulator')
11 unitary = execute(qc,backend).result().get_unitary()
12
13 # Display the results
14 unitary

First,wecreate the QuantumCircuitwith twoqubits (line4). Then,weapply the
X-gate to the one qubit and theH-gate to the other (lines 7-8).



166 Chapter 6. Working With Multiple Qubits

! Qiskit orders the qubits from back to front with regard to the
matrix calculation, sowe need to switch the positions.

This time, we use a different Qiskit simulator as the backend, the
UnitarySimulator (line 10). This simulator executes the circuit once and
returns the final transformation matrix of the circuit itself. Note that this
simulator does not contain anymeasurements.

The result is thematrix our circuit represents.

What if we onlywanted to apply theH-gate to one of the qubits and leave the
other unchanged? Howwouldwe calculate such a two-qubit transformation
matrix?

We can use the I-gate as a placeholder whenwe calculate the tensor product.
If we want to apply the H-gate to the first qubit and leave the second qubit
unchanged, we calculate the transformationmatrix as follows:

H ⊗ I =
1√
2

[
I I
I −I

]
=

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


These two-qubitgates transformqubits inasingle step,but thequbits remain
independent fromeach other. As a result, we unintentionally introduced an-
other constraint.

When we look at the formula of the two-qubit state again, more specifically
at the amplitudes,we can see that the product of the outer states’ amplitudes
(|0⟩|0⟩ and |1⟩|1⟩) equals the product of the inner states’ amplitudes (|0⟩|1⟩ and
|1⟩|0⟩), as shown in the following equation.

a0b0 ·a1b1 = a0b1 ·a1b0

This constraint results fromhowwe create the two-qubit system as the com-
bination of two independent single qubits. We even worked with these two
qubits, yet only as independent qubits.

The term (H ⊗X)|ab⟩ from our equation above explicitly shows the transfor-



6.2 The Equation Einstein Could Not Believe 167

mationwe apply to |ab⟩. This is

(H ⊗X)|ab⟩=


0 1√

2
0 1√

2
1√
2

0 1√
2

0
0 1√

2
0 − 1√

2
1√
2

0 − 1√
2

0

 |ab⟩

6.2.6 Entanglement
What if we constructed the two-qubit system differently? When we discard
the factors, the four basis states consist of (a0,b0, ...) and replace them with
general variables. We can state the following equation for an arbitrary two-
qubit system.

|ψ⟩= α|0⟩|0⟩+β |0⟩|1⟩+ γ|1⟩|0⟩+δ |1⟩|1⟩=


α
β
γ
δ


We’re holding on to the normalization of the sumof all probabilitiesmust be
1.

|α|2 + |β |2 + |γ|2 + |δ |2 = 1

Butwe donot insist that αδ=βγ.

In the last section,we got to know theCNOT-gate. It applies theX-gate to the
target qubit only if wemeasure the control qubit as a 1.

A : α|0⟩+β |1⟩

B : |0⟩

CNOT (A,B) :
α|00⟩+β |11⟩

Figure 6.15: The quantum CNOT gate

We can create the CNOT-gate from the two-qubit identity matrix by inter-



168 Chapter 6. Working With Multiple Qubits

changing the order of the last two elements, like this:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The CNOT-gate takes two inputs and gives two outputs. The first input is
called the control qubit. The second input is called the target qubit.

The result of the CNOT-gate is pretty forward if the control qubit is in a basis
state |0⟩ or |1⟩. If the control qubit is |0⟩, then nothing happens. The output
equals the input. If the control qubit is |1⟩, then the CNOT-gate applies the
X-gate (NOT-gate) on the target qubit. It flips the state of the target qubit.

The following figure depicts the truth table of the CNOT-gate.

A B
0
0

1
1

0
1

0
1

0
1

1
0

A BA
0
0

1
1

=

X

Figure 6.16: Truth table of the CNOT gate

It gets interesting when the control qubit is in superposition. For instance,
when we apply the Hadamard gate to the first qubit before we apply the
CNOT-gate.



6.2 The Equation Einstein Could Not Believe 169

Figure 6.17: A CNOT-gate with a control qubit in state |+>

The following equation denotes the state of our two-qubit system.

CNOT · (H ⊗ I)|00⟩

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · 1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1
0
0
0



=


1√
2

0 1√
2

0
0 1√

2
0 1√

2
0 1√

2
0 − 1√

2
1√
2

0 − 1√
2

0

 ·


1
0
0
0

=


1√
2

0
0
1√
2


(6.2)

Tocalculate thesubsequentapplicationofmultiplegates,weneedtomultiply
thematrices fromback to front. Thus,we startwith theCNOT -gate, followed
by the Hadamard gate. Unlike the multiplication of numbers, the order is
essential whenmultiplyingmatrices.

When we read the term CNOT · (H ⊗ I)|00⟩ from back to front, we start with
the initial state (|00⟩), apply the Hadamard gate to the first qubit, and apply
theCNOT -gate to the combined two-qubit system.

Inthenext step,wereplace thegateswiththerespectivematrices (wederived
thembefore in this section) and the initial state by the corresponding vector.
Then, we calculate the overall transformation matrix before we apply it to
the state vector in the last step.

Further, we can rewrite the vector as the sum of the weighted (by the ampli-
tudes) basis states. Weomit the states |a0⟩|b1⟩ and |a1⟩|b0⟩ for their amplitudes
are 0. For clarity,we named the different basis states |a0⟩ and |b0⟩ rather than



170 Chapter 6. Working With Multiple Qubits

simply |0⟩.

|ψ⟩=


1√
2

0
0
1√
2

=
1√
2
|a0⟩(|b0⟩)+

1√
2
|a1⟩(|b1⟩)

Usually, we measure both qubits concurrently. The probability amplitudes
tell uswhat to expect in this case. Wewill either get 00or 11, eachwith a prob-
ability of 1

2 . Butwe can alsomeasure a single qubit.

In the above equation, we disregard the terms within the parentheses for a
second. This represents thecasewhenweonlymeasure thefirstqubit |a⟩. We
measure itwithaprobabilityof 1

2 as 0andwiththesameprobabilityas 1. Once
wemeasure it, theotherqubit |b⟩ jumps into thestategivenbythe terminside
therespectiveparentheses. So, ifwemeasure |a⟩as0, |b⟩ jumpstothestate |b0⟩.
And if wemeasure |a⟩ as 1, |b⟩ jumps to the state |b1⟩.

When wemeasure |a⟩, then |b⟩ changes its state. It is important to note that
|b⟩ does not collapse once youmeasure |a⟩. It does not collapse into 0 or 1 but
jumps to another quantumstate |0⟩ or |1⟩. Thus,measuring one of two entan-
gled qubits collapses a subsystem. The unmeasured rest jumps to an unen-
tangled quantum state.

The distinction between jumping to |0⟩ or collapsing into 0 seems to be some-
what technical because once you measure |0⟩ you inevitably get 0. But the
state the unmeasured qubit jumps to can be any quantum state.

Let’s edit our example a little bit. Instead of leaving the controlled qubit un-
changed (applying the I-gate), we apply the RY -gate to it. We introduced the
RY -gate in the last section. The RY -gate rotates the qubit state around the y-
axis by a given angle. The following equation shows its transformation ma-
trix.

Ry = |ψ⟩⟨0|+ |ψ ′⟩⟨1|=
[

cosθ
2

sinθ
2

]
·
[
1 0

]
+

[
−sinθ

2
cosθ

2

]
·
[
0 1

]
=

[
cosθ

2 −sinθ
2

sinθ
2 cosθ

2

]
Let’s rotate the controlled qubit by the angle by π

3 , resulting in the circuit de-
picted in this figure.



6.2 The Equation Einstein Could Not Believe 171

Figure 6.18: The CNOT-gate can result in any quantum state

As before, we calculate the transformation matrix by matrix multiplication.
The following equation shows the resulting vector.

CNOT · (H ⊗RY (
π
3
))|00⟩

=



√
3
8 − 1√

8

√
3
8 − 1√

8
1√
8

√
3
8

1√
8

√
3
8

− 1√
8

√
3
8

1√
8

−
√

3
8√

3
8

1√
8

−
√

3
8 − 1√

8

 ·


1
0
0
0



=



√
3
8

1√
8

1√
8√
3
8



(6.3)

We can easily see the resulting state is entangled. The outer probability am-
plitudes of the resulting vectors are both

√
3
8 . Their product is

3
8 . The inner

amplitudes are both 1√
8
. Their product is 1

8 . So, of course,
3
8 ̸= 1

8 .

Again, wewrite this quantum state as the sumof its basis state.√
3
8
|a0⟩|b0⟩+

1√
8
|a0⟩|b1⟩+

1√
8
|a1⟩|b0⟩+

√
3
8
|a1⟩|b1⟩

Wewant to pull out the common factor ( 1√
2
) and the state of the qubit |a⟩. So,



172 Chapter 6. Working With Multiple Qubits

let’s rewrite this equation.

1√
2
|a0⟩

(√
3

2
|b0⟩+

1
2
|b1⟩

)
+

1√
2
|a1⟩

(
1
2
|b0⟩+

√
3

2
|b1⟩

)

Both states |a0⟩ and |a1⟩ have the same probability amplitude of 1√
2
. Thus, we

have a 50:50 chance ofmeasuring the qubit |a⟩ as 0 or 1. Whenwemeasure |a⟩
as 0, thenthequbit |b⟩ jumpstothestate

√
3

2 |0⟩+ 1
2 |1⟩. Then,wehaveaprobabil-

ityof
(√

3
2

)2
= 3

4 ofmeasuring |b⟩as 0andaprobabilityof
(1

2

)2
= 1

4 ofmeasuring
it as 1.

But whenwemeasure |a⟩ as 1, we have the exact opposite probabilities when
measuring |b⟩. Weget aprobabilityof

(1
2

)2
= 1

4 ofmeasuring |b⟩as 0andaprob-

ability of
(√

3
2

)2
= 3

4 ofmeasuring it as 1.

When we measure entangled qubits individually, we do not collapse both
qubits to finite values. But when we measure one qubit, the other jumps to
an unentangled quantum state. It is not restricted to result in a basis state. It
can jump to any valid quantum state.

When we measure the entangled qubits individually, what we measure
might appear random. Only when we look at both measurements, we see
their entangledstateperfectly correlates them. This isbecause theentangled
information qubits hold does not reside in either of the qubits individually.
Instead, an entangled two-qubit system keeps its information non-locally in
the correlations between the two qubits.

If the condition αδ ̸= βγ holds, then two qubits - or particles - are entangled.
They share a state of quantum superposition. We can’t represent their state
by two individual states anymore. But their state is:

|ψ⟩= α|0⟩|0⟩+β |0⟩|1⟩+ γ|1⟩|0⟩+δ |1⟩|1⟩=


α
β
γ
δ


Once we measure one of the particles, the other inevitably changes its state.
The two particles can be far apart. It doesn’t matter how far. The other par-
ticle changes its state instantly. And, instantlymeans instantly.

This contradicted Einstein’s notion of local realism. Therefore, he rejected
the idea of entangled particles as “spukhafte Fernwirkung oder Telepathie”.
Translated into English, it is “spooky-action-at-a-distance or telepathy.”



6.3 Quantum Programming For Non‐mathematicians 173

It was not until after Einstein’s death that the first experimental evidence
supported the theory of quantum entanglement.

6.3 Quantum Programming For
Non-mathematicians

Figure 6.19: The controlled RY

In theprevious twochapters,we learneda lotaboutquantumcomputing. We
learnedhowtoworkwitha singlequbit. Wegot toknowdifferentqubit gates.
TheHadamard-gate, theNOT-gate, and the rotation-gate (RY ).

We learned how to work with multiple qubits. We looked at entanglement
and howwe can use the CNOT-gate to entangle two qubits.

Thus far, we have paid attention to the concepts and the underlying math.
But I meant it when I said you don’t need to be a mathematician to master
quantum machine learning. It is now time to look at quantum computing
from the programmer’s perspective andworkwith qubits practically. Sowe
leave aside all the theory andmath. Ok,we still needa littlemath to calculate
probabilities. But that’s it.

The only thing to understand is the different types of probabilities.

• Themarginal probability is the absolute probability of an event
• The joint probability is the probability of two events occurring to-
gether
• The conditional probability is the probability of one event given the
knowledge that another event occurred

We will create and run quite a few circuits in this section. Therefore, here’s
a helper function that takes a configured QuantumCircuit instance, runs it and



174 Chapter 6. Working With Multiple Qubits

returns the histogram.

Listing 6.6: The run‐circuit helper function

1 from qiskit import QuantumCircuit, Aer, execute
2 from qiskit.visualization import plot_histogram
3 import matplotlib.pyplot as plt
4
5 def run_circuit(qc,simulator='statevector_simulator', shots=1, hist=True):

6 # Tell Qiskit how to simulate our circuit
7 backend = Aer.get_backend(simulator)
8
9 # execute the qc

10 results = execute(qc,backend, shots=shots).result().get_counts()
11
12 # plot the results
13 return plot_histogram(results, figsize=(18,4)) if hist else results

We specify a rather broad figure size (figsize=(18,4)) of the histogram (line
13) to get some space in it to display all the different states. Further, while
weworkwith the default statevector_simulator (line 5), we can also specify an-
other simulator to use as our backend (line 7). Finally,we take the number of
shots (howmany times should the simulator run the circuit to obtain precise
results) as a parameter (line 5).

Beforewe start calculatingBayes’ posteriorprobability, let’s lookat the struc-
ture of the histogramQiskit creates for us. In the following example, we cre-
ate a QuantumCircuit with four qubits (line 1). Then, we apply the Hadamard-
gate to eachqubit (by providing a list of the qubit positions) (line 2) beforewe
run the circuit (line 3).

Listing 6.7: Create an exemplary histogram

1 qc = QuantumCircuit(4)
2 qc.h([0,1,2,3])
3 run_circuit(qc)



6.3 Quantum Programming For Non‐mathematicians 175

Figure 6.20: An exemplary histogram

Each column in the histogram represents a state. A state is a combination
of the qubits’ values. In our case, a state is made up of four qubits. We can
measure each of these qubits as either 0 or 1. The bar and the number above
the bar indicate themeasurement probability of this state.

In our case, there are 16 states, and they all have the sameprobability of 0.062,
respectively 1

16 .

Thenumbers below the bar indicate the values of the four qubits in the given
state. They are read from the top (qubit at position 0) to the bottom (qubit
at position 3). If you rotated the numbers clockwise to read them better, you
would need to read them from the right (qubit 0) to the left (qubit 3).

Further, the states are ordered. As if the four qubits made up a binary digit,
qubit 0 is the lower bit at the right-hand side, and qubit 3 is the upper bit at
the left-hand side. As a result, all the states where qubit 3 is measured as 1
reside at the right half of the histogram. Thus, if you want states to be next
to each other,make sure their value for the highest qubit is the same.

For better readability, let’s consider a circuit with a single Hadamard gate.

Listing 6.8: A single Hadamard gate

1 qc = QuantumCircuit(4)
2 qc.h(0)
3 run_circuit(qc)



176 Chapter 6. Working With Multiple Qubits

Figure 6.21: Result of a single Hadamard gate

Qiskit initializesqubits in thestate |0⟩. Whenweapply theHadamard-gateon
a qubit in this state, it cuts the total probability of 1.0 into two halves. Thus,
we get two states that differ in the value for qubit 0. Each of these states has
a probability of 0.5. Since the binary value of 0001 is greater than 0000, the
state 0001 is on the right-hand side.

6.3.1 Representing a marginal probability
We startwith letting a qubit represent themarginal probability of one event.
Amarginal probability is the absolute probability of the event irrespective of
any further information. If we have multiple states where the event occurs,
then the marginal probability is the sum of all the corresponding probabili-
ties.

In the figure with one Hadamard-gate, there is only one state where qubit
0 is 1. Therefore, the marginal probability is 0.5. In the figure with four
Hadamard gates, there are eight stateswhere qubit 0 is 1. Themarginal prob-
ability of qubit 0 being 1 is the sum of all these states’ probabilities. It is 0.5,
too.

The Hadamard-gate splits the overall probability into equal halves. But a
marginal probability can be any value between 0.0 and 1.0.

In section 5.3, we introduced the RY -gate. It takes a parameter we can use to
specify the exact probability. For the RY -gate takes an angle θ as its parame-
ter, not a probability, we need to convert the probability into an angle before
passing it to the gate. This is what the function prob_to_angle does for us.



6.3 Quantum Programming For Non‐mathematicians 177

Listing 6.9: Calculate the angle that represents a certain probability

1 from math import asin, sqrt
2
3 def prob_to_angle(prob):
4 """
5 Converts a given P(psi) value into an equivalent theta value.
6 """
7 return 2*asin(sqrt(prob))

Now, we can create and run a circuit with an arbitrarymarginal probability
between 0 and 1. Let’s start with a probability of 0.4 ofmeasuring 1.

We apply the Ry gate on the qubit and pass it as the first parameter to call
prob_to_anglewith the probability value of 0.4 (line 2).
Listing 6.10: Specify the marginal probability

1 # Specify the marginal probability
2 event_a = 0.4
3
4 qc = QuantumCircuit(4)
5
6 # Set qubit to prior
7 qc.ry(prob_to_angle(event_a), 0)
8
9 run_circuit(qc)

Figure 6.22: The marginal probability



178 Chapter 6. Working With Multiple Qubits

Similar to theHadamard-gate, theRY -gate cuts theprobability into twoparts.
But it provides uswith a tool to control the size of the two parts.

6.3.2 Calculate the joint probability
In thenext step,wewant tocalculate the jointprobabilityof twoevents. Both
events have marginal probabilities between 0.0 and 1.0. Just like any other
probability.

The following figure depicts the joint probability of two variables.

P(A) P(B)

P(A∩B)

Figure 6.23: The joint probability

Mathematically, we can calculate the joint probability by multiplying both
marginal probabilities. Let’s say event B has a probability of 0.8. We expect a
probability of 0.4∗0.8 = 0.32.

Let’s try it with Qiskit.

Listing 6.11: Represent two marginal probabilities with a single qubit

1 # Specify the marginal probabilities
2 event_a = 0.4
3 event_b = 0.8
4
5 qc = QuantumCircuit(4)
6
7 # Set qubit to prior
8 qc.ry(prob_to_angle(event_a), 0)
9

10 # Apply modifier
11 qc.ry(prob_to_angle(event_b), 0)
12
13 run_circuit(qc)



6.3 Quantum Programming For Non‐mathematicians 179

Figure 6.24: Result of using a single qubit

This didn’t work. We’re not even close to the target probability. Instead, we
get a probability of 0.952.

Figure 6.25: The function f(x)=arcsin(sqrt(x))

Theproblemis thecalculationof theangleθ inside the prob_to_angle-function.
We calculate the angle as the arcsine of the target probability’s square root.



180 Chapter 6. Working With Multiple Qubits

Let’s have a closer look at this function. The following figure depicts the
shape of f (x) = arcsin(

√
x)

The first thing to note is that the function is defined in the interval between
0 and 1. For negative values, the square root is not defined. For values above
1, the arcsine is not defined.

The second thing to note is the curve of the function. The prob_to_angle-
function assumes the qubit to be in the basis state |0⟩. θ– that is the angle we
calculate–is the angle between the vector |ψ⟩–that is the target state–and the
basis state vector |0⟩–that is the state we start from. If we started from an-
other state, we would need to incorporate this state in the calculation of θ .
We would need to start at the respective point on the curve. It makes a dif-
ference if you calculate a step at the beginning of the curve (there is a high
gradient) and calculate a step in themiddle of the curve.

But if we incorporated the current point (that represents the probability of
eventA) on the curve into the calculation,wewoulddo thewhole calculation
of the joint probability outside of our quantum circuit. This is not what we
aim at.

Let’s give it another try. If the prob_to_angle-function assumes the qubit to
be in the basis state |0⟩, why don’t we set the probability of event B on a new
qubit? The difference is in line 11, wherewe apply the rotation about the P(B)
on the qubit 1 instead of the qubit 0.

Listing 6.12: Each marginal probability uses a qubit

1 # Specify the marginal probabilities
2 event_a = 0.4
3 event_b = 0.8
4
5 qc = QuantumCircuit(4)
6
7 # Set qubit to event_a
8 qc.ry(prob_to_angle(event_a), 0)
9

10 # Set fresh qubit to event_b
11 qc.ry(prob_to_angle(event_b), 1)
12
13 run_circuit(qc)



6.3 Quantum Programming For Non‐mathematicians 181

Figure 6.26: Result of using a fresh qubit

Wesee that the state 0011 (qubit 0 is 1 andqubit 1 is 1) denotes the correct prob-
ability of 0.32. The underlying rationale is quite simple.

All the states where qubit 0 is 1, (0001 and 0011) add up to 0.4–the marginal
probability representing event A. The states where qubit 1 is 1 (0010 and 0011)
addup to 0.8–themarginal probability representing eventB. Since both rota-
tions are independent of each other, the state 0011 represents the overlap of
both probabilities, with 0.4∗0.8 = 0.32.

For completion, the probability of the other states are:

• state 0000: (1.0−0.4)∗ (1.0−0.8) = 0.6∗0.2 = 0.12
• state 0001: 0.4∗ (1.0−0.8) = 0.4∗0.2 = 0.08
• state 0010: (1.0−0.4)∗0.8 = 0.6∗0.8 = 0.48

To get the joint probability, we need to measure both qubits and count the
portionwhere both qubits are 1.

We’re interested inasingleoneprobability. Wouldn’t itbegood if a singleone
qubit represented it?

This is where entanglement comes in handy. Do you remember the CNOT-
gate? It is a two-qubit gate. The first qubit is the control qubit. If that is 1,
then thegateapplies theX-gate (NOT-gate) on the secondqubit. If the control
qubit is 0, then the second qubit remains unchanged.

Let’s first look at the code.



182 Chapter 6. Working With Multiple Qubits

Listing 6.13: A controlled RY‐gate

1 # Specify the marginal probabilities
2 event_a = 0.4
3 event_b = 0.8
4
5 qc = QuantumCircuit(4)
6
7 # Set qubit to prior
8 qc.ry(prob_to_angle(event_a), 0)
9

10 # Apply half of the modifier
11 qc.ry(prob_to_angle(event_b)/2, 1)
12
13 # entangle qubits 0 and 1
14 qc.cx(0,1)
15
16 # Apply the other half of the modifier
17 qc.ry(−prob_to_angle(event_b)/2, 1)
18
19 # unentganle qubits 0 and 1
20 qc.cx(0,1)
21
22 run_circuit(qc)

Figure 6.27: The result of a controlled rotation

Theresult showsaprobabilityof0.32 formeasuringqubit 1 as 1. Weonlyhave
tomeasure a single qubit to get the joint probabilitywe are looking for.

But howdoes it work?



6.3 Quantum Programming For Non‐mathematicians 183

As before, we apply themarginal probability of event A (line 8). Next, we ap-
ply half of the marginal probability of event B. The following figure shows
the state the systemwould have if we stopped here.

Figure 6.28: Applying half of the probability

The resulting probabilities are quite a mess. But what we can see is that we
split the stateswhere qubit 0 is 0 into twoparts: the states 0000 and 0010. And
we did the same for the stateswhere qubit 0 is 1.

Next, we apply the CNOT-gate (line 14). Let’s seewhat it does.

Figure 6.29: The CNOT-gate switches probabilities

The CNOT-gate does not change the probability values. But it switches the
states that have these probabilities.



184 Chapter 6. Working With Multiple Qubits

The states 0000 and 0010 keep their probabilities because the CNOT-gate does
not do anything if the control qubit (here qubit 0) is 0. By contrast, the states
0001 and 0011 switch their probabilities–just likewe said. If the control qubit
is 1 the CNOT-gate acts like an X-gate on the target qubit (here qubit 1).

Essentially,whatwedid iswe say the statewhereP(A) and P(B)
2 overlap should

switch its probabilitywith the statewhere the P(A) overlapswith 1− P(B)
2 .

We apply the second half of P(B) but with a minus sign (line 17). Here’s the
effect.

Figure 6.30: Applying the other half of the probability

The correct value of the joint probability appears. Since we apply the nega-
tive half of P(B), we undo the split of the probabilities when qubit 0 is 0 that
we did with the first application of the RY -gate. The state of 0010 disappears.
It is nowpart of the state 0000 again.

When qubit 0 is 1, wemove half of P(B) from state 0011 back to state 0001. But
remember, these two states switched their probabilities before. Thatmeans,
instead of undoing the effect of the first RY -gate, we add the second half of
P(B).

In the last step, we apply the CNOT-gate again. This leaves the state 0000 un-
touched for the control qubit 0 is 0. Butwhenqubit 0 is 1 it switches the value
of qubit 1. Thus, the states 0001 and 0011 switch their probabilities again.

As a result, the state 0011has the resulting joint probability of 0.32. Since this
state is the only state where qubit 1 is 1, we get the joint probability by mea-
suring a single qubit.

Thispartof thecircuit isalsoknownasthecontrolledRY -gate. Qiskitprovides



6.3 Quantum Programming For Non‐mathematicians 185

a function for this out of the box. Let’s have a look. It has the same effect.
Listing 6.14: The controlled RY‐gate of Qiskit

1 # Specify the marginal probabilities
2 event_a = 0.4
3 event_b = 0.8
4
5 qc = QuantumCircuit(4)
6
7 # Set marginal probability
8 qc.ry(prob_to_angle(event_a), 0)
9

10 # Apply the controlled RY−gate
11 qc.cry(prob_to_angle(event_b), 0, 1)
12
13 run_circuit(qc)

Figure 6.31: Result of the CRY-gate

In summary, the controlled RY -gate works similarly to the CNOT-gate. But
it applies an RY -gate on the target qubit if the control qubit is 1, rather than
using the X-gate. If the control qubit is 0, nothing happens.

From the perspective of the resulting states, the controlled RY -gate splits the
state(s) where the control qubit is 1 into two parts. But it leaves untouched
the state(s) where the control qubit is 0. Thus, in contrast to applying the RY -
gate on a new qubit that splits all states, the controlled RY -gate provides fine
control over the states youwant toworkwith. Consequently, you transform
the target qubit only in the cases thatmatter.



186 Chapter 6. Working With Multiple Qubits

6.3.3 Calculate the conditional probability
Figure 6.32: Calculating the posterior

The calculationof the joint probability of two eventsworks prettywell. It an-
swers thequestionofhow likely it is for two independent events tooccur con-
currently. In the next step,we aim to calculate the conditional probability of
an event given that we know another event occurred. This is also known as
the posterior probability.

Graphically, the conditional probability is almost the same as the joint prob-
ability. The area representing the positive cases is the same. It is the overlap
of eventA and eventB. But thebase set is different. Whilewe consider all pos-
sible cases when calculating the joint probability, we only consider the cases
where one event occurredwhen calculating the conditional probability.

Bayes’ Theorem tells us how to calculate the conditional probability. We cov-
ered Bayes’ Theorem in-depth in section 4.2. Therefore, here’s only a very
brief recap so that you don’t need to flip toomany pages all the time.

Bayes’ Theorem describes a way of finding a conditional probability. A con-
ditional probability is a probability of an event (our hypothesis) given the
knowledge that another event occurred (our evidence). Bayes tells us we can
calculate the conditional probability of P(Hypothesis|Evidence) as the product
of the marginal probability of the hypothesis (P(Hypothesis), called the prior
probability) and amodifier. This modifier is the quotient of the “backward”



6.3 Quantum Programming For Non‐mathematicians 187

P(A) P(B)

P(A∩B) possible with no
prior knoweldge

possible when we
know A occurred

Figure 6.33: Joint and posterior probabilities

conditional probability (P(Evidence|Hypothesis)) and themarginal probability
of the newpiece of information (P(Evidence)). The backward probability (the
numerator of themodifier) answers the question, “what is the probability of
observing this evidence in a world where our hypothesis is true?” The de-
nominator is the probability of observing the EvidenceEvidence on its own.

The following equation depicts Bayes’ Theoremmathematically:

P(Hypothesis|Evidence)︸ ︷︷ ︸
posterior

= P(Hypothesis)︸ ︷︷ ︸
prior

· P(Evidence|Hypothesis)
P(Evidence)︸ ︷︷ ︸

modi f ier

Listing 6.15: Calculate the conditional probability for a modifier < 1

1 # Specify the prior probability and the modifier
2 prior = 0.4
3 modifier = 0.9
4
5 qc = QuantumCircuit(4)
6
7 # Set qubit to prior
8 qc.ry(prob_to_angle(prior), 0)
9

10 # Apply the controlled RY−gate
11 qc.cry(prob_to_angle(modifier), 0, 1)
12
13 run_circuit(qc)



188 Chapter 6. Working With Multiple Qubits

Figure 6.34: The posterior probability

Themodifier canbeanypositivenumber. Butmost likely, it is anumber close
to 1. If themodifier was exactly 1, it wouldmean the prior is equal to the pos-
terior probability. Then, the Evidencewould not have provided any informa-
tion.

In thefirst case, let’s say themodifier is anumberbetween0.0and1.0. Wecan
use the quantum circuit we created to calculate a conditional probability.

Qubit 1 shows the resulting conditional probability of 0.36. Let’s have a look
atwhat happens for amodifier greater than 1.0.
Listing 6.16: A modifier greater than 1

1 # Specify the prior probability and the modifier
2 prior = 0.4
3 modifier = 1.2
4
5 qc = QuantumCircuit(4)
6
7 # Set qubit to prior
8 qc.ry(prob_to_angle(prior), 0)
9

10 # Apply modifier
11 qc.cry(prob_to_angle(modifier), 0,1)
12
13 run_circuit(qc)

ValueError: math domain error



6.3 Quantum Programming For Non‐mathematicians 189

We get a math domain error. Of course, we do because the function
prob_to_angle is only defined for values between 0 and 1. For values greater
than 1.0, the arcsine isnotdefined. Thearcsine is the reverseof the sine func-
tion. Its gradient at 0.0and 1.0 tend to infinity. Therefore,wecan’tdefine the
function for values greater than 1.0 in ameaningful way.

Let’s rethinkourapproach. If themodifier is greater than 1.0, it increases the
probability. The resulting probabilitymust be bigger than the priorprobabil-
ity. Itmust be greater by exactly (modi f ier−1) · prior.

The transformation gates let us cut the overall probability of 1.0 into pieces.
Why don’t we separate the prior not once but twice? Then, we apply the re-
duced modifier (modi f ier − 1) on one of the two states representing the prior.
The sum of the untouched prior and the applied reducedmodifier should be
the conditional probability.

In the following code,we apply the prior to qubit 0 (line 8) and to qubit 1 (line
11). Then, we apply the reduced modifier to qubit 2 through an RY -gate con-
trolled by qubit 0.

Listing 6.17: Working with a reduced modifier

1 # Specify the prior probability and the modifier
2 prior = 0.4
3 modifier = 1.2
4
5 qc = QuantumCircuit(4)
6
7 # Apply prior to qubit 0
8 qc.ry(prob_to_angle(prior), 0)
9

10 # Apply prior to qubit 1
11 qc.ry(prob_to_angle(prior), 1)
12
13 # Apply modifier to qubit 2
14 qc.cry(prob_to_angle(modifier−1), 0,2)
15
16 run_circuit(qc)



190 Chapter 6. Working With Multiple Qubits

Figure 6.35: Result of working with a reduced modifier

We get six different states. Our conditional probability should be the sum of
the stateswherequbit 1 is 1plus the sumof the stateswherequbit 2 is 1. These
are the four states on the right-hand side. Let’s add them:

0.240+0.128+0.048+0.032 = 0.448

This didn’twork. The expected result is 0.4+0.4∗0.2 = 0.48. Whathappened?

The problem is the casewhere both qubits 1 and 2 are 1. This is the state 0111.
In order to get the correct conditional probability, we would need to count
this state twice: 0.448+0.032 = 0.48.
Listing 6.18: The overlap when applying the prior twice

1 # Specify the prior probability and the modifier
2 prior = 0.4
3 modifier = 1.2
4
5 qc = QuantumCircuit(4)
6
7 # Apply prior to qubit 0
8 qc.ry(prob_to_angle(prior), 0)
9

10 # Apply prior to qubit 1
11 qc.ry(prob_to_angle(prior), 1)
12
13 run_circuit(qc)



6.3 Quantum Programming For Non‐mathematicians 191

Figure 6.36: The overlap when applying the prior twice

Thisproblemoriginatedwhenweapplied thepriorprobability for the second
time. We aimed at two states, each representing the prior. When we look at
the result,we can see that, in fact, the probability ofmeasuring qubit 0 as 1 is
0.4 (the prior), and the probability ofmeasuring qubit 1 as 1 is 0.4, too. Butwe
also see that these probabilities are not independent of each other. But they
overlap in the state 0011.

Whenwe apply the prior to qubit 1, we need to leave the states where qubit 0
is 1 untouched.

Have a look.
Listing 6.19: Applying the prior to qubit 1 from the remainder

1 # Specify the prior probability and the modifier
2 prior = 0.4
3 modifier = 1.2
4
5 qc = QuantumCircuit(4)
6
7 # Apply prior to qubit 0
8 qc.ry(prob_to_angle(prior), 0)
9

10 # Apply prior to qubit 1
11 qc.x(0)
12 qc.cry(prob_to_angle(prior/(1−prior)), 0, 1)
13 qc.x(0)
14
15 run_circuit(qc)



192 Chapter 6. Working With Multiple Qubits

Figure 6.37: Applying the prior to qubit 1 from the remainder

Three lines do the trick:
Listing 6.20

1 qc.x(0)
2 qc.cry(prob_to_angle(prior/(1−prior)), 0, 1)
3 qc.x(0)

Let’s go through these lines step by step. In the first step, we apply the NOT-
gate to qubit 0. It switches the probabilities of the states where qubit 0 is 0
with thosewhere qubit 0 is 1.

Figure 6.38: Probabilities after the first X-gate



6.3 Quantum Programming For Non‐mathematicians 193

The figure depicts the state after the first NOT-gate.

We set the prior (0.4) as the probability of measuring qubit 0 as 1. The NOT-
gate reverses this. Now, we have the probability of 0.4 of measuring qubit 0
as 0.

Thisalsomeanswemeasure theremainder (0.6)whenqubit0 is 1. Simplyput,
theNOT-gate isourwayof saying: “Let’sproceedtoworkwith theremainder,
not the prior”.

This is the preparation for our next step. The controlled RY -gate.
Listing 6.21

1 qc.cry(prob_to_angle(prior/(1−prior)), 0, 1)

We only apply a rotation of qubit 1 when qubit 0 is 1. This is the case only for
the remainder. The rest is not 1.0, but it is 1.0−prior. Wemodify theprobabil-
ity we use in the controlled RY -gate. By specifying the size of the remainder
as the denominator, we account for the smaller size.

The figure below depicts the state after the controlled RY -gate.

Figure 6.39: Probabilities after the CRY-gate

The controlled RY -gate splits the remainder into two parts. The one part
(state 0011) represents the prior. So does the state 0000 we separated in the
very first step. There is no more overlap between these two states. To keep
things ordered, we apply the NOT-gate on qubit 0 again. The state 0000 be-
comes 0001 and vice versa, and the state 0011 becomes 0010. It leaves us with
the qubits 0 and 1, each representing the prior probabilitywithout overlap.



194 Chapter 6. Working With Multiple Qubits

Figure 6.40: Probabilities after the second X-gate

We’re nowprepared to apply the reducedmodifier to one of the priors.

We can now cut the part of the modifier out of one of the priors. Again, we
choose the lower qubit so that we have the resulting ones at the right-hand
side.
Listing 6.22: Apply the modifier on a separated prior

1 # Specify the prior probability and the modifier
2 prior = 0.4
3 modifier = 1.2
4
5 qc = QuantumCircuit(4)
6
7 # Apply prior to qubit 0
8 qc.ry(prob_to_angle(prior), 0)
9

10 # Apply prior to qubit 1
11 qc.x(0)
12 qc.cry(prob_to_angle(prior/(1−prior)), 0, 1)
13 qc.x(0)
14
15 # Apply the modifier to qubit 2
16 qc.cry(prob_to_angle(modifier−1), 0,2)
17
18 run_circuit(qc)



6.3 Quantum Programming For Non‐mathematicians 195

Figure 6.41: Result of applying the modifier on a separated
prior

Now, the states 0010 and 0101 add up to the posterior probability. Let’s clean
this up a littlemore. Wouldn’t it be nice to have a single one qubit represent-
ing the conditional?

First, we apply the CNOT-gate on qubits 1 and 3 with qubit 1 as the control
qubit (qc.cx(1,3)). If qubit 1 is 1 it applies theNOT-gate on qubit 3.

The following figure depicts the state after this gate.

Figure 6.42: State after qc.cx(1,3)

As usual, the CNOT-gate does not change the probabilities we see. It only
changes the states representing them. In this case, the state 0010was theonly



196 Chapter 6. Working With Multiple Qubits

state where qubit 1 is 1. This state has now changed to 1010. The only differ-
ence is that qubit 3 is 1 in the given case now, too.
Listing 6.23: Qubit 3 represents the posterior

1 # Specify the prior probability and the modifier
2 prior = 0.4
3 modifier = 1.2
4
5 qc = QuantumCircuit(4)
6
7 # Apply prior to qubit 0
8 qc.ry(prob_to_angle(prior), 0)
9

10 # Apply prior to qubit 1
11 qc.x(0)
12 qc.cry(prob_to_angle(prior/(1−prior)), 0, 1)
13 qc.x(0)
14
15 # Apply the modifier to qubit 2
16 qc.cry(prob_to_angle(modifier−1), 0,2)
17
18 # Make qubit 3 represent the posterior
19 qc.cx(1,3)
20 qc.cx(2,3)
21
22 run_circuit(qc)

Figure 6.43: Qubit 3 represents the posterior

Next, we want to do the same for state 0101. Since this state is the only state



6.3 Quantum Programming For Non‐mathematicians 197

where qubit 2 is 1we can use the CNOT-gate again to set qubit 3 to 1 if qubit 2
is 1. The following code contains all the steps.

We apply two CNOT-gates (lines 19-20). The size of the bars did not change.
But the states representing themdid. Then,wemeasure qubit 3 as 1with the
conditional probability.

So far, so good. There’s but one problem. This approach does not work for a
prior greater than 0.5 because we only have a total probability of 1.0 to work
with. But if the prior is greater 0.5, we can’t have two independent states rep-
resenting it.

Have a look atwhat happens.
Listing 6.24: A prior greater than 0.5 and a modifier greater than 1

1 # Specify the prior probability and the modifier
2 prior = 0.6
3 modifier = 1.2
4
5 qc = QuantumCircuit(4)
6
7 # Apply prior to qubit 0
8 qc.ry(prob_to_angle(prior), 0)
9

10 # Apply prior to qubit 1
11 qc.x(0)
12 qc.cry(prob_to_angle(prior/(1−prior)), 0, 1)
13 qc.x(0)
14
15 # Apply the modifier to qubit 2
16 qc.cry(prob_to_angle(modifier−1), 0,2)
17
18 # Make qubit 3 represent the posterior
19 qc.cx(1,3)
20 qc.cx(2,3)
21
22 run_circuit(qc)

ValueError: math domain error

Again, we get a math domain error. Mathematically, it fails when calculating (
prior/(1−prior) because the termwould be greater than 1, and thus, it is not a



198 Chapter 6. Working With Multiple Qubits

valid input for the prob_to_angle-function. For instance:

0.6/(1.0−0.6) = 0.6/0.4 = 1.5

Solving this situation is a little tricky. I’d argue it is even a hack.

If you’re a mathematician, I’m quite sure you won’t like it. If you’re a pro-
grammer, youmight accept it. Let’s have a look, first. Then, it’s open for crit-
icism.

When the prior is greater than 0.5, and the modifier is greater than 1.0, the
trickwithusing theprior twicedoesnotworkbecauseouroverall probability
must not exceed 1.0.

Of course, we could use the prior to adjusting the remaining probability so
thatwe canprecisely apply themodifier afterward. But in this case,wewould
need to know the priorwhenwe apply themodifier. Thiswould not be differ-
ent than initializing the qubit with the product of prior ∗modi f ier in the first
place.

But we aim for a qubit system that represents a given prior, and that lets us
apply a modifier without knowing the prior. So, we need to prepare the re-
mainder (1− prior) in away that lets usworkwith it (thatmeanswe apply the
reducedmodifier) without knowing the prior.

Rather than using the priorwhenwe apply themodifier to the remainder,we
pre-apply the prior to the remainderwith some auxiliary steps. For instance,
we set aside a part that is 0.3 of the prior.

We can do this in the samewaywe set aside the entire prior earlier.

Listing 6.25: Setting aside a part of the prior

1 # Specify the prior probability
2 prior = 0.6
3
4 qc = QuantumCircuit(4)
5
6 # Apply prior to qubit 0
7 qc.ry(prob_to_angle(prior), 0)
8
9 # Apply 0.3*prior to qubit 1

10 qc.x(0)
11 qc.cry(prob_to_angle(0.3*prior/(1−prior)), 0, 1)
12
13 run_circuit(qc)



6.3 Quantum Programming For Non‐mathematicians 199

Figure 6.44: Result of setting aside a part of the prior

As a result, state 0000 represents the prior probability (0.6) and the state 0011
represents 0.3 ∗ prior = 0.18. We can now apply the reduced modifier to this
statewithout knowing the prior. Let’s have a look.

Listing 6.26: Calculating the posterior for prior > 0.5

1 # Specify the prior probability and the modifier
2 prior = 0.6
3 modifier = 1.2
4
5 qc = QuantumCircuit(4)
6
7 # Apply prior to qubit 0
8 qc.ry(prob_to_angle(prior), 0)
9

10 # Apply 0.3*prior to qubit 1
11 qc.x(0)
12 qc.cry(prob_to_angle(0.3*prior/(1−prior)), 0, 1)
13
14 # Apply the modifier to qubit 2
15 qc.cry(prob_to_angle((modifier−1)/0.3), 1,2)
16
17 # Make qubit 3 represent the posterior
18 qc.x(0)
19 qc.cx(0,3)
20 qc.cx(2,3)
21
22 run_circuit(qc)



200 Chapter 6. Working With Multiple Qubits

Figure 6.45: Resulting posterior

Upuntil line 12, there’s nothing new. The important part is line 15.

Listing 6.27

1 qc.cry(prob_to_angle((modifier−1)/0.3), 1,2)

We apply a controlled RY -gate. Thus, we only change states where qubit 1 is
1. This is the case for the state 0010 that represents 0.3 of the prior. The im-
portant part is that we adjust our reducedmodifier to 0.3 by dividing by it. If
theportion is only 0.3of theprior,weneed to separate anaccordingly greater
part.

The remaining code (lines 18-20) changes the states to get the resulting condi-
tional probability bymeasuring qubit 3.

There’s a caveat, though. Of course, there is. Youmay have wondered how I
cameupwith0.3. Thefractionwechoosemustbesmaller thantheremaining
probability (1− prior). If it weren’t, we would exceed the overall probability
of 1.0 again. But itmust be greater than the effect themodifierhas, too. If it is
too small, we can’t separate a part of it that accounts for themodifier’s effect
on the prior.

So, when settling for the best value, we need to know both prior and modi-
fier. This iswhere the solutionbecomes ahack. Whilewedon’twant towork
with the prior and themodifier simultaneously, we do not set aside one spe-
cific fraction of the prior. Butwe set asidemany of them. We set aside all the
portions from 0.1 to 1.0. Thisway,we are prepared for anymodifier up to 2.0.



6.3 Quantum Programming For Non‐mathematicians 201

Listing 6.28

1 for i in range(1,10):
2 qc.cry(prob_to_angle(min(1, (i*0.1)*prior/(1−prior))), 0,i)

To not feed the prob_to_angle-functionwith a value greater than 1.0, we limit
the inputwith the min function. So,whenever the partwewant to set aside is
bigger than the remainder, we only set aside the remainder. However, this
means that this part is useless. It does not represent the corresponding por-
tion of the prior anymore.

When we apply the modifier, we need to select the correct part. This is the
smallest possible one that is big enough to contain themodifier’s effect.

Wecalculate themaximumofthereducedmodifierbymultiplying itby10 (the
reverse of the step sizewechose above). The ceil function rounds thatup. So,
we have the next greater position.

Listing 6.29

1 pos = ceil((modifier−1)*10)
2 qc.cry(prob_to_angle((modifier−1)/(pos*0.1)), pos,11)

Butwhat if we chose a part that does not correctly represent the correspond-
ing portion of the prior? Technically, we get thewrong result. However, this
is only the case when the actual result (prior ∗ modi f ier) exceeds 1.0. Such a
result would not make any sense in the first place. It would imply that ob-
serving a certain eventwould cause another event tooccurwith aprobability
greater than 1. In that case, wewould need to question our input data.

! Depending on the step size we choose, there is a little area close
to 1where the resulting probability is not calculated correctly.

So, let’s have a look at thefinal code. Due to thenumber of qubitswe’re using
for thepreparedparts,we exceed the limits ofwhat canbe represented in the
histogram. Rather than showing all the states, we include a measurement
into the circuit. Wemeasure qubit 3 that holds the result (line 31).

Ameasured qubit is either 0 or 1. We receive only a single number as output,
not the probability. Butwe can run the circuit several times (here 1000 shots,



202 Chapter 6. Working With Multiple Qubits

line 33) to calculate the resulting probability. Due to the empiric reconstruc-
tion of the probability, it is not perfectly accurate, though.

Listing 6.30: Calculating the posterior with a prior greater than 0.5

1 from math import ceil
2 from qiskit import ClassicalRegister, QuantumRegister
3
4 # Specify the prior probability and the modifier
5 prior = 0.6
6 modifier = 1.2
7
8 # Prepare the circuit with qubits and a classical bit to hold the

measurement
9 qr = QuantumRegister(12)

10 cr = ClassicalRegister(1)
11 qc = QuantumCircuit(qr, cr)
12
13 # Apply prior to qubit 0
14 qc.ry(prob_to_angle(prior), 0)
15
16 # Separate parts of the prior
17 qc.x(0)
18 for i in range(1,10):
19 qc.cry(prob_to_angle(min(1, (i*0.1)*prior/(1−prior))), 0,i)
20
21
22 # Apply the modifier
23 pos = ceil((modifier−1)*10)
24 qc.cry(prob_to_angle((modifier−1)/(pos*0.1)), pos,11)
25
26 # Make qubit 11 represent the posterior
27 qc.x(0)
28 qc.cx(0,11)
29
30 # measure the qubit
31 qc.measure(qr[11], cr[0])
32
33 run_circuit(qc, simulator='qasm_simulator', shots=1000 )



6.3 Quantum Programming For Non‐mathematicians 203

Figure 6.46: Posterior with a prior greater than 0.5

The circuit correctly calculates the conditional probability given a prior and
amodifier. We have seen that it gets quite tricky to calculate the conditional
for a prior greater than 0.5 and amodifier greater 1.0.

In this example, we prepare for a modifier up to 2.0. While this is enough
to consider all cases for a prior greater than 0.5, the modifier could be even
greater if the prior is accordingly smaller. Therefore, to completely separate
applying the prior fromusing themodifier, we need to consider these cases.

If we considered all possible cases, we would end up with lots of required
qubits. Alternatively, we could sacrifice some precision for edge cases when
we’re close to a probability of 1.0.



7. Quantum Naïve Bayes

Naïve Bayes is a probabilistic machine learning algorithm based on Bayes’
Theorem. Even though it is pretty simple, it has been successfully used in
awide variety of classification tasks.

We tap the theoretical and practical knowledge we gathered in the last few
chapters and use it to build a Quantum Naïve Bayes classifier. Similar to
our previous quantum classifier we introduced in section 3.6, the Quantum
NaïveBayes is aVariationalHybridQuantum-ClassicalAlgorithm. It consists
of three parts:

• We pre-process the data on a classical computer to determine themodi-
fiers for a set of features.
• Weapply themodifiers in aquantumcircuit andmeasure thequbit that
represents the posterior probability.
• We post-process the measurement and transform it into a prediction
thatwe evaluatewith the labels fromour training data set.

In section 3.6, we used the pre-processing to create the final quantum state,
andweonlyused thequantumcircuit tomeasure it. This time,wegobeyond
creating a simple quantum state to bemeasured. This time, wemake a quan-
tum circuit that includes the calculation of the probabilities.

Figure 7.1 shows the overall architecture of our simple Variational Hybrid
Quantum-Classical Algorithm.

If you read this book from the beginning, I suppose you know Bayes’ Theo-



205

PQC

|ψ⟩

Running at
quantum
computer

data measurement

prediction

Running at
classical
computer

Pre-Processing:
Post
Processing:

Figure 7.1: A Variational Hybrid Quantum-Classical Algorithm

remby heart already. If not, here’s the formula onemore time.

P(Hypothesis|Evidence)︸ ︷︷ ︸
posterior

= P(Hypothesis)︸ ︷︷ ︸
prior

· P(Evidence|Hypothesis)
P(Evidence)︸ ︷︷ ︸

modi f ier

IfwehaveonehypothesisH andmultipleevidencesE1,E2, . . . ,En, thenwehave
nmodifiersM1,M2, . . . ,Mn:

P(H|E1,E2, . . . ,En)︸ ︷︷ ︸
posterior

=
P(E1|H)

P(E1)︸ ︷︷ ︸
M1

· P(E2|H)

P(E2)︸ ︷︷ ︸
M2

· · · · · P(En|H)

P(En)︸ ︷︷ ︸
Mn

·P(H)︸ ︷︷ ︸
prior

This formula tells uswe can represent each characteristic of a passenger by a
modifier that changes her probability to survive the Titanic shipwreck.

In the pre-processing, we calculate these modifiers for two features, the
ticket class and the gender of the passenger. We limit our Quantum Naïve
Bayes classifier to these two features to keep our quantum circuit as simple
as possible so that we can concentrate on the underlying structure of the al-
gorithm.



206 Chapter 7. Quantum Naïve Bayes

Listing 7.1: Calculate the prior‐probability

1 import pandas as pd
2 train = pd.read_csv('./data/train.csv')
3
4 # total
5 cnt_all = len(train)
6
7 # list of all survivors
8 survivors = train[train.Survived.eq(1)]
9 cnt_survivors = len(survivors)

10
11 # calculate the prior probability
12 prob_survival = len(survivors)/cnt_all
13
14 print("The prior probability to survive is: ", round(prob_survival, 2))

The prior probability to survive is: 0.38

We start easy. We import Pandas (line 1) and load the training data from the
raw CSV file (line 2). We use the raw data because we only copewith categor-
ical data (Pclass and Sex) and these two data do notmiss for any of the passen-
gers (see section 2.3).

We calculate the prior (marginal) probability of surviving the Titanic ship-
wreck (line 12) as the ratio between the number of survivors (line 9) and the
total number of passengers (line 5) in our dataset.

We see a prior probability of roughly 0.38.

7.1 Pre-processing
Thepre-processing covers the calculationof themodifiers. We startwith the
ticket class.



7.1 Pre‐processing 207

Listing 7.2: Calculating the ticket class modifier

1 # get the modifier given the passenger's pclass
2 def get_modifier_pclass(pclass):
3 # number of passengers with the same pclass
4 cnt_surv_pclass = len(survivors[survivors.Pclass.eq(pclass)])
5
6 # backward probability
7 p_cl_surv = cnt_surv_pclass/cnt_survivors
8
9 # probability of the evidence

10 p_cl = len(train[train.Pclass.eq(pclass)])/cnt_all
11
12 return p_cl_surv/p_cl

Wedefine a function that takes the passenger’s pclass as input. The Pclass col-
umn in our dataset is the ticket class (1 = 1st, 2 = 2nd, 3 = 3rd).

We calculate the backward probability P(Pclass|Survived) by dividing the pas-
sengerswho survived having the given ticket class (cnt_surv_pclass, line 4) by
all survivors (cnt_survivors, line7). Then,wecalculate theprobabilityofapas-
senger owning the given ticket class. It is the number of passengerswith the
given ticket class divided by the total number of passengers (line 10).

The modifier is the evidence’s backward probability divided by the likeli-
hood to see the evidence. For the given ticket class, the modifier is mPclass =
P(Pclass|Survived)

P(Pclass) (line 12).

Listing 7.3: Calculating the gender modifier

1 # get the modifier given the passenger's pclass
2 def get_modifier_sex(sex):
3 # number of passengers with the same pclass
4 cnt_surv_sex = len(survivors[survivors.Sex.eq(sex)])
5
6 # backward probability
7 p_sex_surv = cnt_surv_sex/cnt_survivors
8
9 # probability of the evidence

10 p_sex = len(train[train.Sex.eq(sex)])/cnt_all
11
12 return p_sex_surv/p_sex



208 Chapter 7. Quantum Naïve Bayes

The calculation of themodifier for a passenger’s genderworks accordingly.

We calculate the backward probability p_sex_surv as the number of survivors
of the given gender divided by the total number of survivors (line 7).

The probability of a passenger having the given gender is the number of pas-
sengerswith thegivengenderdividedby the totalnumberofpassengers (line
10). The function returns themodifiermSex =

P(Sex|Survived)
P(Sex) (line 12).

These two functions serve as helper functions in our pre_process-function.

Listing 7.4: Pre‐processing

1 def pre_process(passenger):
2 """
3 passenger −− the Pandas dataframe−row of the passenger
4 returns a list of modifiers, like this [modifier_a, modifier_b, ...]
5 """
6 return [
7 get_modifier_pclass(passenger["Pclass"]),
8 get_modifier_sex(passenger["Sex"]),
9 ]

The actual pre-processing is quite simple. The function pre_process takes the
passengerdata as a rowof aPandasDataframe. It takes theactual passenger’s
values for Pclass and Sex and calls the respective helper functions (lines 7-8).
It returns themodifiers it gets back from these functions in a list.

Let’s have a look at themodifiers of two exemplary passengers–a female pas-
sengerwith a first-class ticket and amale passengerwith a third-class ticket.

Listing 7.5: Two exemplary passengers

1 # a female passenger with 1st class ticket
2 print (pre_process(train.iloc[52]))
3
4 # a male passenger with 3rd class ticket
5 print (pre_process(train.iloc[26]))

[1.6403508771929822, 1.9332048273550118]
[0.6314181584306999, 0.49215543190732464]



7.2 PQC 209

Themodifiers vary between 0.49 and 1.93. Themodifiers of themale passen-
ger are below 1.0. Nomodifier exceeds 2.0. The female passengerwith a first-
class ticket has two highmodifiers above 1.6. Whenwe apply these twomod-
ifiers on the prior probability, we get a posterior probability of 0.38 ∗ 1.64 ∗
1.93 = 1.20. This value exceeds themaximumprobability of 1.0.

In our PQC,we need to consider these things.

7.2 PQC
In the previous section 6.3.3, we learned how to calculate a posterior (condi-
tional) probability given a prior probability and a modifier. We build upon
this approach.

Thus, in general, we:

• apply the prior to a qubit,
• set aside an auxiliary qubit to hold a fraction of the prior,
• and apply themodifier. If themodifier is above 1.0, we use the auxiliary
to add to the prior.

The implementation of this approach in our QuantumNaïve Bayes classifier
has some challenges, though. While the posterior probability calculation is
easy when the modifier is below 1.0, it becomes tricky when it is above 1.0.
And, it becomes tough when the prior probability is above 0.5 at the same
time.

Now, we could sigh of relief our prior is 0.38 - below 0.5. However, we apply
twomodifiers inarow. Onceweapplied thefirstmodifier, theresultbecomes
the new prior when we apply the second modifier. For instance, if the mod-
ifier represents the first-class ticket (modifier of 1.64) or a female passenger
(modifier of 1.93), then the new prior is above 0.5 (0.62 or 0.73). Moreover,
there are passengers whose modifiers are both above 1.0, as in the case of a
female passengerwith a first-class ticket. In this case, we need two auxiliary
qubits to add to prior.

So, here’s our refined approach.

• We apply the prior to a qubit,
• set aside two auxiliary qubits to hold a fraction of the prior each,
• order themodifiers startingwith the lower one,
• and apply the firstmodifier. If themodifier is above 1.0:
– Weuse the first auxiliary to add to the prior.
– Weuse the second auxiliary to “refill” and adjust the first auxiliary
to reflect the size of the new prior.



210 Chapter 7. Quantum Naïve Bayes

We start with the basic structure of our PQC. This pqc function takes a
reusable Qiskit backend, a prior probability, and the modifiers representing
a passenger as mandatory parameters. Further, we let the pqc function take
optional parameterswe can use during the development.
Listing 7.6: The basic pqc‐function

1 from functools import reduce
2 from qiskit import QuantumCircuit, Aer, execute, ClassicalRegister,

QuantumRegister
3 from math import asin, sqrt, ceil
4 from qiskit.visualization import plot_histogram
5 import matplotlib.pyplot as plt
6
7 def prob_to_angle(prob):
8 """
9 Converts a given P(psi) value into an equivalent theta value.

10 """
11 return 2*asin(sqrt(prob))
12
13 def pqc(backend, prior, modifiers, shots=1, hist=False, measure=False):
14 # Prepare the circuit with qubits and a classical bit to hold the

measurement
15 qr = QuantumRegister(7)
16 cr = ClassicalRegister(1)
17 qc = QuantumCircuit(qr, cr) if measure else QuantumCircuit(qr)
18
19 # INSERT QUANTUM CIRCUIT HERE
20
21 # measure the qubit only if we want the measurement to be included
22 if measure:
23 qc.measure(qr[0], cr[0])
24 results = execute(qc,backend, shots=shots).result().get_counts()
25 return plot_histogram(results, figsize=(12,4)) if hist else results

The shots parameter allows the caller to specify the number of times to
run the quantum circuit. Note, this works only in combination with the
qasm_simulator as the backend.

The hist parameter lets us specify whether we want to return a histogram
(hist=True) or the raw data (hist=False).

The measure parameter allows us to easily switch between including themea-
surement of a qubit (measure=True) into the circuit or not. It is usually helpful
not to include themeasurement during development because it allows us to



7.2 PQC 211

use the statevector_simulator backend. This computes all the states of the in-
dividual qubits. But once you have too many qubits in your circuit, things
becomehard to follow. Then, itmay be helpful to use the qasm_simulator back-
endandmeasureasingleonequbityou’re interested in. Sinceyouwouldonly
get a single number and not a probability distribution anymore, you can use
the shots parameter to run the circuitmultiple times. This way, you get back
theapproximateprobability. Of course, it is onlyapproximatebecause it is an
empiric reconstruction of the probability and not a precise calculation. But
it is pretty accuratemost of the time.

In this code listing, we also added the prob_to_angle functionwe already used
before, andwewill use it here, too.

In the pqc function,we startwith the definition of the QuantumCircuit. Wewill
use seven qubits in total in this circuit (line 15). Depending on the measure pa-
rameter, we add a ClassicalRegister (line 16) to receive the measurement of a
qubit (lines 22-23).

Once the quantum circuit is wholly specified (with or without a measure-
ment),weexecute itwiththegiven backendandspecifyhowmanytimes (shots)
wewant the circuit to run (line 24).

Depending on the hist parameter, the function returns the plot of a his-
togramor the raw results (line 25)

Unless indicatedotherwise, the followingcode listingsbecomepartof the pqc
function. To keep them small, we skip the repetition of the code we already
discussed.

Whenever we apply transformation gates in Qiskit, we need to specify the
qubit indexwewant to apply the gate on. Foronce, numbers arenot that easy
to rememberaswords. Second,wemightwant to change thepositionaqubit
with a specific purpose has. Therefore, we define and use constant values to
keep the indexes of our qubits. Let’s start with the target qubit.
Listing 7.7: Set the target qubit to represent the prior probability

1 # target qubit has position 6
2 target = 6
3
4 # Apply prior to qubit to the target qubit
5 qc.ry(prob_to_angle(prior), target)

The effect of this step is simple. First, we measure the target qubit as 1with
the prior probability. The following figure depicts the state.



212 Chapter 7. Quantum Naïve Bayes

Figure 7.2: The state after applying th eprior to the target

In the next step, we apply the prior to an auxiliary qubit we call aux_full be-
cause it represents thewhole prior.

Listing 7.8: Apply prior to aux‐full‐qubit

1 # auxiliary qubit has position 5
2 aux_full = 5
3
4 # Work with the remainder
5 qc.x(target)
6
7 # Apply prior to full auxiliary qubit
8 qc.cry(prob_to_angle(prior/(1−prior)), target, aux_full)

We apply the NOT-gate to change the qubit 0 so that it is 1 for the remaining
0.62 rather thanthe0.38of theprior (line5). Thisallowsus toapply the follow-
ing controlled RY -gate only on the part that does not overlap with the target
qubit (line 8). Since the remainder is smaller than 1.0, we need to adjust the
rotation to the smaller part that is now 1− prior.

The resulting state shows that two statesmatch the prior probability.



7.2 PQC 213

Figure 7.3: The state after applying the prior to the aux-full
qubit

Withtwostates representing thepriorof0.38,wehaveenoughspace left to let
another qubit represent half of the prior. This qubit has the name aux_half.

Listing 7.9: Apply half the prior to aux‐half‐qubit

1 # second auxiliary qubit has position 4
2 aux_half = 4
3
4 # Work with the remainder
5 qc.cx(aux_full,target)
6
7 # Apply 0.5*prior to qubit 1
8 qc.cry(prob_to_angle(0.5*prior/(1−(2*prior))), target,aux_half)
9

10 # Rearrange states to separated qubits
11 qc.x(target)
12 qc.cx(aux_full, target)

We need to work with the remainder again. Thus, we need to set aux_full
qubit to 0 for the state where it represents the prior. This time, however, we
can’t use a normal NOT-gate. While it would have the desired effect for the
aux_fullqubit, itwouldmixup the statewhere the target-qubit represents the
prior.

Instead, we use a controlled NOT-gate (line 5). This separates the remainder



214 Chapter 7. Quantum Naïve Bayes

of the remainder. Finally, we rearrange the states so that each qubit repre-
sents the prior (or half the prior) without overlap (lines 11-12).

The result shows that it works. We see two states with the entire prior prob-
ability and one state with half of the prior probability, each represented by a
single qubitmeasured as 1.

Figure 7.4: The state after applying half the prior to the
aux-half qubit

We’re now prepared to work with the modifiers. Since the highest modifier
weexpect is 1.93 forapassenger’s ticket class and 1.64 forapassenger’s gender,
the aux_full-qubit is sufficient to apply any modifier (because prior+aux_full
= 2∗prior).

But the aux_half-qubitmaynot suffice. Bothmodifiers are above 1.5, and thus,
they exceed the resulting probability we could represent with the help of
aux_half (because prior+aux_half= 1.5∗prior).

Unlessbothmodifiersareabove1.5,wecanusethe aux_full-qubit torepresent
the larger one and the aux_half-qubit to represent the lower one. Therefore,
we sort themodifiers, beginningwith the larger. If bothmodifiers are above
1.5, we have a problem. However, the resulting probability would exceed 1.0.
In this case, we would need to limit the modifiers to the maximum possible
values, anyway.

In any case, startingwith the largermodifier is a good idea.
Listing 7.10: Sort the modifiers

1 # sort the modifiers
2 sorted_modifiers = sorted(modifiers)



7.2 PQC 215

In the next step, we iterate through the sorted modifiers. Depending on
whether the modifier is above or below 1.0, we need to do different things.
Let’s start with the easy case, amodifier below 1.0.

In this case, we use the controlled RY -gate to calculate the posterior probabil-
ity.
Listing 7.11: Calculate the posterior probability for a modifier smaller than 1.0

1 for step in range(0, len(modifiers)):
2 if sorted_modifiers[step] > 1:
3 # TO BE IMPLEMENTED
4 pass
5
6 else:
7 # apply modifier to the target qubit
8 qc.cry(prob_to_angle(1−sorted_modifiers[step]), target, step*2)
9 qc.cx(step*2,target)

If the modifier is below 1.0 (block after line 6), we need to reduce the target
probability by a portion of 1−modi f ier (line 8). The target-qubit acts as the
control qubit. Thus, in states when the target qubit is 1, we separate a part
of 1−modi f ier and set the controlled qubit to 1. The controlled qubit has the
index step*2. For step is 0, the index of this qubit is 0, too. This qubit acts as a
trunk. We do notworkwith it anymore.

The controlled rotation does not change the value of the control qubit. Thus,
the target-qubit is 1 in both parts. The following CNOT-gate (line 9) changes
this. If our trunk-qubit is 1 (which is only the case we just separated), we re-
verse the value of the target-qubit from 1 to 0.

Figure 7.5: Result of a modifier of 0.8



216 Chapter 7. Quantum Naïve Bayes

The figure depicts the state if the first modifier is 0.8. The state at the right-
hand side is the only state where the target-qubit is 1 with a probability of
0.38∗0.8 = 0.304.

Wealso see that the aux_full-qubit still represents thepriorprobabilityof 0.38.
Technically, we might want to apply the modifier on the aux_full-qubit be-
causewe could need it in the second step. However, sincewe sorted themod-
ifiers and the greater one is below 1.0, we can be sure the second modifier is
below 1.0, too.

In this case, the same step works. We apply a controlled rotation with the
target qubit as a control qubit and a new trunk-qubit as the target qubit.

Let’smove to themore exciting part. Themodifier is above 1.0.

Listing 7.12: Calculate the posterior probability for a modifier greater than 1.0

1 if sorted_modifiers[step] > 1:
2 qc.cry(prob_to_angle(min(1, sorted_modifiers[step]−1)), aux_full,

target)
3
4 # separate the aux_full and the target qubit
5 qc.ccx(target, aux_full, 0)
6 qc.ccx(target, 0, aux_full)

If the modifier is above 1.0, we apply a controlled rotation with our target-
qubit as the controlled qubit. Thus, we “add” to it. The aux_full-qubit serves
as a control qubit (line 2).

The two CCNOT -gates (lines 5-6) separate states where the aux_full and the
target qubits are 1. As a result, the sum of all states where the target qubit
is 1 represents the posterior probability after applying the firstmodifier.

The figure depicts the state after applying amodifier of 1.4.

Essentially, we “moved” some probability from the aux_full-qubit to the
target-qubit. But since the first modifier was above 1.0, the second might be
too. In this case, the aux_full-qubitwouldnot be appropriate anymore. It has
a smaller probability, now.



7.2 PQC 217

Figure 7.6: Result of a modifier of 1.4

But we have another auxiliary qubit left. So, we use this qubit to “refill” our
aux_full-qubit.

Listing 7.13: refill the aux‐full‐qubit

1 if step == 0:
2 # equalize what we transferred to the target (*2) and increase the

aux_full to reflect the modifier (*2)
3 qc.cry(prob_to_angle(min(1,(sorted_modifiers[step]−1)*2*2)), aux_half,

aux_full)

After we applied the firstmodifier (line 1), we use another controlled RY -gate
to “move” probability from the aux_half-qubit to the aux_full-qubit. The in-
teresting question here is: howmuch?

The answer is the angle that represents four times themodifier. We reduced
the probability of measuring the aux_full-qubit as 1 when we used the mod-
ifier to move the probability to the target-qubit. We want the aux_full-qubit
to represent the posterior probability after applying the firstmodifier as the
new prior probability before applying the second modifier. Thus, we must
not only “refill” the aux_full-qubit, but wemust apply themodifier on it, too.
Thismakes two.

We need to remember the aux_half-qubit represents only half the probability
of the aux_full. Thus,we need to apply twice the rotationwewant to “move.”
Thismakes four.

The following figure shows the target-qubit and the aux_full-qubit after we
applied the firstmodifier.



218 Chapter 7. Quantum Naïve Bayes

Figure 7.7: Result after preparing the aux-full-qubit

If the secondmodifier is below 1.0, we don’t need the aux_full. But when it is
greater 1.0, we have our auxiliary qubit well-prepared.

The followingfigure depicts the state afterwe applied the secondmodifier of
1.3.

Figure 7.8: Result of two modifiers of 1.4 and 1.3

Altogether, there are seven different states. The posterior probability is the
sumof all states where the target-qubit is 1.

We prepared the pqc-function to include measurement. Let’s use this ability
to look at the resulting probability ofmeasuring the target-qubit as 1.



7.2 PQC 219

Listing 7.14: Include the measurement into the circuit

1 plot_histogram(pqc(Aer.get_backend('qasm_simulator') , 0.38, [1.4, 1.3],
shots=1000, hist=False, measure=True))

Figure 7.9: Result of two modifiers of 1.4 and 1.3, including
measurement

We can see a posterior probability that is very close to the exact probability
of 0.38 ∗ 1.4 ∗ 1.3 = 0.69. However, the empirical nature of the qasm_simulator
causes the fuzziness of themeasurement.

This leaves the question of what happens if both modifiers result in a poste-
rior probability that exceeds 1.0.

In this case, wewould “move” the complete probability of the aux_half-qubit
to the aux_full-qubit after the first step. And, we would move most of it to
the target-qubit in the second step. As a result, we would see a very high
probability ofmeasuring our target-qubit as 1. But it wouldn’t be accurate.

However, I’d argue that there is no accurate result in this case at all.

Here’s the result after applying the modifiers of a female passenger with a
first-class ticket (modifiers: [1.6403508771929822, 1.9332048273550118]).

This time, let’s use the qasm_simulator to see the result of the measured qubit
only.



220 Chapter 7. Quantum Naïve Bayes

Listing 7.15: Calculate the posterior of a female passenger with a first‐class‐ticket

1 plot_histogram(pqc(Aer.get_backend('qasm_simulator') , 0.38,
[1.6403508771929822, 1.9332048273550118], shots=1000, hist=False,
measure=True))

Figure 7.10: Result of a female passenger with a
first-class-ticket

The following listing depicts the complete code of the pqc-function.



7.2 PQC 221

Listing 7.16: The parameterized quantum circuit ‐ part 1

1 def pqc(backend, prior, modifiers, shots=1, hist=False, measure=False):
2 # Prepare the circuit with qubits and a classical bit to hold the

measurement
3 qr = QuantumRegister(7)
4 cr = ClassicalRegister(1)
5 qc = QuantumCircuit(qr, cr) if measure else QuantumCircuit(qr)
6
7 # the qubit positions
8 trunks = 3
9 aux = trunks+1

10 aux_half = trunks+1
11 aux_full = trunks+2
12 target = trunks+3
13
14 # Apply prior to qubit to the target qubit
15 qc.ry(prob_to_angle(prior), target)
16
17 # Work with the remainder
18 qc.x(target)
19
20 # Apply prior to full auxiliary qubit
21 qc.cry(prob_to_angle(prior/(1−prior)), target, aux_full)
22
23 # Work with the remainder
24 qc.cx(aux_full,target)
25
26 # Apply 0.5*prior to qubit 1
27 qc.cry(prob_to_angle(0.5*prior/(1−(2*prior))), target,aux_half)
28
29 # Rearrange states to separated qubits
30 qc.x(target)
31 qc.cx(aux_full, target)
32
33 sorted_modifiers = sorted(modifiers)
34
35 # CONTINUED...



222 Chapter 7. Quantum Naïve Bayes

Listing 7.17: The parameterized quantum circuit ‐ part 2

1 # CONTINUE
2 for step in range(0, len(modifiers)):
3 if sorted_modifiers[step] > 1:
4 qc.cry(prob_to_angle(min(1, sorted_modifiers[step]−1)), aux_full,

target)
5
6 # separate the aux_full and the target qubit
7 qc.ccx(target, aux_full, 0)
8 qc.ccx(target, 0, aux_full)
9

10 if step == 0:
11 # equalize what we transferred to the target (*2) and increase

the aux_full to reflect the modifier (*2)
12 qc.cry(prob_to_angle(min(1,(sorted_modifiers[step]−1)*2*2)),

aux_half, aux_full)
13
14 else:
15 # apply modifier to the target qubit
16 qc.cry(prob_to_angle(1−sorted_modifiers[step]), target, step*2)
17 qc.cx(step*2,target)
18
19 if step == 0:
20 # apply modifier to full auxiliary qubit
21 qc.cry(prob_to_angle(1−sorted_modifiers[step]), aux_full, step

*2+1)
22
23 # unentangle the full auxiliary from trunk
24 qc.cx(step*2+1,aux_full)
25
26
27 # measure the qubit only if we want the measurement to be included
28 if measure:
29 qc.measure(qr[target], cr[0])
30 results = execute(qc,backend, shots=shots).result().get_counts()
31 return plot_histogram(results, figsize=(12,4)) if hist else results

7.3 Post-Processing
Weneed to post-process the resultswe receive from the pqc. Ifwe set the hist-
parameter to False, the pqc function returns the counts. Theseare in the form
ofaPythondictionarywith twokeys '0'and '1'. Thevaluesassigned to these
keys are the number of measurements that yielded the respective key as a



7.3 Post‐Processing 223

result. For instance, if we have 1,000 shots and 691 returned 1, our result is
{'0':209, '1':691}.

If we have a single one-shot, we will get either {'0': 1} or {'1': 1} as counts.
Whenwe run our classifier, wewant to get a distinct prediction for each pas-
senger. Thus, a single shot is sufficient.

Listing 7.18: Post‐processing

1 def post_process(counts):
2 """
3 counts −− the result of the quantum circuit execution
4 returns the prediction
5 """
6 return int(list(map(lambda item: item[0], counts.items()))[0])

The post_process-function takes the counts the pqc-function returns. It looks
for thekeys (counts.items()) andreturns thefirst. Theunderlyingassumption
is we have only onemeasurement and thus, we have only one key represent-
ing the prediction.

Finally, we can put it all together.

Listing 7.19: Run the Quantum Naive Bayes Classifier

1 # redefine the run−function
2 def run(f_classify, data):
3 return [f_classify(data.iloc[i]) for i in range(0,len(data))]
4
5 # specify a reusable backend
6 backend = Aer.get_backend('qasm_simulator')
7
8 # evaluate the Quantum Naive Bayes classifier
9 classifier_report("QuantumNaiveBayes",

10 run,
11 lambda passenger: post_process(pqc(backend, prob_survival, pre_process(

passenger), measure=True, hist=False)),
12 train,
13 train['Survived'])



224 Chapter 7. Quantum Naïve Bayes

The precision score of the QuantumNaiveBayes classifier is 0.63
The recall score of the QuantumNaiveBayes classifier is 0.62
The specificity score of the QuantumNaiveBayes classifier is 0.78
The npv score of the QuantumNaiveBayes classifier is 0.77
The information level is: 0.70

First, we define the run function (line 2). It takes the f_classify-function and
the data (that is, the train-dataset). It classifies each row in the data and re-
turns the prediction (line 3).

Wecreate the qasm_simulator-backendwecanreuse forallourpredictions (line
6).

We reuse the classifier_report-function we introduced in section 2.7 (line 9).
Besides an arbitrary name it uses in the output (line 9), it takes as arguments

• the run-function (line 10),
• the classifier (line 11),
• the dataset (line 12),
• and the actual results (line 13).

The classifierwe provide (line 11) is an anonymous function (a functionwith-
out a name) that takes the passenger as the parameter. From inside to out-
side, we first pre-process the passenger. Then, alongside the reusable back-
end (line 6) and the prior probability of survival (prob_survival), we call the
pqcwith the modifiers we get from the pre_process-function. Finally, we call
the post_process-function that returns the overall prediction.

The overall information level of the QuantumNaïve Bayes classifier is about
0.70. This is almost the same level we achieved before with the first Varia-
tional Hybrid Quantum-Classical Classifierwe developed in section 3.6.

This QuantumNaïve Bayes classifier has quite a fewproblems. Foremost, we
can compute twomodifiers above 1.0 atmost. The approachwe applied does
not scalewell. Whileweuse aquantumcircuit,wedonot exploit thepossible
advantage quantum computingmay provide. We need to think differently.



8. Quantum Computing Is Different

8.1 The No-Cloning Theorem
Quantum computing is fundamentally different from classical computing.
Tomaster quantum computing, youmust unlearnwhat you have learned.

You must unlearn
what you have learned

Figure 8.1: Quantum Computing is different

It starts with the quantum superposition. Unlike a classical bit, a quantum
bit (qubit) is not 0 or 1. Unless youmeasure it, the qubit is in a complex linear
combinationof0and1. Butwhenyoumeasure it, thequantumsuperposition
collapses, and the qubit is either 0 or 1, as a classical bit.



226 Chapter 8. Quantum Computing Is Different

It continues with quantum entanglement. Two qubits can share a state of
superposition. Once you measure one qubit, its entangled fellow instantly
jumps to a different state of superposition. Even if it is light-years away, it
seems to know a measurement has taken place, and it takes on a state that
acknowledges themeasured value.

When startingwith quantum computing, we’re tempted to focus on the pos-
sibilities thatarise fromsuperpositionandentanglement. Butquantumcom-
puting does not simply add new features we can use. Instead, it is a funda-
mentally different way of computing. And it requires a different kind of pro-
grams.

Classically, we think about input, transformational boolean logic, and out-
put. But this thinking will not let us succeed in quantum computing. Classi-
cal control structures are a dead-end.

Let’s take one of the simplest operators in classical computing, the assign-
ment.
Listing 8.1: Copying a variable

1 my_var = 1
2 copy_of_my_var = my_var
3 print (my_var, copy_of_my_var)

We can use the assignment operator to create a copy of a variable. The value
of the variable doesn’tmatter. We can create a copy of it.

In a classical program, we rely on this ability to copy data–a lot. In a classi-
cal circuit, this is the fan-out operation. In electrical engineering, we have
wires. If there is a voltage at a particular time, we interpret it as 1. If there
is no voltage, it is 0. We can connect another wire to it. We will receive the
same output at both ends.

x x

x
Figure 8.2: Classical fan-out

Copying data is helpful in manifold ways. First, we can use copies as inputs
to different operators. For instance, in the half-adder, we copy the input to
use it in two other operators.



8.1 The No‐Cloning Theorem 227

Input
P

Q
Digit

Carry

Output

XOR

AND

Figure 8.3: The half-adder

Secondly, we can use the copies to evaluate the state at different parts of the
program at other times. This would be particularly useful in quantum com-
puting.

In section 5.3,we learnedhowto changeaqubit’smeasurementprobabilities
by rotating it around the y-axis. We got to know the angle θ , which controls
the probability of measuring the qubit as 0 or 1. But we struggled with the
problem that θ is the angle between the vector |ψ⟩ and the basis state vector
|0⟩. But if the qubit is not in the basis state |0⟩, then the same value of θ rep-
resents a different probability change. The gradients of trigonometric func-
tions (such as sine and arcsine) are not constant. Thus, the probability an
angle represents at the top of the circle (state |0⟩) is another probability that
the same angle represents at the horizontal axis such as the state |+⟩. To cal-
culate the correct angle, we need to consider the state the qubit is currently
in.

But measuring the qubit state collapses it to either 0 or 1. So, measuring de-
stroys the qubit superposition. But, if you’re not allowed to measure the
qubit, how could you specify the prior probability?

Wouldn’t it be good to create a copy of the qubit beforewemeasure it? Then,
we would measure one copy of the qubit while continuing to work with the
other copy.



228 Chapter 8. Quantum Computing Is Different

Figure 8.4: An army of clones

So, let’s have a look at the respective operator, the fan-out. In a classical cir-
cuit, one inputwire connects to twooutputwires. It copies a bit. Inquantum
computing,weuse transformationgates, andweuse thewordcloning for the
analogous idea of copying a qubit.

The following figure depicts the diagram of a cloning transformation gate.

|ψ⟩

|0⟩

|ψ⟩

|ψ⟩
G

Figure 8.5: The cloning gate

The gate (let’s call it G) takes an arbitrary qubit |ψ⟩ and a fixed |0⟩ (an ancilla
bit) as input. It outputs two copies of |ψ⟩. Here are three examples of cloning
transformations.

1. It clones a qubit in the state |0⟩.

G(|0⟩|0⟩) = |0⟩|0⟩



8.1 The No‐Cloning Theorem 229

2. It clones a qubit in the state |1⟩.

G(|1⟩|0⟩) = |1⟩|1⟩

3. It clones an arbitrary qubit |ψ⟩.

G(|ψ⟩|0⟩) = |ψ⟩|ψ⟩

The superposition state of a single-qubit consists of two basis states (|0⟩
and |1⟩) and two corresponding probability amplitudes α and β .

|ψ⟩= α|0⟩+β |1⟩=
[

α
β

]
The squares of the amplitudes represent the probabilities of measuring the
qubit as either 0 (given by α2) or 1 (given by β 2). The sum of all probabilities
is 1:

|α|2 + |β |2 = 1

The cloning transformation gate works with two qubits. Let’s call them |a⟩
and |b⟩. Eachof the twoqubitshas itsownprobabilityamplitudes: |a⟩= a0|0⟩+

a1|1⟩=
[

a0
a1

]
and |b⟩= b0|0⟩+b1|1⟩=

[
b0
b1

]
.

If we look at these two qubits concurrently, there are four different combi-
nations of the basis states (|0⟩|0⟩, |0⟩|1⟩, |1⟩|0⟩, and |1⟩|1⟩). And each of these
combinations has its probability amplitude that is the product of the prob-
ability amplitudes of the two qubits’ corresponding probability amplitudes.
The followingequationdepicts ourqubit system(|a⟩|b⟩) thathas fourpossible
states and corresponding probability amplitudes.

|a⟩|b⟩= a0b0|0⟩|0⟩+a0b1|0⟩|1⟩+a1b0|1⟩|0⟩+a1b1|1⟩|1⟩ (8.1)

This equation letsus represent andreasonabout a systemthat consists of two
qubits. Let’s use them to clone the state |ψ⟩= α|0⟩+β |1⟩.

We start with applying the cloning transformation gate to the arbitrary
qubit.

G(|ψ⟩|0⟩) = |ψ⟩|ψ⟩

It results in two qubits in the same state |ψ⟩.

We use the equation 8.1 to rewrite the state of our two qubits. Since both
qubits are equal, we can say that a0 = b0 = α and a1 = b1 = β

We represent the qubit state as the sum of each state we couldmeasure with



230 Chapter 8. Quantum Computing Is Different

its respective probability amplitude. This is the result of cloning a qubit.

|ψ⟩|ψ⟩= α2|0⟩|0⟩+αβ |0⟩|1⟩+βα |1⟩|0⟩+β 2|1⟩|1⟩

Next, let’s first expand our arbitrary qubit |ψ⟩.

G(|ψ⟩|0⟩) = G((α|0⟩+β |1⟩)|0⟩)

Wemultiply out the inner term.

G((α|0⟩+β |1⟩)|0⟩) = G(α|0⟩|0⟩+β |1⟩|0⟩)

Since the application ofG ismatrixmultiplication,we can apply the distribu-
tive law ofmatrix algebra.

G(α|0⟩|0⟩+β |1⟩|0⟩) = G(α|0⟩|0⟩)+G(β |1⟩|0⟩)

Finally, we apply the initial specifications of how G transforms the basis
states |0⟩ and |1⟩

G(α|0⟩|0⟩)+G(β |1⟩|0⟩) = α|0⟩|0⟩+β |1⟩|1⟩

Weget another result of cloning a qubit in an arbitrary state. However, these
two results of the cloning transformation gate are not equal.

α2|0⟩|0⟩+αβ |0⟩|1⟩+βα |1⟩|0⟩+β 2|1⟩|1⟩ ̸= α|0⟩|0⟩+β |1⟩|1⟩

If the cloning transformationgateG exists, then two terms that arenot equal
must be equal. This is a contradiction. The only logical conclusion is that G
can’t exist. Therefore, it is impossible to clone a qubit of an arbitrary state.

This is known as theno-cloning theorem. It has important consequences.

In classical computing, we rely heavily on the ability to copy. Even the sim-
plest classical operation, the addition, relies on copyingbits. But inquantum
computing, it is impossible.

In quantum computing, we can’t use the information stored in a qubit as
many times as we want to. The idea of cloning a qubit in an arbitrary state
would contradict the underlying concept of superposition. Measuring a
qubit collapses its state of superposition. But when we could clone a qubit,
we could measure its state indirectly. We could measure the clones without
collapsing the original qubit.

This might look like a severe problem. But, it is only problematic if we con-
tinue to think classically. We need to unlearn how to solve a certain type of
problemprogrammatically. Whenwewant to use the unique characteristics
of quantum computing, such as superposition, entanglement, and interfer-



8.2 How To Solve A Problem With Quantum Computing 231

ence, we need to learn a newway of solving problems.

8.2 How To Solve A Problem WithQuantum Computing
This is what they mean with quantum computing can evaluate different
states concurrently.

Figure 8.6: Ask the oracle

Quantum computing comeswith quite a few caveats.

• When transforming qubits, you have to ensure reversibility.
• You can’t copy a qubit in an arbitrary state.
• And foremost, you can’t even measure a qubit without collapsing its
state of superposition.

But a qubit can do things a classical bit can’t. A qubit is not restricted to 0 or 1.
It can be a combination of both states. Further, you can entangle two qubits
so that they share a state of superposition.

With these characteristics, qubits are a powerful tool if used properly. Of
course, you can treat qubits like ordinary bits and solve a problem the same
way you solve other computational problems. But you would not benefit
from the advantage a quantumcomputer promises. When solving a problem
classically, youwon’t see anyquantumspeedup. The algorithmwill bemuch
slower because a quantum computer is extremely slow (in terms of clock fre-
quency) and extremely small (in terms of the number of qubits).

In this section, we learn how to solve a problem through an algorithm that
couldbe faster thana classical one. By that,wemean thequantumalgorithm



232 Chapter 8. Quantum Computing Is Different

will solveaproblemin fewer steps thanaclassical algorithmrequires. If both
computers were equal in speed and size, the quantum computerwould solve
the problem faster. However, a classical computermight compensate for the
larger number of steps by its sheer speed and size. But with the increasing
complexity of the problem to solve, speed and size will not suffice anymore.
There are problems on earth, such as the factorization problem, that are too
complex foraclassical computer, regardlessof its speedandsize. But theyare
not too complex for a quantum computer–theoretically.

The problemwe use as our example is not one of these problems. A classical
computersolves it inasplit second. But theexampleallowsustodemonstrate
how to solve a problem the quantumicway.

Let’s assume we have a function f . It takes a single bit as input–either 0 or 1.
And it provides a single bit as its output, too. Again, either 0 or 1.

There are four different possible functions.

• Function f0 always returns 0.
• Function f1 returns 0 if the input is 0 and it returns 1 if the input is 1.
• Function f2 returns 1 if the input is 0 and it returns 0 if the input is 1.
• Function f3 always returns 1.

The functions f0 and f3 provide constantoutputs. Nomatterwhat their input
is, they always return the same result. f0 returns 0. f3 returns 1. Always.

The functions f1 and f2 provide balanced outputs because for half of the in-
puts, they return 0 ( f1 if the input is 0 and f2 if the input is 1), and for the other
half, they return 1 ( f1 if the input is 1 and f2 if the input is 0).

If you’re given one of these functions at random, how can you determine
whether the function is constant ( f0 or f3) orbalanced ( f1 or f2)? Wedon’t care
about the specific functionwe got. We only care aboutwhether it is constant
or balanced.

Classically, you have to run the function twice. You run it with the input 0.
If you get 0 as a result, the function at hand could be the constant function f0
that always returns 0. And it could be the balanced function f1 that returns 0
if the input is 0. Youhave torerunthe functionwith input 1 todecidewhether
the function is constant or balanced. The constant function f0 still returns 0.
But the balanced function f1 returns 1 for input 1.

The same situation applies if you get 1 as a result of running the function for
the input 0. Youwould need to distinguish between the balanced function f2
and the constant function f3.



8.2 How To Solve A Problem With Quantum Computing 233

It does not help to run the function with input 1 first, either. With either re-
sult, 0 and 1, the function at hand could be constant or balanced. Youneed to
rerun the functionwith input 0.

In quantum computing, we only need to run the function once.

Westartwithanewquantumgate–thegateOi. Thisgate shouldrepresentour
four functions fi. Mathematically, this would be

Oi(|x⟩) = | fi(x)⟩

It transforms an arbitrary quantum state |x⟩ into the quantum state | fi(x)⟩ -
the output of the function fi given the input x.

For Oi is a quantum transformation gate, it must be reversible. Therefore,
it must have the same size of input and output. And each output must be
uniquely identity the input it originates from.

But that’s a problem. The constant functions always return the same value
regardless of their inputs. Given their output, you can’t tell what the input
was.

We can deal with this problem with a little trick. We add a second qubit |y⟩,
and we use the exclusive or (XOR, ⊕) operator to keep track of the result of
the function fi.

Mathematically, the refined gateOi is:

Oi(|x⟩⊗ |y⟩) = |x⟩⊗ |y⊕ fi(x)⟩

The following figure depicts the transformation gateOi.

|x⟩

|y⟩

Oi

|x⟩

|y⊕ fi(x)⟩

Figure 8.7: The O-gate

Let’s say, i = 0. Thus,weapply the function f0. Per definition, f0(x) = 0. When
we insert this into the above equation, we can see the output ofOi is equal to
its input:

O0(|x⟩⊗ |y⟩) = |x⟩⊗ |y⊕| f0(x)⟩= |x⟩⊗ |y⊕|0⟩= |x⟩⊗ |y⟩



234 Chapter 8. Quantum Computing Is Different

We can safely state that not changing a state is reversible.

When i = 1, we apply the function f1 that returns 0 for x = 0 and 1 for x = 1.
Thus, f1(x) = x.

O1(|x⟩⊗ |y⟩) = |x⟩⊗ |y⊕ f1(x)⟩= |x⟩⊗ |y⊕ x⟩

The truth table of the term |x⟩⊗ |y⊕ x⟩ shows that it is reversible.

x y
0
0
1
1

0
1
0
1

0
1
1
0

y xx
0
0
1
1

Figure 8.8: Truth table of x | y XOR x

Whenweapply f2 that returns 1 for x = 0 and 0 for x = 1,we can say f2(x) = x⊕1.

O2(|x⟩⊗ |y⟩) = |x⟩⊗ |y⊕ f2(x)⟩= |x⟩⊗ |y⊕ x⊕1⟩

The truth table discloses that the term |x⟩⊗ |y⊕ x⊕1⟩ is reversible, too.

x y
0
0
1
1

0
1
0
1

1
0
0
1

y x 1x
0
0
1
1

Figure 8.9: Truth table of x | y XOR x XOR 1

Finally, f3 always returns 1.

O3(|x⟩⊗ |y⟩) = |x⟩⊗ |y⊕| f3(x)⟩= |x⟩⊗ |y⊕1⟩)

The output is like the input butwith a reversed y.

Our refined gateOi is a valid transformation gate for all our functions fi.

But,we’re not too interested in how the functions fiwork. Rather,we regard
Oi as a black box. The two important things are



8.2 How To Solve A Problem With Quantum Computing 235

x y
0
0
1
1

0
1
0
1

1
0
1
0

y 1x
0
0
1
1

Figure 8.10: Truth table of x | y XOR 1

• Oi is a valid two-qubit gate for all i
• The output ofOi

The following truth table shows how the Oi-gate transforms pairs of qubits
in the basis states.

x y
0
0
1
1

0
1
0
1

|x⟩⊗ |y⊕ fi(x)⟩

|0⟩⊗ | fi(0)⊕0⟩= |0⟩⊗ | fi(0)⟩
|0⟩⊗ | fi(0)⊕1⟩
|1⟩⊗ | fi(1)⊕0⟩= |1⟩⊗ | fi(1)⟩
|1⟩⊗ | fi(1)⊕1⟩

Figure 8.11: Truth table of the O-gate

Asusual, whenwe only look at qubits in the basis states, there is nothing spe-
cialwith a quantumcircuit. However, things get interestingwhen thequbits
are in a state of superposition.

Let’s input the states |+⟩ (for x) and |−⟩ (for y). We can construct these states
if we apply theHadamard gate to the basis states |0⟩, respectively |1⟩.

H(|0⟩) = 1√
2
(|0⟩+ |1⟩) = |+⟩

H(|1⟩) = 1√
2
(|0⟩− |1⟩) = |−⟩



236 Chapter 8. Quantum Computing Is Different

Collectively, the two qubits are in the state

H(|0⟩)+H(|1⟩) = 1√
2
(|0⟩+ |1⟩)+ 1√

2
(|0⟩− |1⟩)

=
1
2
(|00⟩− |01⟩+ |10⟩− |11⟩)

(8.2)

Now, we apply the gate Oi. Thus, we replace the four basis states with the
termswe calculated in the truth table above.

O(H(|0⟩)+H(|1⟩))

=
1
2
(|0⟩⊗ | fi(0)⟩− |0⟩⊗ | fi(0)⊕1⟩+ |1⟩⊗ | fi(1)⟩− |1⟩⊗ | fi(1)⊕1⟩)

(8.3)

We can rearrange this term by putting the basis states of the first qubit out-
side the brackets.

=
1
2
(|0⟩⊗ (| fi(0)⟩− | fi(0)⊕1⟩)+ |1⟩⊗ (| fi(1)⟩− | fi(1)⊕1⟩))

Let’s have a closer look at the term | fi(0)⟩− | fi(0)⊕1⟩.

• For fi(0) = 0, the term is |0⟩− |1⟩.
• For fi(0) = 1, the term is−|0⟩+ |1⟩.

We can rewrite it as (−1) fi(0)(|0⟩− |1⟩).

The term (−1) fi(0) takes care of the signs. For fi(0) = 0, it is 0 because anything
with exponent 0 is 1. For fi(0) = 1, it is−1, yielding−|0⟩+ |1⟩.

Therefore:

| fi(0)⟩− | fi(0)⊕1⟩= (−1) fi(0)(|0⟩− |1⟩)

The same logic applies to the term | fi(1)⟩− | fi(1)⊕1⟩.

| fi(1)⟩− | fi(1)⊕1⟩= (−1) fi(1)(|0⟩− |1⟩)

We insert these terms into our qubit state equation

=
1
2

(
|0⟩⊗ ((−1) fi(0)(|0⟩− |1⟩))+ |1⟩⊗ ((−1) fi(1)(|0⟩− |1⟩)

)
And we rearrange it, by putting the terms (−1) fi(0) and (−1) fi(1) outside the
brackets.

=
1
2

(
((−1) fi(0)|0⟩⊗ (|0⟩− |1⟩))+(−1) fi(1)|1⟩⊗ (|0⟩− |1⟩)

)



8.2 How To Solve A Problem With Quantum Computing 237

Then,wemove anything except the term |0⟩− |1⟩ outside the brackets, too.

=
1
2

(
((−1) fi(0)|0⟩+(−1) fi(1)|1⟩)⊗ (|0⟩− |1⟩)

)
Finally, we apply the common factor 1

2 to each of the resulting terms (note
1
2 = 1√

2
· 1√

2
).

=
1√
2

(
(−1) fi(0)|0⟩+(−1) fi(1)|1⟩

)
⊗ 1√

2
(|0⟩− |1⟩)

The result is a two-qubit state in the form of |x⟩⊗ |y⟩. |x⟩ and |y⟩ are the two
output qubits with the qubit |x⟩ is the top one.

Let’s have a closer look at the state of qubit |x⟩.

|x⟩= 1√
2

(
(−1) fi(0)|0⟩+(−1) fi(1)|1⟩

)
Inside the brackets,we see the usual sumof our twobasis states, |0⟩+ |1⟩. Yet,
theoutput of the function fi determines the signs of thebasis states. fi(0) con-
trols the sign of |0⟩. It is+ for fi(0) = 0because (−1)0 = 1 and it is− for fi(0) = 1
because (−1)1 =−1. Accordingly, fi(1) controls the sign of |1⟩.

The following table depicts the possible values of the qubit |x⟩ in dependence
of fi.

(−1) fi(0)|0⟩+(−1) fi(1)|1⟩fi(0) fi(1)

1√
2
(|0⟩+ |1⟩) = |+⟩

1√
2
(|0⟩− |1⟩) = |−⟩

0

1

0

0

0

1 1

1

1√
2
(−|0⟩+ |1⟩) = |−⟩

1√
2
(−|0⟩− |1⟩) = |+⟩

Figure 8.12: The resulting state of qubit |x>

Do you remember the section 3.2? The graphical representation of the qubit
state lets us distinguish between the states |+⟩ and |−⟩. While we usually use



238 Chapter 8. Quantum Computing Is Different

1√
2
(|0⟩+ |1⟩) when we write |+⟩ in terms of the basis states, we could as well

use 1√
2
(−|0⟩− |1⟩).

|+⟩= 1√
2
(|0⟩+ |1⟩) = 1√

2
(−|0⟩− |1⟩)

The same accounts for the state |−⟩, respectively

|−⟩= 1√
2
(|0⟩− |1⟩) = 1√

2
(−|0⟩+ |1⟩)

The upfront constant amplitude of 1√
2
applies to both basis states. Its square

( 1√
2
)2 = 1

2 is the probability ofmeasuring either one state. So, half of the time,
we measure the qubit as 0. And half of the time, we measure the qubit as 1
. This applies to both states |+⟩ and |−⟩. The measurement probabilities are
the same for all four functions fi.

Unless we apply another transformation gate to this qubit. If we apply the
Hadamard gate to the first qubit, it transforms the state |+⟩ into |0⟩. And it
transforms |−⟩ into |1⟩.

Thus, wemeasure the qubit as 0with certainty, if the output of our gateOi is
|+⟩. This is the case for f0 because f0(0) = 0 and f0(1) = 0. And it is the case for
f3 because f3(0) = 1 and f3(1) = 1. These are the two constant functions.

Accordingly, we alwaysmeasure 1 ifOi outputs |−⟩. This is the case for f1 and
f2. These are the balanced functions.

So, nomatterwhat function fiweplug into our circuit,we can tellwhether it
is constant or balanced by running it only once–something we can’t achieve
classically.

The following figure depicts the complete quantum circuit.

|0⟩

|1⟩

Oi

H

H

H

Figure 8.13: The full quantum circuit

David Deutsch developed this algorithm. He was the first to prove quantum
algorithms can reduce the query complexity of solving a particular problem.



8.2 How To Solve A Problem With Quantum Computing 239

The query complexity is the number of times we have to evaluate a function
to get an answer.

The underlying idea of this algorithm is to treat solving a problem as the
search for a function. We don’t know how the function works internally. It
is a black box. We don’t have toworry about it.

But we know all the possible outcomes of the function. And this knowledge
allows us to represent the function by a quantum gate. This gate is called
a quantum oracle. Therefore, we named it O-gate. Rather than repeatedly
calling the function to analyze how it works, we savvily craft a quantum al-
gorithm around the oracle to separate the outcomes that solve the problem
from those that don’t. In otherwords, we ask the oracle for an answer.

At this point, it is of utmost importance to understand what we are asking
for. The oracle will answer precisely the question we ask. Literally, it does
not care aboutwhat you intended to ask for.

In our example, we asked the oracle whether the function is constant or bal-
anced. And this is whatwe get as an answer. Notmore, not less.

The following code shows a function that embeds a discrete oracle in a quan-
tum circuit.

This circuit includes a measurement of the first qubit. Therefore, our
QuantumCircuit contains a QuantumRegister with two qubits (line 11) and a
ClassicalRegisterwith one bit (line 12) to hold themeasurement.

By default, both qubits are initialized in the state |0⟩. We put the second
qubit into the state |1⟩ by applying the X-gate (line 18). Then, we apply the
Hadamard gate to both qubits (lines 20-21). We send the two qubits through
the oracle (line 24) thatwe take as a parameter of this function (line 5).

We apply anotherHadamard gate on thefirst qubitwe receive as an output of
theoracle (line27). Wemeasure it andstore it in the ClassicalRegister (line30).
Weuse the qasm_simulator (line 33) because it supportsmultiple executions (in
this case 1,000, line36) of aquantumcircuit that includes ameasurement (see
section 6.1).

Even though our algorithm around the oracle treats it as a black box, when
we want to run the oracle for a specific function, we need a corresponding
implementation.



240 Chapter 8. Quantum Computing Is Different

Listing 8.2: Deutsch's algorithm

1 from math import sqrt
2 from qiskit import QuantumCircuit, QuantumRegister,ClassicalRegister, Aer,

execute
3 from qiskit.visualization import plot_histogram
4
5 def solve(oracle):
6 """
7 A reusable function that identifies whether the oracle represents
8 a constant or a balanced function.
9 """

10
11 qu = QuantumRegister(2)
12 cl = ClassicalRegister(1)
13
14 # initialize the circuit
15 qc = QuantumCircuit(qu,cl)
16
17 # Prepare the input state of the oracle
18 qc.x(1)
19
20 qc.h(0)
21 qc.h(1)
22
23 # Apply the Oracle
24 oracle(qc)
25
26 # Prepare the output state
27 qc.h(0)
28
29 # measure qubit−0
30 qc.measure(qu[0], cl[0])
31
32 # Tell Qiskit how to simulate our circuit
33 backend = Aer.get_backend('qasm_simulator')
34
35 # execute the qc
36 results = execute(qc,backend, shots = 1000).result().get_counts()
37
38 # plot the results
39 #return plot_histogram(results)
40 return plot_histogram(results, figsize=(3,2), color=['white'])

Let’s implement the oracles. It is a different one for each possible function fi.



8.2 How To Solve A Problem With Quantum Computing 241

Westartwith i= 0andapplythefunction f0 thatalwaysreturns0. As thetruth
table for the oracleO0 from above shows, the output is the unchanged input

O0(|x⟩⊗ |y⟩) = |x⟩⊗ |y⊕| f0(x)⟩= |x⟩⊗ |y⊕|0⟩= |x⟩⊗ |y⟩

Thus,O0 does nothing. Quite easy to implement.

Listing 8.3: Apply the gate o‐0

1 def o_0(qc):
2 pass
3
4 solve(o_0)

Figure 8.14: Result of the oracle representing the constant
function f0

The result of the circuit with O0 is always 0. The result of our calculations
predicted for a constant function.

When i = 1, we apply the function f1 that returns 0 for x = 0 and 1 for x = 1.
Thus, f1(x) = x.

O1(|x⟩⊗ |y⟩) = |x⟩⊗ |y⊕ f1(x)⟩= |x⟩⊗ |y⊕ x⟩

The gate O1 returns an unchanged first qubit and |y⊕ x⟩ as the second qubit.
This is the behavior of the CNOT gatewe got to know in section 6.1.



242 Chapter 8. Quantum Computing Is Different

Listing 8.4: Apply the gate o‐1

1 def o_1(qc):
2 qc.cx(0,1)
3
4 solve(o_1)

Figure 8.15: Result of the oracle representing the balanced
function f1

Wemeasure 1with certainty. This is the expected result of a balanced func-
tion.

The other balanced function f2 returns 1 for x = 0 and 0 for x = 1. Thus, it
behaves like the CNOT-gate butwith |y⟩ switching the value if |x⟩= 0. We can
construct this gate by first applying the X-gate to |x⟩. If it was in state |0⟩, it is
now in state |1⟩. The following CNOT-gate switches the state of |y⟩. Finally,
we apply the X-gate on |x⟩ again to put it back into its original state.

Listing 8.5: Apply the gate o‐2

1 def o_2(qc):
2 qc.x(0)
3 qc.cx(0,1)
4 qc.x(0)
5
6 solve(o_2)



8.2 How To Solve A Problem With Quantum Computing 243

Figure 8.16: Result of the oracle representing the balanced
function f2

Again, wemeasure 1with certainty. This result is correct for f2 is a balanced
function.

Finally,we implement theoracle representing theother constant function f3.
f3 always returns 1.

O3(|x⟩⊗ |y⟩) = |x⟩⊗ |y⊕| f3(x)⟩= |x⟩⊗ |y⊕1⟩)

Its output is like the input butwith a reversed y. Thus,we apply theX-gate on
the second qubit |y⟩.

Listing 8.6: Apply the gate o‐3

1 def o_3(qc):
2 qc.x(1)
3
4 solve(o_3)



244 Chapter 8. Quantum Computing Is Different

Figure 8.17: Result of the oracle representing the balanced
function f3

f3 is a constant function, andwe get the expected result of 0 accordingly.

8.3 The Quantum Oracle Demystified
When I first started learning quantum computing, it took me quite a while
to understand how it could be faster than classical computing. Something
mysteriousmust be going on.

Of course, the quantum superposition a qubit can be in is astonishing. The
qubit is not 0 or 1. It is in a relationship between states 0 and 1.

Notwithstanding, the ability to entangle two qubits is mind-blowing. You
measure one qubit, and another one instantly changes its state, no matter
how far away it is. It is hard to believe that anyone would not think of tele-
portation as in Star Trek.

Butonce I startedworkingwith (simulated)qubits, the stateof superposition
came down as a probability. Entanglement emerged as a way to manipulate
theseprobabilities. All this isprettycool. But it isn’tmysteriousatall. I could
not see how this kind of computing could be somuch faster.

Then, I came across the quantum oracle. The name itself speaks of mystery.
Finally, I must have found the magic ingredient I was searching for. Once I
understood how itworks, it Iwould be able to solve the problems intractable
for a classical computer.



8.3 The Quantum Oracle Demystified 245

Figure 8.18: Quantum teleportation

In the previous section, we already got to know the quantum oracle. As part
of David Deutsch’s algorithm, it allowed us to solve a problem in fewer steps
than a classical algorithmwouldneed. It identifies the type of a function in a
single shot. This is less than the two shots a classical algorithmneeds.

Soundsmagical. Doesn’t it?

So, how does it work? You ask.

It’s like a magic trick. It baffles you when you see it for the first time. You
want toknowhowitworks. Butoncesomeonetellsyouthesecret, itbecomes
mundane. It loses its mystery. While you join the community of magicians,
a selected groupwhoknows the trick, you can’t look at it anymore and think,
“wow.”



246 Chapter 8. Quantum Computing Is Different

Figure 8.19: The secret of a magician

You still want to know? Good. Read on.

Themagician presents a coin. While the coin is in the air, the magician pre-
dicts the coin to show heads. She catches the coin. Guess what you see. The
coin is heads up.

How could she know? You’d bet the coin is manipulated. But she presents it
to you. It looks like a regular coin. One side heads. The other side tails.

She tosses it again. Sheasksyou topredict the result. This time, yousay tails–
the coin lands. Guesswhat you see? The coin is tails up.

You examine the coin again. It still looks like a normal coin. But it is not a
normal coin. It is a quantum coin. When you look at the coin, it is either
heads or tails, but once you toss it, it is in a state of superposition. It is unlike
a regular coin.



8.3 The Quantum Oracle Demystified 247

A regular coin is sensitively dependent on the initial conditions. If you knew
everything in completedetail, if youknewtheapplied forcewhen tossing the
coin, the rotational force, the air pressure, and even slight air movements,
then you could calculate how a normal coin would land. If you knew every-
thing in detail, randomnesswould disappear.

A quantum coin, by contrast, is truly random. Sowhy then should the quan-
tum coin be the one that allows themagician to predict the outcome?

While a quantum superposition contains randomness, it does not behave ar-
bitrarily. The quantum system abides by strict rules. And these rules can be
specified. One of these rules involves a quantumoracle.

Our magician created a quantum system that seems to let her know the out-
come of tossing the coin. It sounds like an oracle, doesn’t it?

But this is not what she did. Instead, she created a quantum system that
would listen to her prediction and behave accordingly.

This doesn’t seemplausible?

Then, why don’t we create this quantum system programmatically with
Python andQiskit?

A qubit denotes our quantumcoin. Once you toss it, it is in a state of superpo-
sition of the states |0⟩ and |1⟩. If.you look at it, it is either 0 representing the
coin lands heads up or 1 representing tails up. Eachwith a probability of 0.5.

Mathematically, the state of the qubit thatwe also know as |+⟩ is

ψ = |+⟩= 1√
2
|0⟩+ 1√

2
|1⟩=

[
1√
2

1√
2

]
We have seen this state before. We can create it by applying the Hadamard-
gate on a qubit in the state |0⟩.

Themagician’s prediction is a quantum transformation gate, too.

She crafted two gates and connected them with her prediction. She con-
nected the I-gate with the prediction “heads up.” And she connected the
RY (π)-gatewith the prediction “tails up.”

The I-gate is the Identity-gate. Its output is equal to its input. It does not
change anything.

ψheads = I(ψ) = ψ = |+⟩= 1√
2
|0⟩+ 1√

2
|1⟩=

[
1√
2

1√
2

]



248 Chapter 8. Quantum Computing Is Different

The RY -gate rotates the qubit state vector around the Y-axis. This is the axis
that affects themeasurement probabilities. It takes as a parameter the angle
bywhich to rotate the state. The angle π denotes precisely half of a complete
circuit.

The following imagedepicts the rotationof thequbit state vector graphically.

|0⟩

|1⟩

|ψ⟩

θ
|+⟩= |0⟩+|1⟩√

2|−⟩= |0⟩−|1⟩√
2

Figure 8.20: 360° 2-dimensional qubit system

When a state vector ends on the left-hand side of the Y-axis, then one of the
two amplitudes becomes negative.

When we start in the state |+⟩ a rotation by π results in the state |−⟩ because
cosπ

2 = 0 and sinπ
2 = 1.

ψtails = RY (π)(ψ) =

[
cosπ

2 −sinπ
2

sinπ
2 cosπ

2

]
·

[
1√
2

1√
2

]
=

[
0 −1
1 0

]
·

[
1√
2

1√
2

]
=

[
− 1√

2
1√
2

]
= |−⟩

Turning the state |+⟩ into |−⟩ did not change the probabilities of measuring
0 or 1 because the probability is the square of the amplitude. And this is posi-
tive. In our case, it is

(
− 1√

2

)2
= 1

2 .

In the end, neither one of the two gates changed themeasurement probabil-
ity of the qubit. But the two states differ.

When she prepares the magic trick, the magician does not limit her trick to
either one prediction. She wants the flexibility to use a different prediction
any time sheperforms the trick. So, duringherpreparation, she adds aplace-
holder into her quantum circuit. She calls it theO-gate. The oracle.



8.3 The Quantum Oracle Demystified 249

She only knows the oracle can be either the I-gate or the RY (π)-gate.

The I-gate represents her “heads up” prediction and leaves the qubit in the
state |+⟩. TheRY (π)-gate representsher “tails up”predictionandchanges the
qubit state to |−⟩.

The savvymagician sees thedifferences between these two states. This is her
chance tomakeherpredictioncometrue. All sheneeds todo is transformthe
oracle’s output into the state that corresponds to her prediction. She needs
to turn the state |+⟩ into |0⟩ and the state |−⟩ into |1⟩. She applies another
Hadamard gate on her quantum coin, ehmqubit. It has the desired effect for
both possible outputs of the oracle. Have a look:

H(|+⟩) = 1√
2

[
1 1
1 −1

]
· 1√

2

[
1
1

]
= 1

2

[
1+1
1−1

]
=

[
1
0

]
= |0⟩

H(|−⟩) = 1√
2

[
1 1
1 −1

]
· 1√

2

[
1
−1

]
= 1

2

[
1−1
1+1

]
=

[
0
1

]
= |1⟩

Sometimes, it may be harder to transform the differences into ameaningful
output. But the principle is the same. Identify the differences between the
possible outcomes of the oracle and make sure these outcomes result in dif-
ferentmeasurement results.

Ourmagician iswell preparednow. Shehas aquantumcircuitwith anoracle.
This isaplaceholder. Whensherunsthecircuit, shemustfill thisplaceholder
with a valid qubit transformation gate by speaking out loud her prediction.

Themagician created a reusable function. It takes as a parameter a callback
function - the oracle (line 5). First, we create the QuantumCircuitwith a single
qubit (line8). Tossing thecoinsets it intosuperposition. This iswhat thefirst
Hadamard gate does (line 11). Then, we apply the oracle (line 14). Whatever
it is. Themagician uses the secondHadamard gate to transform the result of
the oracle into the desired state (line 17). Finally, we run the circuit (line 23)
and return the results (line 26).

Here’s the code themagician created.



250 Chapter 8. Quantum Computing Is Different

Listing 8.7: The code the magician created

1 from qiskit import QuantumCircuit, Aer, execute
2 from qiskit.visualization import plot_histogram
3 import matplotlib.pyplot as plt
4
5 def run_with_oracle(oracle):
6
7 # Create a quantum circuit with one qubit
8 qc = QuantumCircuit(1)
9

10 # toss the coin
11 qc.h(0)
12
13 # apply the oracle
14 oracle(qc)
15
16 # catch the coin
17 qc.h(0)
18
19 # Tell Qiskit how to simulate our circuit
20 backend = Aer.get_backend('statevector_simulator')
21
22 # Do the simulation, returning the result
23 result = execute(qc,backend).result()
24
25 # get the probability distribution
26 return result.get_counts()

Let’s run the circuit with the heads-up prediction.

Listing 8.8: Run the heads up prediction

1 plot_histogram(run_with_oracle(lambda qc: qc.i(0)))



8.3 The Quantum Oracle Demystified 251

Figure 8.21: Result of the heads up prediction

When themagician predicts heads up,we alwaysmeasure the qubit as 0, rep-
resenting heads up. So let’s do the same for the “tails up” prediction.

Listing 8.9: Run the tails up prediction

1 from math import pi
2 plot_histogram(run_with_oracle(lambda qc: qc.ry(pi, 0)))

Figure 8.22: Result of the tails up prediction

The “tails up” prediction always results in a qubit that wemeasure as 1 - the
representation of “tails up.”

Theaudience isbaffledbyherability to see into the future. But, asusual,with



252 Chapter 8. Quantum Computing Is Different

magic tricks, this is an illusion. An intended illusion is thoroughly craftedby
arranging the stage–or in this case–the circuit.

The quantum oracle is nothing but a placeholder for a transformation gate.
While it changes the system’s state, it does not tell the future or answer any
question. It is up to you to identify how the different gates may affect the
quantum state differently. And, it is up to you to craft a quantum circuit
around theoracle to transformthesedifferences into ananswer to yourques-
tion.

A quantumoracle is a tool. It allows you to distinguish different states of the
world. During the construction of your circuit, you specify how these differ-
ent states should affect the outcome. When you run your circuit in a certain
state, it produces the outcome you prepared it to result in.

The oracle is like the switch-case control structure youmay know from clas-
sical programming. You have a variable, the oracle. When you write your
program, the circuit, youdon’t know the specific value the variablewill have
during runtime. So, you specify the behavior for each possible value it may
have. Once you run your program, the variablewill have a specific value and
your circuit will act theway you specified it to and result in the outcome you
wanted it to result in.

The quantumoracle is not amagical ingredient. It is a control structure used
in quantum computing.



9. Quantum Bayesian Networks

Bayes’ Theorem helps us building a classifier capable of predicting the sur-
vival of a passenger on board the Titanic. However, the Quantum Naïve
Bayes classifier we created in section 7 includes only two features. Yet, we
are alreadymoving on the edge of the possible. While handlingmodifiers be-
low 1.0 that reduce the prior probability is easy, the modifiers above 1.0 are
difficult to handle.

Altogether, our Quantum Naïve Bayes classifier has quite a few shortcom-
ings.

1. Most of the work remains at the classical part. We need to consult
the data for each passenger to get the backward probability and the
marginal probability of the evidence. For each passenger, we calculate
the correspondingmodifiers.

2. We calculate the same modifiers over and over again. We do not reuse
the results.

3. We construct a completely new quantum circuit for each unique com-
bination of passenger attributes. For example, the circuit of a female
passenger with a first-class ticket looks quite different from amale pas-
senger’s circuit with a third-class ticket. This is error-prone and hard
to debug. We programmed quite a lot of logic in Python.

The first figure depicts the quantum circuit of amale passengerwith a third-
class ticket. The second figure depicts the circuit of a female passenger with
a first-class ticket.

Howwespecify thepriorprobability is similar inboth circuits. But,weapply



254 Chapter 9. Quantum Bayesian Networks

themodifiers in entirely differentways.

Figure 9.1: The circuit of a male passenger with a third-class
ticket

Figure 9.2: The circuit of a female passenger with a first-class
ticket



9.1 Bayesian Networks 255

The modifiers used in a Naïve Bayes classifier are simple yet powerful tools.
But they are notwell-suited to be replicated in a quantum algorithm.

In this chapter, we address these shortcomings by using quantum oracles.
We create a QuantumBayesianNetwork.

9.1 Bayesian Networks
Bayesian networks are probabilistic models that model knowledge about an
uncertain domain. Such as the survival of a passenger aboard the Titanic.

Bayesian networks build on the same intuitions as the Naïve Bayes classifier.
But in contrast toNaïve Bayes, Bayesian networks are not restricted to repre-
sent solely independent features. They allow us to include as many interde-
pendences that appear reasonable in the current setting.

ABayesiannetwork is represented as a directed acyclic graphwithnodes and
edges.

Node Edge
isChild

Gender

SurvivalEthical
Norm

Figure 9.3: Example of a Bayesian Network

The nodes represent random variables, such as the gender of a passenger or
whether s/hewas a child.

The edges correspond to the direct influence of one variable on another. In
other words, the edges define the relationship between two variables. The
directions of the arrows are important, too. The node connected to the tail
of the arrow is the parent node. The node connected to the head is the child
node. The child node depends on the parent node.

We quantify this dependence using conditional probability tables (CPT) for



256 Chapter 9. Quantum Bayesian Networks

discrete variables and conditional probability distributions (CPD) for contin-
uous variables.

The following table depicts theposteriorprobabilities of survival givenapas-
senger’s gender (Sex).

Female Male

P(Survival=True, Sex) 0.74 0.19
P(Survival=False, Sex) 0.26 0.81

Table 9.1: Probabilities to survive given the gender

Female passengers had a much better chance to survive than male passen-
gers.

While there are only two genders (in our dataset), there are many different
agesof passengers. Technically, being still a discretevariable, it rather seems
appropriate to model age as a continuous variable. The following graph de-
picts the CPD of the posterior probability of survival given a passenger’s Age.

Figure 9.4: CPD of survival given a passenger's age

At first sight, it seems as if the age of a passenger does not have an apparent
effectonthechances tosurvive. Evenworse, thechancetosurvivevariesa lot



9.1 Bayesian Networks 257

between subsequent ages. For instance, a 47-year old passenger had a chance
to survive of 0.1, whereas a 48-year old had a chance of 0.6.
Listing 9.1: The chances of survival

1 def chance_to_survive(age):
2 pop = train[train.Age.eq(age)]
3 surv = pop[pop.Survived.eq(1)]
4 prob = len(surv)/(len(pop)+1)
5 return "A {}−year old passenger had a chance to survive of {}".format(

age, prob)
6
7 print(chance_to_survive(47))
8 print(chance_to_survive(48))

A 47-year old passenger had a chance to survive of 0.1
A 48-year old passenger had a chance to survive of 0.6

Such variations do not seem reasonable.

Instead, if we consider the characteristic of being a child (isChild) instead of
the Age of a passenger. Children of the age of 8 or below had a significantly
higher chance to survive than adults.
Listing 9.2: Survival of children

1 # max age of a child
2 max_child_age = 8
3
4 # probability to survive of children
5 pop_child = train[train.Age.le(max_child_age)]
6 surv_child = pop_child[pop_child.Survived.eq(1)]
7 p_child = len(surv_child)/len(pop_child)
8
9 # probability to survive of adults

10 pop_adult = train[train.Age.gt(max_child_age)]
11 surv_adult = pop_adult[pop_adult.Survived.eq(1)]
12 p_adult = len(surv_adult)/len(pop_adult)
13
14 print("{} children had a chance to survive of {}".format(len(pop_child),

round(p_child, 2)))
15 print("{} adults had a chance to survive of {}".format(len(pop_adult),

round(p_adult, 2)))



258 Chapter 9. Quantum Bayesian Networks

54 children had a chance to survive of 0.67
660 adults had a chance to survive of 0.38

Let’s consider the Bayesian networkwith three nodes. The variables Sex and
being a Child denote the parent nodes. These nodes don’t have parents them-
selves. They are the root nodes. Their CPTs are conditioned on an empty
set of variables. Thus, they are equal to themarginal (or prior) probabilities.
Note, these are not the probabilities of surviving but the probabilities of the
appearance of the respective characteristic.

Survival of the Titanic shipwreck is the child node. This CPT is conditioned
on the values of the parent nodes as depicted in the following figure.

female
P(Sex)

male
0.35 0.65

Sex isChild

Survival

child
P(isChild)

adult
0.08 0.92

female

P(Survived = True|Sex, isChild) 0.73

female male male

P(Survived = False|Sex, isChild) 0.27

0.75

0.25

0.61

0.39

0.18

0.82

child adult child adult

Figure 9.5: Bayesian network of surviving the Titanic
shipwreck

Given such a set of CPTs, we can calculate the marginal probability of sur-
vival.

Due to the independence between nodes Sex and isChild (their values are in-
dependent becausewe have notmodeled any dependence, but their effect on



9.2 Composing Quantum Computing Controls 259

Survival is not independent), the joint probability of a passenger having a cer-
tain Sex and isChild can be calculated as P(Sex, isChild) = P(Sex) ·P(isChild).

Therefore, the conditional probability to survive given a certain Sex and
isChild is P(Survival) = P(Survival|Sex, isChild) ·P(Sex) ·P(isChild).

Foremost, a Bayesian network is a data structure. First, it represents the set
of conditional independence assumptions. Any two nodes that are not con-
nected through an edge are assumed independent of each other. Second, a
Bayesian network contains probability tables and distributions in a compact
and factorizedway.

This data structure enables us to deduce the properties of a population. A
Bayesian network supports forward and backward inference. For instance,
we can calculate the overall chance to survive by integrating over the distri-
bution of the child node (forward inference). And, given knowledge about
the survival of a passenger, we can deduce howmuch certain characteristics
contributed to his or her survival. For instance, if we look at the graphs of
the child node, we can see the passenger’s gender mattered a lot unless the
passenger was a child. According to the norm of women and children first,
they did not favor girls over boys a lot. This interdependency between Sex
and isChild could not be included in aNaïve Bayes classifier.

This data structure, theBayesiannetworkgraph, canbe created in twodiffer-
entways. Given sufficient knowledge of the dependencies, it canbe designed
a priori by the developer. Alternatively, it can be learned by the machine it-
self.

On our path to quantummachine learning, wewill do both. We start with a
small quantum Bayesian network (QBN) that wemodel ourselves. Then, we
let themachine actually learn from the data.

9.2 Composing Quantum Computing
Controls
TheQBNweare about to buildwill consist of someadvanced transformation
gates. Let’s have a brief look at howwe can create such gates

Quantum transformation gates allowus toworkwith qubits. TheRY -gate en-
ables us to specify the qubit state vector angle θ that controls the probability
ofmeasuring the qubit as either 0 or 1. We used it to let a qubit represent the
marginal probability of surviving the Titanic shipwreck.



260 Chapter 9. Quantum Bayesian Networks

Listing 9.3: Specify the marginal probability

1 from qiskit import QuantumCircuit, Aer, execute
2 from qiskit.visualization import plot_histogram
3 import matplotlib.pyplot as plt
4 from math import asin, sqrt
5
6 def prob_to_angle(prob):
7 """
8 Converts a given P(psi) value into an equivalent theta value.
9 """

10 return 2*asin(sqrt(prob))
11
12 qc = QuantumCircuit(1)
13
14 # Set qubit to prior
15 qc.ry(prob_to_angle(0.4), 0)
16
17 # execute the qc
18 results = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_counts()
19 plot_histogram(results)

Figure 9.6: The marginal probability

The X-gate (NOT-gate) switches the probability amplitudes of a qubit. We
used it to set a qubit value to 1 in a specific state. For instance, to work with
the remainder afterwe calculated the prior.



9.2 Composing Quantum Computing Controls 261

Listing 9.4: Use the X‐gate to work with the remainder

1 qc = QuantumCircuit(1)
2
3 # Set qubit to prior
4 qc.ry(prob_to_angle(0.4), 0)
5
6 # Switch the qubit's value
7 qc.x(0)
8
9 # execute the qc

10 results = execute(qc,Aer.get_backend('statevector_simulator')).result().
get_counts()

11 plot_histogram(results)

Figure 9.7: The X-gate changes the qubit state

This is useful because some gates only apply a transformation on a qubit (the
target qubit) when another qubit (the control qubit) is in the state |1⟩.

For instance, the controlled RY -gate (CRY -gate) lets us specify a joint probabil-
ity of the prior’s remainder and another probability.



262 Chapter 9. Quantum Bayesian Networks

Listing 9.5: Calculate the joint probability

1 qc = QuantumCircuit(2)
2
3 # Set qubit to prior
4 qc.ry(prob_to_angle(0.4), 0)
5
6 # Switch the qubit's value
7 qc.x(0)
8
9 # Calculate the joint probability of NOT−prior and an event

10 qc.cry(prob_to_angle(0.8), 0,1)
11
12 # execute the qc
13 results = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_counts()
14 plot_histogram(results)

Figure 9.8: The joint probability

The CRY -gate is a composite gate. We learned how to create this gate from
more basic gates, in section 6.3. Foremost, we used theCNOT -gate.

At first sight, the ability to apply an X-gate on a qubit if another qubit is |1⟩
does not seem necessary. But theCNOT -gate takes a central role when creat-
ing higher-level qubits because it entangles two qubits. Conceptually, entan-
gled qubits share a state of superposition. Practically, the CNOT -gate is the
building block ofmost composite quantum transformation gates.

The following code depicts the decomposition of theCRY -gate.



9.2 Composing Quantum Computing Controls 263

Listing 9.6: Decomposition of the CRY‐gate

1 qc = QuantumCircuit(2)
2
3 # Set qubit to prior
4 qc.ry(prob_to_angle(0.4), 0)
5
6 # Switch the qubit's value
7 qc.x(0)
8
9 # Apply half of the event's probability

10 qc.ry(prob_to_angle(0.8)/2, 1)
11
12 # entangle qubits 0 and 1
13 qc.cx(0,1)
14
15 # Apply the other half of ev_b
16 qc.ry(−prob_to_angle(0.8)/2, 1)
17
18 # unentganle qubits 0 and 1
19 qc.cx(0,1)
20
21 # execute the qc
22 results = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_counts()
23 plot_histogram(results)

Figure 9.9: Result of the decomposed CRY-gate

What if youwanted to apply a certain gate if and only if two other qubits are



264 Chapter 9. Quantum Bayesian Networks

in state |1⟩? If you read this book carefully thus far, youmayobject AND is not a
valid qubit gate. A brief look at the truth table discloses that the AND-operator
is not reversible. If you get false as its output, you can’t tell what the input
was. It could be one of three different states.

P Q
T
T
F
F

T
F
T
F

T
F
F
F

P Q

Figure 9.10: Truth-table of AND

But theCNOT -gate provides away out. Remember, whenwe constructed the
CRY -gate, we used theCNOT -gate to switch the amplitudes of the controlled
qubit in themiddle of a rotation about the first half and a backward rotation
about the second half of the overall rotation. A similar pattern allows us to
create a controlled-controlled gate. Such a gate contains an AND-relationship
because it has two control qubits and it only changes the target qubit if both
control qubits are in state |1⟩.

The following figure depicts the circuit of the CCNOT -gate - a controlled-
controlled-NOT-gate.

i The CCNOT -gate is also known as the Toffoli-gate. The Toffoli-
gate has a different algorithm than this one. The Toffoli-gate
usesqubitphases. Phasesareconceptwecover later in thisbook.
The implementation we presented here is not optimal, but it
provides a vivid explanation of the underlying concept.



9.2 Composing Quantum Computing Controls 265

Figure 9.11: The CCNOT-gate

The following listing depicts the code of this CCNOT -gate sequence. We de-
fine a reusable function ccnot (line 4). It starts with the controlled rotation
with qubit q0 as control qubit (line 6). It rotates the controlled qubit about
θ = π

2 , the valuewe defined earlier (line 2).

Then,wehaveanother controlled rotationwith the samequbit as the control
qubit (line 11) encapsulated intoCNOT -gates (lines 10 and 12). It is important
to note that this encapsulated CRY -gate has −θ as a parameter. It denotes a
rotation in the opposite direction.

Finally, we have another controlled rotation about θ . Here, qubit q1 is the
control qubit.

Let’s go through the circuit one by one. First, we define our θ = π
2 (line 2).

The value π
2 represents rotation about a quarter of the circle. This is half of

the overall rotationwewant to apply. The rotation about half of the circle (π)
switches the amplitudes from |0⟩ to |1⟩ and vice versa.

In the first step, we rotate the controlled qubit about a quarter circle if qubit
q1 is in state |1⟩ through aCRY (

π
2 )-gate (line ).



266 Chapter 9. Quantum Bayesian Networks

Listing 9.7: The CCNOT‐function

1 from math import pi
2 theta = pi/2
3
4 def ccnot(qc):
5 # Apply the first half of the rotatione
6 qc.cry(theta, 1,2)
7
8 # This sequence has no effect if both control qubits
9 # are in state |1>

10 qc.cx(0,1)
11 qc.cry(−theta,1,2)
12 qc.cx(0,1)
13
14 # Apply the second half of the rotation
15 qc.cry(theta, 0,2)
16
17 # execute the qc
18 return execute(qc,Aer.get_backend('statevector_simulator')).result().

get_counts()

If both control qubits are in state |1⟩, the result of this gate is as the following
figure depicts.

Figure 9.12: State after half of the rotation

Both control qubits (the upper ones, read right to the left) are in state |1⟩
per our initialization. Then, half the time (as per rotation about π

2 ), the con-



9.2 Composing Quantum Computing Controls 267

trolled qubit is in state |1⟩.

Next, we apply a sequence of aCNOT -gate with q0 as the control qubit and q1
as the target qubit. For q0 is in state |1⟩, it changes the state of q1 from |1⟩ to
|0⟩. The following controlled rotation with q1 as the control qubit has no ef-
fectbecause q1 isnow in state |0⟩and theCRY -gateonly changes the controlled
qubit if the control qubit is in state |1⟩. The nextCNOT -gate reverts the effect
thefirstCNOT -gate had. For the control qubit q0 is still in state |1⟩, it switches
the state of q1 back from state |0⟩ to |1⟩.

If both control qubits are in state |1⟩, these three gates have no effect at all.

Finally, we apply a controlled rotation about π
2 with q0 as the control qubit.

This turns the state of the controlled qubit q2 from being in state |1⟩ half the
time to be in state |1⟩ all the time. It rotates the qubit state vector about the
other quarter of the circle, adding up to a half rotation. Ahalf rotation about
the circle turns the state |0⟩ into |1⟩ as the following figure shows.

|0⟩

|1⟩

θ = π
2

θ = π

θ = 0

Figure 9.13: Angles in a circle

Let’s look at the code and the result if both control qubits are in state |1⟩.



268 Chapter 9. Quantum Bayesian Networks

Listing 9.8: The CCNOT‐gate with both control qubits in state |1>

1 qc = QuantumCircuit(3)
2
3 # set both qubits to |1>
4 qc.x(0)
5 qc.x(1)
6
7 # apply the ccnot−gate and execute the qc
8 results = ccnot(qc)
9 plot_histogram(results)

Figure 9.14: Result of the CCNOT-gate with both control qubits
in state |1>

We see qubit q2 is in state |1⟩ all the time. It completely switched from its ini-
tial state |0⟩.

What if one of the control qubits is not in state |1⟩? Let’s say qubit q0 is in state
|0⟩.

Again, the firstCRY -gate rotates the qubit state vector of the controlled qubit
by π

2 - a quarter circle - because the control qubit q1 is in state |1⟩.

But this time, the followingCNOT -gatehasnoeffect. Forqubitq0 is in state |0⟩,
it doesnot switch the state of qubit q1 from |1⟩ to |0⟩. As a result, the following
CRY -gate with θ = −π

2 takes effect. It reverts the effect the firstCRY -gate had.
The followingCNOT -gate and the finalCRY -gate have no effect because qubit
q0 is in state |0⟩. Thus,weonly applied thefirst twoCRY -gateswith the second
reverting the first. Let’s see the code and the result.



9.2 Composing Quantum Computing Controls 269

Listing 9.9: The CCNOT‐gate with only control qubit q1 in state |1>

1 qc = QuantumCircuit(3)
2
3 # set only qubit q_1 to |1>
4 qc.x(1)
5
6 # apply the ccnot−gate and execute the qc
7 results = ccnot(qc)
8 plot_histogram(results)

Figure 9.15: Result of the CCNOT-gate with only control qubit
q1 in state |1>

We see the overall state did not change. The target qubit remains in state |0⟩.

Finally, let’s seewhat happens if only control qubit q0 is in state |1⟩, but qubit
q1 is not. Then, the firstCRY -gate is passed without effect. The following se-
quence of the second CRY -gate encapsulated into CNOT -gates first switches
qubit q1 from |0⟩ to |1⟩, then applies the rotation of the controlled qubit about
−θ =−π

2 , and switches qubit q1 back from |1⟩ to |0⟩. Now the controlled qubit
has been rotated by half of a circuit in the opposite direction. The following
figure depicts the result thus far.



270 Chapter 9. Quantum Bayesian Networks

Figure 9.16: State after half of the rotation in opposite
direction

Half of the time, the controlledqubit is in state |1⟩. Since theprobabilities are
the squaredamplitudes thatwechangebya rotation,wedonot see anegative
value here.

Finally, the last CRY -gate rotates the controlled qubit back by θ because the
control qubit q0 is in state |1⟩. The result is the original state again, as the fol-
lowing code and result show.

Listing 9.10: The CCNOT‐gate with only control qubit q0 in state |1>

1 qc = QuantumCircuit(3)
2
3 # set only qubit q_0 to |1>
4 qc.x(0)
5
6 # apply the ccnot−gate and execute the qc
7 results = ccnot(qc)
8 plot_histogram(results)



9.2 Composing Quantum Computing Controls 271

Figure 9.17: Result of the CCNOT-gate with only control qubit
q0 in state |1>

We created a controlled-controlled-NOT-gate through a composition of
CNOT - andCRY -gates. We could even further compose theCRY -gates through
CNOT - and RY -gates. This effectively shows the importance of the CNOT -
gate. The CNOT -gate does not only serve as the best example to explain
quantum entanglement, but it is also the building block of creating fur-
ther controlled gates. Or controlled-controlled-gates. And even controlled-
controlled-controlled-gates. You may continue this sequence until you run
out of qubits.

The pattern we used here can be applied in general. Thus, let’s have a more
abstract look atwhatwe just did.

Insection6.3,weconstructedacontrolledRY -gateusingtheCNOT-gate. Let’s
revisit this approach in general, too.

TheCNOT -gate lets us easily turn any qubit transformation gate, let’s call it
U, into a controlled one.

Besides theCNOT -gate, there are twomore thingswe need. The first thing is
to split thegateU intohalves. Wemustfindagate - let’s call itV that, if applied
twice, results in the desired overall transformation gateU. We can sayV ·V =
U orV =

√
U. Thus,V is the square root ofU.

The second thing is to create a gate that reverts the effect of gate V . Usually,
this is the transpose of the gate’s transformationmatrix. The transpose (V T )
of amatrix is the original matrixV flipped over its diagonal (from top-left to
bottom-right).



272 Chapter 9. Quantum Bayesian Networks

The following figure depicts howwe control an arbitrary gateU.

U V VT

Figure 9.18: Constructing a controlled gate

First, we apply the V -gate on the controlled qubit. Thus, we completed half
of theU-gate. Then, we entangle the qubits. Thus, the controlled qubit flips
its state. But it flips it only if the control qubit is in state |1⟩.

When we now apply the transpose matrix V T , it reverts the effect of V . But
only if the control qubit is |0⟩ because in this case, the CNOT -gate does not
have any effect.

By contrast, if the control qubit is in state |1⟩, theCNOT -gate flipped the state
of the controlled qubit. It is in the exact opposite state. Whenwe now apply
the transposedV T -gate, we apply the exact opposite ofV once again because
V T is theoppositeofV . Essentially, if thecontrolqubit is instate |1⟩weapplied
NOT-V ·V  - or NOT-U.

The finalCNOT -gate turns the state NOT-U intoU. But again, only if the con-
trol qubit is in state |1⟩.

Now, let’s have a look at the controlled-controlled gate. We want to create a
quantum transformation gatewe apply on a qubit qc (the target qubit) only if
two control qubits, q0 and q1 are in state |1⟩.

We use the same tools.

• CNOT -gate
• V -gate is the square root ofU
• V T -gate that reverts the effect ofV

This time, the gateV needs to be a controlled gate already. If it is not, you can
use theCNOT -gate to turn any gate into a controlled gate. Aswe just saw.

The following image shows the construction of a controlled-controlled gate.

Thiscontrolled-controlledgate, let’s call itU again, appliesonly if twocontrol
qubits, q0 and q1 are in state |1⟩.

Again, we start with applying the gate V . For this is a controlled qubit now,
we use q1 as the control qubit and qc as the target qubit. If q1 is in state |1⟩, we



9.2 Composing Quantum Computing Controls 273

=
U V V VT

q0

q1

qc

Figure 9.19: The structure of a controlled-controlled gate

apply the first half of the overall transformation.

Accordingly,weend the circuit by applyinggateV with q0 as the control qubit
and qc as the controlledqubit. If q0 is in state |1⟩, too,weapply the secondhalf
of the overall transformation.

Inbetween,wehavea sequenceof threegates:CNOT ,V T , andCNOT . Thefirst
CNOT -gate puts the then controlled qubit q1 into the state |0⟩ if both qubits q0
and q1 are in state |1⟩ or in state |0⟩. If one qubit is in state |0⟩ and the other
qubit is in state |1⟩, it puts the controlled qubit q1 into the state |1⟩.

The followingfigure shows the truth-table of applying theCNOT -gatewith q1
as the controlled qubit.

0
0
1
1

0
1
0
1

0
1
1
0

q0 q1 q0 q1

Figure 9.20: Truth-table of CNOT

As a result, we apply the following gateV T only if one qubit is in state |0⟩ and
the other is in state |1⟩. In these cases, we applied one of the two V -gates, ei-
ther the one at the start or the end. Thus, there is no effect on the controlled
qubit qc in total. We appliedV on it andVT to revert it.

If both qubits q0 and q1 are in state |0⟩, we do nothing at all leaving the con-
trolled qubit as it was, too. Only if both qubits q0 and q1 are in state |1⟩, then
we apply bothV -gateswhile not applying the gateVT .

The CNOT -gate after the V T -gate reverts the effect of the first CNOT -gate so



274 Chapter 9. Quantum Bayesian Networks

thatwe leave qubit q1 unchanged aswell.

Finally, ifV is not a controlled gate, we canmake it one by inserting the first
circuit into the second. The following figure depicts the resulting circuit.

=
U

q0

q1

qc

V VTV

W TW W TWTW W

Figure 9.21: Complete construction of a controlled-controlled
gate

In this case,weneed to split theV -gate intohalves, too. Thus,W is the square
root ofV .

In summary, by splitting the overall effect into halves (V ), we can implement
a gate (U) that depends on two other qubits to be in state |1⟩. If neither one
control qubit is |1⟩, nothinghappens at all. If onlyone control qubit is in state
|1⟩, we miss one application of V , and we apply the V T -gate that cancels the
effect of the oneV -gate we applied. If both control qubits are in state |1⟩, we
apply bothV -gates but miss theV T gate. That is the controlled-controlledU-
gate.

9.3 Circuit implementation
We start with the implementation of our example thus far, the effect the Sex
of a passenger and being a child (isChild) had on the Survival of the Titanic
shipwreck.

Aqubit represents eachnode in theBayesiannetwork. Sinceall ournodesare
binary (Sex, isChild, Survival), a single qubit each is sufficient. If we hadmore



9.3 Circuit implementation 275

discrete states or a continuousdistribution,wewouldneedmorequbits. The
qubit states represent the marginal (for root nodes) and the conditional (for
Survival node) probability amplitudes of the corresponding variables.

The state |0⟩ represents amale passenger or an adult. The state |1⟩ a female or
a child. The superpositionof the qubit denotes theprobability of either state.

• ψSex =
√

P(male)|0⟩+
√

P( f emale)|1⟩
• ψisChild =

√
P(adult)|0⟩+

√
P(child)|1⟩

We initialize these two qubits through rotations around the Y-axis.

Listing 9.11: Initialize the parent nodes

1 # the maximum age of a passenger we consider as a child
2 max_child_age = 8
3
4 # probability of being a child
5 population_child = train[train.Age.le(max_child_age)]
6 p_child = len(population_child)/len(train)
7
8 # probability of being female
9 population_female = train[train.Sex.eq("female")]

10 p_female = len(population_female)/len(train)
11
12 # Initialize the quantum circuit
13 qc = QuantumCircuit(3)
14
15 # Set qubit0 to p_child
16 qc.ry(prob_to_angle(p_child), 0)
17
18 # Set qubit1 to p_female
19 qc.ry(prob_to_angle(p_female), 1)

We calculate the probabilities of being a child (line 6) and being female (line
10). WeuseRY -gates to let the qubits q0 (line 16) and q1 (line 19) represent these
marginal probabilities.

Next, we add the CPT of Survival to the circuit. This is a littlemorework.

There are four different combinations of parent node values, Sex, and isChild
. These are, a male adult (|00⟩), a male child (|01⟩), a female adult (|10⟩), and
a female child (|11⟩). Therefore, we have four rotation angles, one for each
parent node combination.



276 Chapter 9. Quantum Bayesian Networks

Foreachof these combinations,weuseacontrolled-controlledRY -gate (CCRY )
to specify the probability of Survival. If there were n parent nodes, then we
would implement aCnRY -gate.

As the followingfigure shows,weencapsulate each rotation intoX-gates. For
aCCRY -gate only applies the rotation on the controlled qubit if both control
qubits are in state |1⟩, the leading X-gates select the corresponding combina-
tion, and the trailing X-gates revert the selection.

For example, to apply the conditional probability of a male adult (state |00⟩),
we need to flip both qubits. This is whatwe do. After applying theCCRY -gate
with the respective angle, we flip the qubits back into the original state.

q0 : |0⟩

q1 : |0⟩

q2 : |0⟩

RY (θchild)

RY (θ f emale)

RY (θsurv,ma) RY (θsurv,mc) RY (θsurv, f a) RY (θsurv, f c)

X X

X X

XX

XX

Figure 9.22: The quantum bayesian network circuit

We learned how to create aCCRY gate in section 9.2. The function ccry (lines
1-6) adds such a gate to our circuit.

Listing 9.12: Definition of the CCRY‐gate

1 def ccry(qc, theta, control1, control2, controlled):
2 qc.cry(theta/2, control2, controlled)
3 qc.cx(control1, control2)
4 qc.cry(−theta/2, control2, controlled)
5 qc.cx(control1, control2)
6 qc.cry(theta/2, control1, controlled)

In the following code,we calculate the conditional probability of each of our
four cases. We separate the population, for example, female children (line 3),
separate the survivors among them (line 4), and calculate their probability
to survive bydividing thenumber of survivors by the total number of female
children among the passengers (line 5).



9.3 Circuit implementation 277

Wedo the same for female adults (lines 8-10), male children (lines 13-16), and
male adults (lines 19-21).

Listing 9.13: Calculate the conditional probabilities

1 # female children
2 population_female=train[train.Sex.eq("female")]
3 population_f_c=population_female[population_female.Age.le(max_child_age)]
4 surv_f_c=population_f_c[population_f_c.Survived.eq(1)]
5 p_surv_f_c=len(surv_f_c)/len(population_f_c)
6
7 # female adults
8 population_f_a=population_female[population_female.Age.gt(max_child_age)]
9 surv_f_a=population_f_a[population_f_a.Survived.eq(1)]

10 p_surv_f_a=len(surv_f_a)/len(population_f_a)
11
12 # male children
13 population_male=train[train.Sex.eq("male")]
14 population_m_c=population_male[population_male.Age.le(max_child_age)]
15 surv_m_c=population_m_c[population_m_c.Survived.eq(1)]
16 p_surv_m_c=len(surv_m_c)/len(population_m_c)
17
18 # male adults
19 population_m_a=population_male[population_male.Age.gt(max_child_age)]
20 surv_m_a=population_m_a[population_m_a.Survived.eq(1)]
21 p_surv_m_a=len(surv_m_a)/len(population_m_a)

Next, we select the states representing these groups of passengers and apply
theCCRY -gatewith the corresponding probability.



278 Chapter 9. Quantum Bayesian Networks

Listing 9.14: Initialize the child node

1 # set state |00> to conditional probability of male adults
2 qc.x(0)
3 qc.x(1)
4 ccry(qc,prob_to_angle(p_surv_m_a),0,1,2)
5 qc.x(0)
6 qc.x(1)
7
8 # set state |01> to conditional probability of male children
9 qc.x(0)

10 ccry(qc,prob_to_angle(p_surv_m_c),0,1,2)
11 qc.x(0)
12
13 # set state |10> to conditional probability of female adults
14 qc.x(1)
15 ccry(qc,prob_to_angle(p_surv_f_a),0,1,2)
16 qc.x(1)
17
18 # set state |11> to conditional probability of female children
19 ccry(qc,prob_to_angle(p_surv_f_c),0,1,2)

We’re now ready to run the circuit. Let’s have a look.

Listing 9.15: Execute the circuit

1 # execute the qc
2 results = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_counts()
3 plot_histogram(results)



9.3 Circuit implementation 279

Figure 9.23: Results of the qbn

We can see eight different states. These belong to the victims (qubit q2 = 0)
and the survivors (q2 = 1) of the fourgroups. Thus, theoverallmarginal prob-
ability of surviving is the sumof all states where qubit q2 = 1.

To not add themmanually, let’s include ameasurement into our circuit. We
include a ClassicalRegister into our circuit.
Listing 9.16: A quantum circuit with classical register

1 # Quantum circuit with classical register
2 qr = QuantumRegister(3)
3 cr = ClassicalRegister(1)
4 qc = QuantumCircuit(qr, cr)

Then,we need to apply all the gates (skipped for brevity). We add ameasure-
ment (line 3). Here, we’re interested in qubit q2.

Finally,we select the appropriate backend (qasm_simulator) and run the circuit
several times (here 1,000 shots) (line 4).
Listing 9.17: Run the circuit including a measurement

1 # −− INCLUDE ALL GATES HERE −−
2
3 qc.measure(qr[2], cr[0])
4 results = execute(qc,Aer.get_backend('qasm_simulator'), shots=1000).

result().get_counts()
5 plot_histogram(results)



280 Chapter 9. Quantum Bayesian Networks

Figure 9.24: QBN including a measurement

Theresult shows thatwe’re close to theactual probabilityof survivingof 0.38.
The actual result varies a little sincewe do not calculate but empirically sim-
ulate this result.

Implementing a quantumBayesiannetwork is straightforward for a set of bi-
nary state variables because we can represent each variable by a single qubit.
Even if we had variables withmore than two states, the structure would not
change. We still would activate each state by X-gates and apply the corre-
sponding controlled rotation. But, wewould have to copewithmore states.



10. Bayesian Inference

We have implemented our quantum Bayesian network. It represents a pas-
senger’s overall chance to survive the Titanic shipwreck. It considers two
features, the passenger’s gender andwhether the passengerwas a child.

It’s time to use this network. We want to infer something we don’t already
know. We perform inference.

Generally, (statistical) inference is the process of deducing properties about
apopulationorprobabilitydistribution fromdata. This is the reasonwhywe
build the entirenetwork. Wewant tobe able tomakepredictions about some
newdata from the datawe already know.

Specifically, Bayesian inference is the process of deducing properties about
a population or probability distribution fromdata using Bayes’ theorem.

There are various questions we can answer with inference. We already per-
formed one type of inference. That ismarginal inference. We calculated the
overall probability of survival. Given our network with three variables, we
tried to find the probability of one variable, Survival.

Posterior inference is the second type of inference. It aims to find the pos-
terior distribution P(H|E = e) for a hidden variable H given some evidence
E = e. Basically, we infer the posterior probabilities by applying Bayes rule.
For example, given that we know the passenger’s gender and age, what was
her chance to survive? We perform this type of inference when we use our
Bayesian network to predict the survival of a single passenger.



282 Chapter 10. Bayesian Inference

Maximum-a-posteriori (MAP) inference is the third type of inference. It is a
variational approach for fitting model parameters to training data. We can
use it to estimate the distribution of a hidden variable that best explains an
observed dataset. In general, variationalmethods approximate the distribu-
tion of a hiddenvariable analytically. Based on amathematical expression of
the distribution of interest, these methods solve alternate expressions that
are known to be close to the original distribution.

Let’s do it.

10.1 Learning Hidden Variables
Our quantum Bayesian network is quite simple. It uses only two features of
our dataset. Let’s add another. Let’s add the ticket class (Pclass). We already
know the ticket class was a pretty important factor determining the Survival
of the Titanic shipwreck.

If we added Pclass as the third condition of Survival, the CPT would have
twelve cases. One case for each combination. It would be straightforward to
create. However, the advantage of a Bayesian network lies in decidingwhich
dependencies to include andwhich to omit. Anetworkwith amore selective
structure sometimes reveals interesting patterns in our data. Moreover, a
flat Bayesian network is not that interesting.

Let’s make a different choice on the design of our network. Thus far, we use
the Age and the gender (Sex) of a passenger because we know about the social
normof “women and children first.”

Instead of keeping the direct effect of Age and Sex on Survival, we define
another variable. It represents whether a passenger was favored by a norm
when the crew decidedwhomay board a lifeboat. It is not limited to women
and children. Maybe some men were selected for other aspects we don’t
know. Wename it Norm.

Of course, being favoredbya Normaffectsapassenger’s chances to survive. Yet,
to be favored for a valuable seat in a lifeboat, the passenger must have been
close to a lifeboat.

Once nomore favored personwas in sight of the crew, theymight have given
the next seat to anyone else in sight. Another decisive factor is the accessibil-
ityof thedeckswhere thepassengersboarded the lifeboats. Let’s assumethat
the Pclass represents this accessibility. To not complicate things too much
right away, we say Pclass has a direct effect on Survival. In contrast the Age
and Sex of a passenger have an indirect impact by determining the Norm that



10.2 Estimating A Single Data Point 283

influences Survival.

The following figure depicts our updated Bayesian network.

isChild

Gender

Survival

Ethical
Norm

Ticket
class

Figure 10.1: Updated Bayesian network

The question is, how dowe calculate the CPTs involving the Norm. The Norm is
conditionally dependent on Age and Sex. And Survival is conditionally depen-
dent on Norm and Pclass. But beyond its relation to other variables, we don’t
have any data of the Norm. It is a hidden variable. Fortunately, given some ob-
served data and the specified relationships, we can infer the CPTs involving
the Norm.

10.2 Estimating A Single Data Point
Before we calculate Norm, let’s look at a straightforward case first. We apply a
variational method to approximate the distribution of a hidden variable an-
alytically. Let’s say we have two binary variables, A and B. We know they’re
not independent. A is the parent node. B is the child node whose conditional
probabilitywe try to estimate.

The following figure depicts this Bayesian network.

Usually, we count howmany times both variables are true, howmany times
A is true and B is false, howmany times A is false, but B is true, and the times
both are false. Then, we divide each of these counts by the total number of
cases and get themaximum likelihood probabilities.

Here’s the datawe have of A and B. The problem is, wemiss one data point.



284 Chapter 10. Bayesian Inference

A B

Figure 10.2: A simple Bayesian network

0
1
1 1

1 0
0
0

0
0

0
?

0
01
1A

B

Figure 10.3: Dataset with missing value

The following listing specifies the data in Python.

Listing 10.1: Dataset with missing value

1 data = [
2 (1, 1), (1, 1), (0, 0), (0, 0), (0, 0), (0, None), (0, 1), (1, 0)
3 ]

! Thedatahave to bemissing at randomfor themethodswe apply
to be helpful. The datamust not bemissing for a reason. For in-
stance, if we don’t know the Age of passengers who died aboard
theTitanic but onlyknowthe Ageof survivors becauseweasked
them after their rescue, data would not be missing at random.
We would have biased data and could not reliably infer the Age
ofvictims fromthedata. But ifwe took the Age fromapassenger
list but we could not read the Age of some due to bad handwrit-
ing, we could assume the data tomiss at random.

Before we start filling in the missing value, we need an evaluation function.
We need somemeasures to tell us howwell we do.

Let’susea likelihoodfunction. Likelihoodfunctionsrepresent the likelihood
of amodel to result in the observed data. There are twowell-known types of



10.2 Estimating A Single Data Point 285

likelihood functions.

Themaximumlikelihood function is defined as theproduct of all probability
estimations.

L(θ) =
n

∏
i=1

fi(yi|θ)

The log-likelihood function takes the natural logarithm of the estimations
and sums them.

F(θ) =
n

∑
i=1

ln fi(yi|θ)

In these equations, we calculate the likelihood score (either L(θ) or F(θ))
based on the data (θ ), the variables (yi, in our example A and B), and themodel
( fi). Themodel is our Bayesian network, including all its parameters.

Both methods produce a single number as output—the likelihood score.
More likely events have higher values. Thus, the higher the number, the bet-
ter the model. However, the likelihood score must be interpreted carefully.
Themore data you add, the lower the overall score will be. With each proba-
bilitybelow1 (anyprobability is atmaximum1), youeithermultiplybyanum-
ber below 1 (the actual probability if you use maximum likelihood) or you
add a number below 0 (the logarithm of a probability below 1 if you use log-
likelihood). The result gets smaller and smaller. Consequently, these meth-
ods are only meaningful if you compare two (or more) models on the same
data.

Compared to the maximum likelihood method, the log-likelihood offers
mathematical convenience because it lets us turn multiplication into addi-
tion. Therefore, we use the log-likelihood function.

The following function implements the log-likelihood algorithm adapted to
our needs.



286 Chapter 10. Bayesian Inference

Listing 10.2: The log‐likelihood function adapted for our data

1 from math import log
2
3 def log_likelihood(data, prob_a_b, prob_a_nb, prob_na_b, prob_na_nb):
4 def get_prob(point):
5 if point[0] == 1 and point[1] == 1:
6 return log(prob_a_b)
7 elif point[0] == 1 and point[1] == 0:
8 return log(prob_a_nb)
9 elif point[0] == 0 and point[1] == 1:

10 return log(prob_na_b)
11 elif point[0] == 0 and point[1] == 0:
12 return log(prob_na_nb)
13 else:
14 return log(prob_na_b+prob_na_nb)
15
16 return sum(map(get_prob, data))

The function expects the data to be a list of tuples with two items each. Fur-
ther, it takes the parameters of our model. These are the probabilities of A
and B (prob_a_b), A and not B (prob_a_nb), not A and B (prob_na_b), and not A and
not B (prob_na_nb) (line 3).

We call the function get_prob for each tuple in the list and return the sum of
all results. This function get_prob takes a data point (the tuple) and evaluates
the combination of it. It simply returns the logarithm of the corresponding
probability. For example, if both values ofA andB are 1 it returns log(prob_a_b
)– the probability of A and B.

If we can’t identify the combination, we return the logarithm of the sum of
prob_na_band prob_na_nb. This is the casewhenwemiss thevalueofB.Wehave
only a single case ((0, None)) in our data, and its value ofA is 0. Thus,weknow
it contains not A. Butwe’re not sure about B.

If our datawere different, wewould need a different implementation.

We start with importing the Qiskit libraries and the implementation of the
prob_to_angle-functionwe introduced earlier.



10.2 Estimating A Single Data Point 287

Listing 10.3: Our known convenience function

1 from qiskit import QuantumCircuit, Aer, execute
2 from qiskit import ClassicalRegister, QuantumRegister
3 from qiskit.visualization import plot_histogram
4 import matplotlib.pyplot as plt
5 from math import asin, sqrt
6
7 def prob_to_angle(prob):
8 return 2*asin(sqrt(prob))

Further, we introduce another convenience function. It creates the scaffold
of a quantum circuit for us.
Listing 10.4: the as‐pqc function

1 def as_pqc(cnt_quantum, with_qc, cnt_classical=1, shots=1, hist=False,
measure=False):

2 # Prepare the circuit with qubits and a classical bit to hold the
measurement

3 qr = QuantumRegister(cnt_quantum)
4 cr = ClassicalRegister(cnt_classical)
5 qc = QuantumCircuit(qr, cr) if measure else QuantumCircuit(qr)
6
7 with_qc(qc, qr=qr, cr=cr)
8
9 results = execute(

10 qc,
11 Aer.get_backend('statevector_simulator') if measure is False else Aer.

get_backend('qasm_simulator'),
12 shots=shots
13 ).result().get_counts()
14
15 return plot_histogram(results, figsize=(12,4)) if hist else results

The as_pqc-function takes as the required parameter the number of qubits
(cnt_quantum) we use during the initialization of the QuantumRegister (line 3).
The optional parameter cnt_classical takes the number of classical bits we
employ in the circuit and initializes the ClassicalRegister (line 4). We add the
ClassicalRegister to the circuit (line 5) only if we include ameasurement into
ourcircuitbysettingtheoptionalparameter measure to True. Wethenmeasure
the qubit at position 0 by default (line 11), and use the qasm_simulator (line 15).
Further, only in this case, we need to work withmultiple shots to reproduce



288 Chapter 10. Bayesian Inference

the resultingmeasurement probability empirically. If we don’tmeasure our
qubits,weuse the statevector_simulator (line 15) that gives us precise probabil-
ities in a single shot. Theparameter hist specifieswhetherwewant to return
a histogramof the results (True) or the rawmeasurement data (False).

Theparameter with_qc is a callback function. Wecall itwith the QuantumCircuit
(qc), the QuantumRegister (qr), and the ClassicalRegister (cr) as arguments. This
callback function lets us implement the specificities of the PQC.

Next,we implement the quantumBayesiannetwork. Wedefine the function
qbn. It takes data and hist as parameters.
Listing 10.5: The quantum bayesian network

1 def qbn(data, hist=True):
2 def circuit(qc, qr=None, cr=None):
3 list_a = list(filter(lambda item: item[0] == 1, data))
4 list_na = list(filter(lambda item: item[0] == 0, data))
5
6 # set the marginal probability of A
7 qc.ry(prob_to_angle(
8 len(list_a) / len(data)
9 ), 0)

10
11 # set the conditional probability of NOT A and (B / not B)
12 qc.x(0)
13 qc.cry(prob_to_angle(
14 sum(list(map(lambda item: item[1], list_na))) / len(list_na)
15 ),0,1)
16 qc.x(0)
17
18 # set the conditional probability of A and (B / not B)
19 qc.cry(prob_to_angle(
20 sum(list(map(lambda item: item[1], list_a))) / len(list_a)
21 ),0,1)
22
23 return as_pqc(2, circuit, hist=hist)

We implement the actual quantum circuit in the circuit function we pass to
as_pqcas thecallback function (line23). Thiscallback functionstartswiththe
declaration of two lists. The first list_a (line 3) contains all the items in our
datawhere the value of A is 1, representing A is true. The second list_na (line
4) includes all itemswhere the value of A is 0 representing not A.

Weuse these lists tocalculate theprobabilitiesof the fourcombinations (A∧B,



10.2 Estimating A Single Data Point 289

A∧¬B, ¬A∧B,¬A∧¬B).

We start with themarginal probability of A (lines 7-9). This is the number of
items in our data where A is true (1, the length of list_a) divided by the total
number of items in our data (size of data). We let the qubit at position 0 repre-
sent this probability.

Next, we separate the cases where A is false into those where B is true and
those where B is false (lines 12-16). First, we “activate” the state where A is
false by applying the NOT -gate on the qubit at position 0 (line 12). The con-
trolled RY -gate sets the qubit at position 1 into state |1⟩ when B is true (line
14). We calculate the probability by dividing the number of items where A
is false and B is true (sum(list(map(lambda item: item[1], list_na)))) divided by
the number of items where A is false (len(list_na)). Of course, we need to
switch the qubit back to state |1⟩ in the caseswhere A is true (line 16).

Finally, we separate the cases where A is true into those where B is true, and
thosewhere B is false. We apply another controlled RY -gate. The rotation an-
gle represents the probability of B is true given A is also true (line 20).

The following figure depicts this quantum circuit graphically.

Figure 10.4: The quantum Bayesian network with two nodes

Let’s now see it in action. The first and simplest way of coping withmissing
data is to ignore it. Wedropthe itemwiththemissing item(list(filter(lambda
item: item[1] is not None ,data))) beforewe pass the data to the qbn function.

Listing 10.6: Ignoring the missing data

1 qbn(list(filter(lambda item: item[1] is not None ,data)))



290 Chapter 10. Bayesian Inference

Figure 10.5: Resulting probabilities when irgnoring the mssing
data

The measurement probabilities of the four different states represent the
probabilities of the possible combinations of A or¬A and B or ¬B.

Let’s feed the results into the log_likelihood function we created earlier. We
create another convenience function for that.
Listing 10.7: Calculate the log‐likelihood when ignoring the missing data

1 def eval_qbn(model, prepare_data, data):
2 results = model(prepare_data(data), hist=False)
3 return round(log_likelihood(data,
4 results['11'], # prob_a_b
5 results['01'], # prob_a_nb
6 results['10'], # prob_na_b
7 results['00'] # prob_na_nb
8 ), 3)
9

10 eval_qbn(qbn, lambda dataset: list(filter(lambda item: item[1] is not
None ,dataset)), data)

-9.499

This function eval_qbn (line 1) takes the qbn-function as themodel. Butwe can
plug in any other model, too, as long as it takes a dataset of the given for-
mat and returns the results we obtain from Qiskit. The second parameter
prepare_data is a function that takes care of themissing data point. We put in
our data and expect the dataset we put into ourmodel (line 2).



10.2 Estimating A Single Data Point 291

The function returns the log-likelihood score of the given model (line 3).
Therefore, we provide the probability measures we get from the quantum
circuit (lines 4-7). Note that the states we get from the quantum circuit read
from the right (qubit at position 0 represents A) to the left (qubit at position 1
represents B).

In this example,weprovidea function thatfiltersout themissing item(filter
(lambda item: item[1] is not None)) (line 10).

The results show a log-likelihood score of−9.499. As mentioned, the overall
valuedoesnotsaymuch. Weseehowgoodit iswhenwecompare itwithother
models.

Next, let’s try tofill inavalue for themissingdata. In threeoffivecaseswhere
A is 0, B is 0, too. B is 1 in only one of these cases. And, one time, it is missing.
Thus, filling in 0 seems to be the better option.

Listing 10.8: Calculate the log‐likelihood when filling in 0

1 eval_qbn(qbn, lambda dataset: list(map(lambda item: item if item[1] is
not None else (item[0], 0) ,dataset)), data)

-9.481

Whenfilling in 0 for themissing item,we get a log-likelihood score of−9.481.
This is an improvement over−9.499, the value of the previousmodel.

Let’s try tofindthevalue thatmakes the log-likelihood (of theactualdata) the
biggest.

In a Bayesian network,weworkwith probabilities all the time. Sowhy don’t
we fill in the missing data point with a probability distribution instead of a
particular value?

Wait! How could we fill in the value with a probability distribution if this
distribution iswhatwe aim to calculate in thefirst place? Let’s do something
extraordinary. Spock!



292 Chapter 10. Bayesian Inference

Figure 10.6: A Guess?

Kirk: “Mr. Spock, have you accounted for the variablemass of whales andwater
in your time re-entry program?”

Spock: “Mr.Scottcannotgivemeexactfigures,Admiral, so…Iwillmakeaguess.”

Kirk: “A guess? You, Spock? That’s extraordinary.”

Spock toMcCoy: “I don’t think he understands.”

McCoy: “No, Spock. He means that he feels safer about your guesses than most
other people’s facts.”

Spock: “Then you’re saying… it is a compliment?”

McCoy: “It is.”

Spock: “Ah. Then I will try tomake the best guess I can.”

Listing 10.9: The updated eval‐qbn

1 def eval_qbn(model, prepare_data, data):
2 results = model(prepare_data(data), hist=False)
3 return (
4 round(log_likelihood(data,
5 results['11'], # prob_a_b
6 results['01'], # prob_a_nb
7 results['10'], # prob_na_b
8 results['00'] # prob_na_nb
9 ), 3),

10 results['10'] / (results['10'] + results['00'])
11 )



10.2 Estimating A Single Data Point 293

Weguess a distribution. Andwedonot only take the log-likelihood score but
also thedistributionofB given¬A. Weneed to edit the qbn function to get this
distribution.

The updated eval_qbn-function did not changemuch. It simply adds another
number as its returned value. Now, it returns a tuple. At the first position of
the tuple, it returns the log-likelihood score. At the second position (line 10),
it returns the probability of B given ¬A

P(B|¬A) = P(¬A∧B)
P(¬A) = P(¬A∧B)

P(¬A∧B)+P(¬A∧¬B)

So, let’s start by initializing our distributionwith P(B|¬A) = 0.5.

Listing 10.10: Evaluation of the guess

1 eval_qbn(qbn, lambda dataset: list(map(lambda item: item if item[1] is
not None else (item[0], 0.5) ,dataset)), data)

(-9.476, 0.3)

It seems as if it was a pretty good guess. The log-likelihood score is at−9.476.

Butwe don’t stop there. Themodel tells us a newvalue of P(B|¬A) = 0.3. Let’s
run ourmodel with this value.
Listing 10.11: Refining the model

1 eval_qbn(qbn, lambda dataset: list(map(lambda item: item if item[1] is
not None else (item[0], 0.3) ,dataset)), data)

(-9.452, 0.26)

Ourmodel improves. Wegot a log-likelihood score of−9.452 and anewdistri-
bution for ourmissing data point.

We can iterate between filling in the missing data with the distribution and
estimating a newprobability distribution.



294 Chapter 10. Bayesian Inference

Listing 10.12: Further refining the model

1 eval_qbn(qbn, lambda dataset: list(map(lambda item: item if item[1] is
not None else (item[0], 0.26) ,dataset)), data)

(-9.451, 0.252)

Listing 10.13: Another iteration

1 eval_qbn(qbn, lambda dataset: list(map(lambda item: item if item[1] is
not None else (item[0], 0.252) ,dataset)), data)

(-9.451, 0.2504)

This iterative process is an example of a general procedure called the
expectation-maximization (EM) algorithm.

But for how long dowe have to iterate?

If you don’t get tired first, you iterate until the score converges. In our exam-
ple, the log-likelihood score did not improve (measurably) between the val-
ues of 0.252 and 0.2504.

It can be hard to tell when the EM has converged, though. Sometimes, the
models just get a tiny bit better for a long time. Once you think the process is
done, there is a sudden increase in the score. There’s noway to tell.

Another problem with EM is that it is subject to local maxima. As a result,
it might effectively converge to a maximum near to the starting point even
though there’s a much better model with different values. To prevent from
getting stuck in a localmaximum, you can either run the algorithmmultiple
times starting at different initial values or—–if available—–you can use do-
main knowledge to initialize themodel.

10.3 Estimating A Variable
Let’s get back to our quantum Bayesian network consisting of four nodes.
The Age and Sex of a passenger determine the Norm. The Norm and the Pclass de-
termine Survival.



10.3 Estimating A Variable 295

female
P(Sex)

male
0.35 0.65

Sex isChild

Norm

child
P(isChild)

adult
0.08 0.92

female

P(Norm = Favored|Sex, isChild)

?

male
child
adult

?

Class

1st
P(isChild)

2nd
0.24 0.21

Survival

P(Survival = True|Norm,Class)

?favor
unfav,

?

3rd

1st 2nd 3rd

0.55

? ?

?

? ??

Figure 10.7: The CPTs including the norm

Our data consists of all the cases of passengers onboard the Titanic. The
dataset contains observations of Age, Sex, and Survival. These are observable
variables. The values of the Norm are missing data. The Norm is a hidden vari-
able.

The image above depicts themissing CPT of our Bayesian network.

We aim to find the CPTs thatmaximize the probability of the observed data.

Rather thanwriting a single big function, we split our code into small pieces
we can put together at the end. Let’s start with themarginal probabilities of
being a child (isChild) and a passenger’s gender (Sex).



296 Chapter 10. Bayesian Inference

Listing 10.14: Apply the known

1 import pandas as pd
2 train = pd.read_csv('./data/train.csv')
3
4 # the maximum age of a passenger we consider as a child
5 max_child_age = 8
6
7 # probability of being a child
8 population_child = train[train.Age.le(max_child_age)]
9 p_child = len(population_child)/len(train)

10
11 # probability of being female
12 population_female = train[train.Sex.eq("female")]
13 p_female = len(population_female)/len(train)
14
15 # positions of the qubits
16 QPOS_ISCHILD = 0
17 QPOS_SEX = 1
18
19 def apply_ischild_sex(qc):
20 # set the marginal probability of isChild
21 qc.ry(prob_to_angle(p_child), QPOS_ISCHILD)
22
23 # set the marginal probability of Sex
24 qc.ry(prob_to_angle(p_female), QPOS_SEX)

We keep the maximum age of 8 years of a passenger we consider as a child
(line 5). The probability of being a child is given by the number of children
(line 8) divided by the total number of passengers (line 9).

We do the same calculation for the passenger being female (lines 12-13).

We specify two constant values, QPOS_ISCHILD and QPOS_SEX (lines 16-17). These
depict thepositionsof thequbits that represent therespectivemarginalprob-
abilities.

We use the RY -gate and the prob_to_angle-function to put the qubits into the
corresponding states. The qubit at position QPOS_ISCHILD has the probability
being instate |0⟩ thatcorresponds to theprobabilityof thepassengerbeingan
adult. The probability of being in state |1⟩ is the probability of the passenger
being a child (line 21).

Accordingly, the qubit at position QPOS_SEX represents the probabilities of the
passenger beingmale (state |0⟩) and being female (state |1⟩) (line 24).



10.3 Estimating A Variable 297

In the next step, we specify the conditional probabilities of being favored by
a norm.
Listing 10.15: Represent the norm

1 # position of the qubit representing the norm
2 QPOS_NORM = 2
3
4 def apply_norm(qc, norm_params):
5 """
6 norm_params = {
7 'p_norm_am': 0.25,
8 'p_norm_af': 0.35,
9 'p_norm_cm': 0.45,

10 'p_norm_cf': 0.55
11 }
12 """
13
14 # set the conditional probability of Norm given adult/male
15 qc.x(QPOS_ISCHILD)
16 qc.x(QPOS_SEX)
17 ccry(qc, prob_to_angle(
18 norm_params['p_norm_am']
19 ),QPOS_ISCHILD, QPOS_SEX, QPOS_NORM)
20 qc.x(QPOS_ISCHILD)
21 qc.x(QPOS_SEX)
22
23 # set the conditional probability of Norm given adult/female
24 qc.x(QPOS_ISCHILD)
25 ccry(qc, prob_to_angle(
26 norm_params['p_norm_af']
27 ),QPOS_ISCHILD, QPOS_SEX, QPOS_NORM)
28 qc.x(QPOS_ISCHILD)
29
30 # set the conditional probability of Norm given child/male
31 qc.x(QPOS_SEX)
32 ccry(qc, prob_to_angle(
33 norm_params['p_norm_cm']
34 ),QPOS_ISCHILD, QPOS_SEX, QPOS_NORM)
35 qc.x(QPOS_SEX)
36
37 # set the conditional probability of Norm given child/female
38 ccry(qc, prob_to_angle(
39 norm_params['p_norm_cf']
40 ),QPOS_ISCHILD, QPOS_SEX, QPOS_NORM)



298 Chapter 10. Bayesian Inference

We also define another constant to keep the position of the qubit that repre-
sents the Norm (line 2).

The function apply_norm applies the conditional probability given a set of pa-
rameters (norm_params). This is a Python dictionary with four key-value pairs.
The keys are p_norm_am, p_norm_af, p_norm_cm, and p_norm_cf. The values are the
conditional probabilities of being favored by a norm given the passenger is a
male adult (p_norm_am), a female adult (p_norm_af), a male child (p_norm_cm), and
a female child (p_norm_cf).

For each of these conditional probabilities, we select the qubit states repre-
senting the marginal probabilities of isChild and Sex using X-gates. For in-
stance, the state |00⟩ of the qubits at the positions QPOS_ISCHILD and QPOS_SEX
represents the probability of being amale adult. Since theCCRY -gate only ap-
plies a rotation on the controlled qubit if both control qubits are in state |1⟩,
weneed to switch bothqubits first (lines 15-16). Now, the state |11⟩ represents
theprobabilityofamaleadult. Weapply thecorrespondingconditionalprob-
ability (prob_to_angle(norm_params['p_norm_am'])) (lines 17-18) and switch back
the state of the control qubits (lines 20-21).

We do the same for the other three conditional probabilities, too.

Listing 10.16: Calculate the probabilities related to the ticket‐class

1 pop_first = train[train.Pclass.eq(1)]
2 surv_first = round(len(pop_first[pop_first.Survived.eq(1)])/len(pop_first)

, 2)
3 p_first = round(len(pop_first)/len(train), 2)
4
5 pop_second = train[train.Pclass.eq(2)]
6 surv_second = round(len(pop_second[pop_second.Survived.eq(1)])/len(

pop_second), 2)
7 p_second = round(len(pop_second)/len(train), 2)
8
9 pop_third = train[train.Pclass.eq(3)]

10 surv_third = round(len(pop_third[pop_third.Survived.eq(1)])/len(pop_third)
, 2)

11 p_third = round(len(pop_third)/len(train), 2)
12
13 print("First class: {} of the passengers, survived: {}".format(p_first,

surv_first))
14 print("Second class: {} of the passengers, survived: {}".format(p_second,

surv_second))
15 print("Third class: {} of the passengers, survived: {}".format(p_third,

surv_third))



10.3 Estimating A Variable 299

First class: 0.24 of the passengers, survived: 0.63
Second class: 0.21 of the passengers, survived: 0.47
Third class: 0.55 of the passengers, survived: 0.24

Now, let’s turn to themarginal probability ofhaving a ticket of a certain class
(Pclass) and the respective chances to survive.

The calculation of the probabilities is straightforward. Themarginal proba-
bility of owning a ticket is given by the number of tickets of the respective
class divided by the total number of passengers (lines 3, 7, 11). The condi-
tional probability of surviving given a certain ticket class is the quotient of
the number of survivors and the total number of passengers with a ticket of
that class (lines 2, 6, 10).

Listing 10.17: Represent the ticket‐class

1 # positions of the qubits
2 QPOS_FIRST = 3
3 QPOS_SECOND = 4
4 QPOS_THIRD = 5
5
6 def apply_class(qc):
7 # set the marginal probability of Pclass=1st
8 qc.ry(prob_to_angle(p_first), QPOS_FIRST)
9

10 qc.x(QPOS_FIRST)
11 # set the marginal probability of Pclass=2nd
12 qc.cry(prob_to_angle(p_second/(1−p_first)), QPOS_FIRST, QPOS_SECOND)
13
14 # set the marginal probability of Pclass=3rd
15 qc.x(QPOS_SECOND)
16 ccry(qc, prob_to_angle(p_third/(1−p_first−p_second)), QPOS_FIRST,

QPOS_SECOND, QPOS_THIRD)
17 qc.x(QPOS_SECOND)
18 qc.x(QPOS_FIRST)

Thus far,weonlyhadtocopewithbooleanvariables. Thesearevariables that
have only two possible values. The Pclass is different because there are three
different ticket classes, 1st, 2nd, and 3rd.

Technically,we could represent three values byusing twoqubits. Butwewill
use three. We represent the probability of having a ticket of a certain class by



300 Chapter 10. Bayesian Inference

a single one qubit being in state |1⟩. We start with applying an RY -gate on the
qubitatposition QPOS_FIRST. It lets thisqubitbe instate |1⟩withtheprobability
of a passenger having a first-class ticket (line 8).

Now, given that the passenger doesn’t have a first-class ticket, we want the
qubit at position QPOS_FIRST to be in state |0⟩. Therefore, we temporarily
switch the amplitudes of this qubit by an X-gate (line 10). This allows us to
use this qubit as a control qubit for controlled rotations of the qubits repre-
senting the other two classes.

We apply the rotation on the qubit at position QPOS_SECOND only if qubit
QPOS_FIRST is in state |1⟩. Temporarily, this is the case if the passenger does
not have a first-class ticket. Since the control qubit is not always in state |1⟩,
we have to adjust the rotation anglewe apply. We apply the conditional prob-
ability ofhaving a second-class ticket given thepassengerdoesn’t have afirst-
class ticket (prob_to_angle(p_second/(1−p_first)) (line 12).

Next, we want the qubit at position QPOS_SECOND to be in state |0⟩ if the passen-
ger has a third-class ticket. Thus, we temporarily switch its amplitude, too
(line 15). Now, we apply a controlled-controlled rotation of the qubit at posi-
tion QPOS_THIRD. We apply the conditional probability of having a third-class
ticket given the passenger doesn’t have a first-class or a second-class ticket
(prob_to_angle(p_third/(1−p_first−p_second)) (line 16).

Finally, we undo the temporary switches of the amplitudes of the qubits at
the positions QPOS_SECOND (line 17) and QPOS_FIRST (line 18). Each of these three
qubits has the probability of being in state |1⟩ now that corresponds to the
probability of the passenger having a ticket of the corresponding class. And
if one of these three qubits is in state |1⟩, the other two qubits are in state |0⟩
because a passenger can only have a ticket of a single class.

In the next listing, we apply the conditional probability of Survival.



10.3 Estimating A Variable 301

Listing 10.18: Represent survival

1 # position of the qubit
2 QPOS_SURV = 6
3
4 def apply_survival(qc, surv_params):
5 """
6 surv_params = {
7 'p_surv_f1': 0.3,
8 'p_surv_f2': 0.4,
9 'p_surv_f3': 0.5,

10 'p_surv_u1': 0.6,
11 'p_surv_u2': 0.7,
12 'p_surv_u3': 0.8
13 }
14 """
15
16 # set the conditional probability of Survival given unfavored by norm
17 qc.x(QPOS_NORM)
18 ccry(qc, prob_to_angle(
19 surv_params['p_surv_u1']
20 ),QPOS_NORM, QPOS_FIRST, QPOS_SURV)
21
22 ccry(qc, prob_to_angle(
23 surv_params['p_surv_u2']
24 ),QPOS_NORM, QPOS_SECOND, QPOS_SURV)
25
26 ccry(qc, prob_to_angle(
27 surv_params['p_surv_u3']
28 ),QPOS_NORM, QPOS_THIRD, QPOS_SURV)
29 qc.x(QPOS_NORM)
30
31 # set the conditional probability of Survival given favored by norm
32 ccry(qc, prob_to_angle(
33 surv_params['p_surv_f1']
34 ),QPOS_NORM, QPOS_FIRST, QPOS_SURV)
35
36 ccry(qc, prob_to_angle(
37 surv_params['p_surv_f2']
38 ),QPOS_NORM, QPOS_SECOND, QPOS_SURV)
39
40 ccry(qc, prob_to_angle(
41 surv_params['p_surv_f3']
42 ),QPOS_NORM, QPOS_THIRD, QPOS_SURV)



302 Chapter 10. Bayesian Inference

Again, we start with the specification of the qubit position (line 1). Like the
function apply_norm, the function apply_survival takes a Python dictionary as
a parameter that holds all the probabilities wewant to apply on the qubits.

The value at the key p_surv_f1 represents the probability of surviving given
the passenger was favored (f) by a norm and had a first-class ticket (1). The
key p_surv_u3 represents the probability of surviving given the passengerwas
unfavored (u) by anormandhad a third-class ticket (3). The other keys depict
all the possible combinations.

We use a temporary X-gate (line 17) to set the qubit representing the Norm to
the value we want to apply. We start with the unfavored passengers (lines
18-28). Before we continue with the favored passengers, we switch the qubit
back (line 29).

Since we prepared three qubits to represent the three ticket classes, we do
notneed anotherX-gate to activate the corresponding state. Butwe canuse a
CCRY -gatewith the qubits representing the Norm (QPOS_NORM) and the respective
ticket class (QPOS_FIRST, QPOS_SECOND, or QPOS_THIRD) as the control qubits.

Withthese fewfunctions,wecancreateaparameterizedquantumcircuit eas-
ily.
Listing 10.19: The quantum bayesian network

1 QUBITS = 7
2
3 def qbn_titanic(norm_params, surv_params, hist=True, measure=False, shots

=1):
4 def circuit(qc, qr=None, cr=None):
5 apply_ischild_sex(qc)
6 apply_norm(qc, norm_params)
7 apply_class(qc)
8 apply_survival(qc, surv_params)
9

10 return as_pqc(QUBITS, circuit, hist=hist, measure=measure, shots=shots)

We define the function qbn_titanic (line 3). It takes two Python dictionaries
(norm_params and surv_params) that contain all the parameters we need to con-
struct the circuit. Weuse the as_pqc functionwe created earlier again (line 11).
Finally, we pass the number of qubits our circuit should have (defined in line
1) and a callback function (circuit) that constructs the actual circuit (lines 4-
8).

Let’s try to run it with some arbitrary parameters.



10.3 Estimating A Variable 303

Listing 10.20: Try the QBN

1 norm_params = {
2 'p_norm_am': 0.25,
3 'p_norm_af': 0.35,
4 'p_norm_cm': 0.45,
5 'p_norm_cf': 0.55
6 }
7
8 surv_params = {
9 'p_surv_f1': 0.3,

10 'p_surv_f2': 0.4,
11 'p_surv_f3': 0.5,
12 'p_surv_u1': 0.6,
13 'p_surv_u2': 0.7,
14 'p_surv_u3': 0.8
15 }
16
17 qbn_titanic(norm_params, surv_params, hist=True)

Figure 10.8: Result of trying the QBN

It produces a set of quite a few states with associated probabilities. These re-
sulting probabilities are quitemeaningless becausewemade up the input pa-
rameters. We need to derive them from the data.

Let’s start with the norm_params.



304 Chapter 10. Bayesian Inference

Listing 10.21: Calculate the parameters of the norm

1 def calculate_norm_params(passengers):
2 # the different populations in our data
3 pop_children = passengers[passengers.IsChild.eq(1)]
4 pop_adults = passengers[passengers.IsChild.eq(0)]
5
6 # combinations of being a child and gender
7 pop_am = pop_adults[pop_adults.Sex.eq('male')]
8 pop_af = pop_adults[pop_adults.Sex.eq('female')]
9 pop_cm = pop_children[pop_children.Sex.eq('male')]

10 pop_cf = pop_children[pop_children.Sex.eq('female')]
11
12 norm_params = {
13 'p_norm_am': pop_am.Norm.sum() / len(pop_am),
14 'p_norm_af': pop_af.Norm.sum() / len(pop_af),
15 'p_norm_cm': pop_cm.Norm.sum() / len(pop_cm),
16 'p_norm_cf': pop_cf.Norm.sum() / len(pop_cf),
17 }
18
19 return norm_params

The function calculate_norm_params takes the Pandas dataframe of the passen-
gers and returns the norm_paramsdictionary. First,we specifydifferentpopula-
tions (groups) of passengers (lines 2-10). Then, we calculate the probabilities
of a passenger being favored by a Norm (Norm) given the passenger belongs to
a group (lines 12-17).

We separate the children from the adults in the data by evaluating whether
the value of column IsChild is 1 (children) or 0 (adults) (lines 3-4). We further
split these two groups into four based on the gender(Sex) being female or male
(lines 7-10).

Let’s pay some attention to howwe calculate the probabilities of a passenger
being favored by a Norm (lines 13-16). We sum the Norm of all passengers of a
groupanddivideby thenumberofpassengers in thegroup. Norm is thehidden
variable. Similar to the example of a missing value, we will fill this column
with a number between 0 and 1 that represents the probability of the respec-
tive passenger to be favored by a norm.

Forexample, ifwehave tenpassengersandfivehaveavalueof0, andfivehave
a value of 1, we get a resulting probability of P(Norm) = (5 · 1+ 5 · 0)/10 = 0.5.
Likewise, if we have five passengers with a value of 0.75 and fivewith a value
of 0.25, we get a resulting probability of P(Norm) = (5 ·0.75+5 ·0.25)/10 = 0.5.



10.3 Estimating A Variable 305

Next, we calculate the surv_params.
Listing 10.22: Calculate the parameters of survival

1 def calculate_surv_params(passengers):
2 # all survivors
3 survivors = passengers[passengers.Survived.eq(1)]
4
5 # weight the passenger
6 def weight_passenger(norm, pclass):
7 return lambda passenger: (passenger[0] if norm else 1−passenger[0]) *

(1 if passenger[1] == pclass else 0)
8
9 # calculate the probability to survive

10 def calc_prob(norm, pclass):
11 return sum(list(map(
12 weight_passenger(norm, pclass),
13 list(zip(survivors['Norm'], survivors['Pclass']))
14 ))) / sum(list(map(
15 weight_passenger(norm, pclass),
16 list(zip(passengers['Norm'], passengers['Pclass']))
17 )))
18
19 surv_params = {
20 'p_surv_f1': calc_prob(True, 1),
21 'p_surv_f2': calc_prob(True, 2),
22 'p_surv_f3': calc_prob(True, 3),
23 'p_surv_u1': calc_prob(False, 1),
24 'p_surv_u2': calc_prob(False, 2),
25 'p_surv_u3': calc_prob(False, 3)
26 }
27
28 return surv_params

Let’s go through this function backward from the bottom to the top. First,
we return the Python dictionary that contains the conditional probabilities
of survivalgiventhepassenger’s ticketclassandwhetheranormfavoredhim
or her.

Weusea convenience function calc_prob to calculate theseprobabilities given
thespecificvaluesofbeingfavored(thefirstparameter isTrueorFalse) andthe
ticket class (either 1, 2, or 3) (lines 20-25).

The probability to survive is defined by the number of survivors in a group
(numerator) divided by the total number of passengers in a group (denomi-



306 Chapter 10. Bayesian Inference

nator). The problem is that the Norm column contains a number between 0
and 1–the probability that a norm favors the passenger. Therefore, we can’t
count the passengers, butwe have to “weigh” each of them.

If a passenger has a Norm value of 0.75, she belongs to the group of favored
passengers in 75% of the cases and the group of unfavored passengers in 25%
cases. If we sum the weights of all survivors and divide it by the sum of the
weights of all passengers, it yields the probability (lines 11-17).

Sincewedo this calculationof theweight twice (lines 12 and 15),weput it into
another function (weight_passenger) (lines 5-7).

We create tuples of the Norm and the Pclass values of a passenger (using
Python’s zip-function) and pass them into weight_passenger as input (lines 13
and 16).

Ifweweighwhetherapassengerbelongs toagroupof favoredpassengers,we
use the Norm-value. But ifweweighwhether a passenger belongs to a group of
unfavored passengers, we need to calculate this probability as 1−Norm. This
is the first part of our weight_passenger function (passenger[0] if norm else 1−
passenger[0], line 7). But we do not only need to consider the Norm but also
the Pclass. Rather than separating these groups upfront, we set the weight
of a passenger to 0 if the pclass does not fit the group we are calculating ((1
if passenger[1] == pclass else 0)). Then, the returned weight is also 0 for we
multiply both values.

Maybe, you wonder where the IsChild and Norm columns in the data set come
from. Do you? We explained their meaning and what kind of values we ex-
pect them to have. Yet, they are not part of the original data. Just like the
missing value in our first example, we have to fill themourselves.



10.3 Estimating A Variable 307

Listing 10.23: Prepare the data

1 def prepare_data(passengers, params):
2 """
3 params = {
4 'p_norm_cms': 0.45,
5 'p_norm_cmd': 0.46,
6 'p_norm_cfs': 0.47,
7 'p_norm_cfd': 0.48,
8 'p_norm_ams': 0.49,
9 'p_norm_amd': 0.51,

10 'p_norm_afs': 0.52,
11 'p_norm_afd': 0.53,
12 }
13 """
14 # is the passenger a child?
15 passengers['IsChild'] = passengers['Age'].map(lambda age: 0 if age >

max_child_age else 1)
16
17 # the probability of favored by norm given Age, Sex, and Survival
18 passengers['Norm'] = list(map(
19 lambda item: params['p_norm_{}{}{}'.format(
20 'a' if item[0] == 0 else 'c',
21 item[1][0],
22 'd' if item[2] == 0 else 's'
23 )],
24 list(zip(passengers['IsChild'], passengers['Sex'], passengers['

Survived']))
25 ))
26 return passengers

Filling thevaluesof the IsChild-columnisquite simple. Wedefinedallpassen-
gerswith an age of max_child_age=8 or below to be a child. All older passengers
are considered adults. Since we have the Age of the passengers, it is a simple
calculation (line 15).

Things are different concerning the Norm. Wedonothave thevalue of anypas-
senger. In the previous example, we only had two variables, A and B. Andwe
had the data of both for most cases. It was clear we used the values of A to
determine the probability values of B.

In the passenger data set, there are a lot more variables. How do we deter-
minewhich variables to use to determine the value of Norm? The answer is in
our Bayesian network. Per definition, it contains all dependencies that mat-



308 Chapter 10. Bayesian Inference

ter. Thevalueof Normdependson IsChildand Sex, and it affects Survival. There-
fore, we need to condition the probability of Norm on these three variables. If
any other variablemattered,wewould need to include it in our Bayesian net-
work.

Since IsChild, Sex, and Survival have two possible values each, there are eight
possible combinations (23 = 8). We expect these probabilities to be provided
as parameters in a Python dictionary params (line 1). The three letters at the
end indicatewhether thepassengerwas a child (c) or an adult (a), amale (m) or
a female (f), andwhether the passenger survived (s) or died (d).

We create tuples of these three variables using the zip function (line 24). We
map the tuple for each passenger (line 18) onto the corresponding value of the
params dictionary (line 19). We select the right key-value pair by creating the
proper string (lines 19-23). If the value of IsChild is 0we insert an a, otherwise
a c (line 20). We take thefirst letter of the column Sex that contains either male
or female (line 21). Andwe insert a d if the value of Survival is 0 and an s if it is 1
(line 22).

As a result, each passenger has a value of Norm between 0 and 1 that represents
the probability of being favored by anormgiven the other data of the passen-
ger.

Now,we’re ready to train our Bayesian network. We need to find the best set
of values for the parameters.

We start the iterative process by initializing the set of parameters with arbi-
trary values. We shouldnot use zeros unlesswe are sure that they are correct
in our domain.
Listing 10.24: Initialize the parameters

1 # Step 0: Initialize the parameter values
2 params = {
3 'p_norm_cms': 0.45,
4 'p_norm_cmd': 0.46,
5 'p_norm_cfs': 0.47,
6 'p_norm_cfd': 0.48,
7 'p_norm_ams': 0.49,
8 'p_norm_amd': 0.51,
9 'p_norm_afs': 0.52,

10 'p_norm_afd': 0.53,
11 }

Let’s put all the components together.



10.3 Estimating A Variable 309

Listing 10.25: Run the qbn

1 passengers = prepare_data(train, params)
2 results = qbn_titanic(calculate_norm_params(passengers),

calculate_surv_params(passengers), hist=False)

First, we prepare the passenger data (line 1) that we use to calculate
the norm_params by calculate_norm_params(passengers) and the surv_params by
calculate_surv_params(passengers) (line 2). We set hist=False to get a Python dic-
tionary as a result instead of a histogram. This dictionary is quite long. Re-
member, the qubit positions read from the right (position 0) to left (position
6).
{ '0001000 ': 0.026844845468374 ,
'0001001 ': 0.001902440523418 ,
'0001010 ': 0.014135181707589 ,
'0001011 ': 0.001006254687522 ,
...
'1100100 ': 0.040445280069615 ,
'1100101 ': 0.002358986860305 ,
'1100110 ': 0.022705559076552 ,
'1100111 ': 0.001326392674849}

From this data, we can derive all probabilities by summing the respective
state probabilities. For instance, if wewanted to know the chance to survive,
we need to look at the qubit at position QPOS_SURV = 6 is 1. Let’s write a small
convenience function to get a list of all the relevant states.

Listing 10.26: Get a list of relevant states

1 def filter_states(states, position, value):
2 return list(filter(lambda item: item[0][QUBITS−1−position] == str(

value), states))

We expect as input a list of tuples, like this: [('0001000', 0.026844845468374),
('0001001', 0.001902440523418), ... ]. We can create this list using the states.
items()-function that turns the dictionarywith the states into such a list.

We get one tuple for each state in the dictionarywith the first value (position
0) of the tuple is the state string and the second value (position 1) is the prob-
ability.

This allows us to iterate through the state using the filter function. It runs
the anonymous (lambda) function for each item in the list and returns a list of



310 Chapter 10. Bayesian Inference

those items the lambda function returns True for. It returns True if the state
string (item[0]) has the requested value at the position of the specified qubit
([QUBITS−1−position]).

Here’s the list of states where the passenger survived.

Listing 10.27: The states with surviving passengers

1 filter_states(results.items(), QPOS_SURV, '1')

[('1001000' , 0.04521802427481) ,
('1001001', 0.003204510969179) ,
('1001010', 0.023809598395179) ,
('1001011', 0.001694956632945) ,
...
('1100100', 0.040445280069615) ,
('1100101', 0.002358986860305) ,
('1100110', 0.022705559076552) ,
('1100111', 0.001326392674849)]

The sumof all these states depict themarginal probability of survival.

Listing 10.28: Calculate the marginal probability to survive

1 def sum_states(states):
2 return sum(map(lambda item: item[1], states))
3
4 sum_states(filter_states(results.items(), QPOS_SURV, '1'))

0.383652628610444

Weuse the map function only to keep the probability of each tuple (map(lambda
item: item[1])) and return the sum of all these values.

As we see, the probability of surviving is the value we expect (0.38). But this
is not ameasure for the performance of our Bayesian network. Ourmeasure
is the log-likelihood score. Let’s have a look at it.



10.3 Estimating A Variable 311

Listing 10.29: The log‐likelihood function adapted for our data

1 def log_likelihood_titanic(data, results):
2 states = results.items()
3
4 def calc_prob(norm_val, ischild_val, sex_val, surv_val):
5 return sum_states(
6 filter_states(
7 filter_states(
8 filter_states(
9 filter_states(states, QPOS_SEX, sex_val),

10 QPOS_ISCHILD, ischild_val
11 ), QPOS_SURV, surv_val
12 ), QPOS_NORM, norm_val))
13
14 probs = {
15 'p_fcms': calc_prob('1', '1', '0', '1'),
16 'p_fcmd': calc_prob('1', '1', '0', '0'),
17 'p_fcfs': calc_prob('1', '1', '1', '1'),
18 'p_fcfd': calc_prob('1', '1', '1', '0'),
19 'p_fams': calc_prob('1', '0', '0', '1'),
20 'p_famd': calc_prob('1', '0', '0', '0'),
21 'p_fafs': calc_prob('1', '0', '1', '1'),
22 'p_fafd': calc_prob('1', '0', '1', '0'),
23 'p_ucms': calc_prob('0', '1', '0', '1'),
24 'p_ucmd': calc_prob('0', '1', '0', '0'),
25 'p_ucfs': calc_prob('0', '1', '1', '1'),
26 'p_ucfd': calc_prob('0', '1', '1', '0'),
27 'p_uams': calc_prob('0', '0', '0', '1'),
28 'p_uamd': calc_prob('0', '0', '0', '0'),
29 'p_uafs': calc_prob('0', '0', '1', '1'),
30 'p_uafd': calc_prob('0', '0', '1', '0'),
31 }
32
33 return round(sum(map(
34 lambda item: log(probs['p_{}{}{}{}'.format(
35 'u',
36 'a' if item[1] == 0 else 'c',
37 item[2][0],
38 'd' if item[3] == 0 else 's'
39 )] + probs['p_{}{}{}{}'.format(
40 'f',
41 'a' if item[1] == 0 else 'c',
42 item[2][0],
43 'd' if item[3] == 0 else 's'
44 )]
45 ),
46 list(zip(data['Norm'], data['IsChild'], data['Sex'], data['Survived'])

)
47 )), 3)



312 Chapter 10. Bayesian Inference

We start with the definition of the calc_prob-function (line 4) that retrieves
the probability of a certain combination of values for our variables. We con-
sider the variables Sex, IsChild, Survival, and Norm. We use the filter_states
-function we just created to filter out all the states that have the respective
values (lines 6-12) andwe return the sumof these states’ probabilities (line 5).

We use the calc_prob-function to fill a dictionarywith all the probabilitieswe
need (lines 14-31). For instance, 'p_fcms': calc_prob('1', '1', '0', '1') is the
probability of the passenger to be favoredby anorm, a child, female, andhad
survived.

Now,weput these columns into a list of tuples (line 46) and calculate for each
passenger the logarithm of his or her probabilities. While Sex, IsChild, and
Survival are known values, we can select the right probability. But Norm con-
tains a number between 0 and 1. We are not sure whether the passenger was
favored or not. Thus, we need to take the logarithmof the sumof both possi-
ble probabilities–the probability of the passenger being favored (lines 34-38)
and the probability of the passenger not being favored (lines 39-44).

The total log-likelihood score is the sumof all the passenger’s values (line 33).

Listing 10.30: Calculate the log‐likelihood

1 log_likelihood_titanic(train, results)

-1860.391

Our initial parameters result in a log-likelihood score of around−1860.39. As
we mentioned earlier, the absolute score does not tell us much. It only tells
uswhich of the twomodels performbetter on the same data.

So, let’s improve ourmodel. We need better values for our parameters. Sim-
ilar to the probabilities we used to calculate the log-likelihood score, we
can obtain the values for our parameters from the results of running our
Bayesian network.



10.3 Estimating A Variable 313

Listing 10.31: Obtain new parameter values from the results

1 def to_params(results):
2 states = results.items()
3
4 def calc_norm(ischild_val, sex_val, surv_val):
5 pop = filter_states(filter_states(filter_states(states, QPOS_SEX,

sex_val), QPOS_ISCHILD, ischild_val), QPOS_SURV, surv_val)
6
7 p_norm = sum(map(lambda item: item[1], filter_states(pop, QPOS_NORM,

'1')))
8 p_total = sum(map(lambda item: item[1], pop))
9 return p_norm / p_total

10
11
12 return {
13 'p_norm_cms': calc_norm('1', '0', '1'),
14 'p_norm_cmd': calc_norm('1', '0', '0'),
15 'p_norm_cfs': calc_norm('1', '1', '1'),
16 'p_norm_cfd': calc_norm('1', '1', '0'),
17 'p_norm_ams': calc_norm('0', '0', '1'),
18 'p_norm_amd': calc_norm('0', '0', '0'),
19 'p_norm_afs': calc_norm('0', '1', '1'),
20 'p_norm_afd': calc_norm('0', '1', '0'),
21 }

The to_params-function takes the results as a parameter (line 1). It returns a
dictionary with the probabilities of being favored by a norm given the set of
values for the variables IsChild, Sex, and Survival (lines 12-21). These are condi-
tional probabilities. Wefirst filter all the states that have the specified values
for the variables (line 5). From this set, we filter those states where the Norm
has value 1 (filter_states(pop, QPOS_NORM, '1'), line 7).

The conditional probability of being favored by a norm is the probability of
those state where the Norm has value 1 divided by the probability of all states
with the specified values for the variables (line 9).

Listing 10.32: Calcualte new parameters

1 to_params(results)



314 Chapter 10. Bayesian Inference

{'p_norm_cms': 0.45532583440735436,
'p_norm_cmd': 0.4593883474337892,
'p_norm_cfs': 0.47052387314654737,
'p_norm_cfd': 0.47460383062928546,
'p_norm_ams': 0.5039016630401505,
'p_norm_amd': 0.5079933634215915,
'p_norm_afs': 0.5199079166576689,
'p_norm_afd': 0.5239923091774149}

Thesevaluesdiffer slightly fromtheoneswe startedwith. This time,wemay
needa fewmore iterations to get a good set of parameters. Let’s automate the
training.
Listing 10.33: The recursive training automatism

1 def train_qbn_titanic(passengers, params, iterations):
2 if iterations > 0:
3 new_params = train_qbn_titanic(passengers, params, iterations − 1)
4
5 passengers = prepare_data(passengers, new_params)
6 results = qbn_titanic(calculate_norm_params(passengers),

calculate_surv_params(passengers), hist=False)
7
8 print ('The log−likelihood after {} iteration(s) is {}'.format(

iterations, log_likelihood_titanic(passengers, results)))
9 return to_params(results)

10
11 return params

The function train_qbn_titanic takes the passengers data set, the initial params
, and the number of iterations as parameters (line 1). If the number of
iterations is 0, we simply return the params (line 11). However, if the number
of iterations is greater 0 (line 2), train_qbn_titanic recursively calls itself–yet,
with a reduced number of iterations. As a result, we pass the initial params
through all the calls until iterations reach 0 as a value. Then,we get back the
same params (line 11).

Weuse thereturnedvalue (new_params) (line3) toprepare thedata setofpassen-
gers (line 5) and derive the norm_params and surv_params from it (line 6). We run
the qbn_titanic and obtain the results (line 6). We use the results to calculate
andprint the log-likelihood-score (line8) and–most importantly–tocalculate
and return the newparameters (to_params(results), line 9).



10.3 Estimating A Variable 315

Listing 10.34: Train the QBN

1 trained_params = train_qbn_titanic(train, {
2 'p_norm_cms': 0.45,
3 'p_norm_cmd': 0.46,
4 'p_norm_cfs': 0.47,
5 'p_norm_cfd': 0.48,
6 'p_norm_ams': 0.49,
7 'p_norm_amd': 0.51,
8 'p_norm_afs': 0.52,
9 'p_norm_afd': 0.53,

10 }, 25)

The log-likelihood after 1 iteration(s) is -1860.391
The log-likelihood after 2 iteration(s) is -1860.355
The log-likelihood after 3 iteration(s) is -1860.332
The log-likelihood after 4 iteration(s) is -1860.3
The log-likelihood after 5 iteration(s) is -1860.243
The log-likelihood after 6 iteration(s) is -1860.13
The log-likelihood after 7 iteration(s) is -1859.901
The log-likelihood after 8 iteration(s) is -1859.426
The log-likelihood after 9 iteration(s) is -1858.439
The log-likelihood after 10 iteration(s) is -1856.393
The log-likelihood after 11 iteration(s) is -1852.213
The log-likelihood after 12 iteration(s) is -1843.99
The log-likelihood after 13 iteration(s) is -1829.057
The log-likelihood after 14 iteration(s) is -1805.719
The log-likelihood after 15 iteration(s) is -1777.24
The log-likelihood after 16 iteration(s) is -1752.49
The log-likelihood after 17 iteration(s) is -1737.602
The log-likelihood after 18 iteration(s) is -1730.95
The log-likelihood after 19 iteration(s) is -1728.411
The log-likelihood after 20 iteration(s) is -1727.468
The log-likelihood after 21 iteration(s) is -1727.107
The log-likelihood after 22 iteration(s) is -1726.965
The log-likelihood after 23 iteration(s) is -1726.908
The log-likelihood after 24 iteration(s) is -1726.884
The log-likelihood after 25 iteration(s) is -1726.872

The next iteration gets these parameters as new_params (line 3) and does the
same. One by one, the recursive calls of train_qbn_titanic resolve and return



316 Chapter 10. Bayesian Inference

an improved set of parameters to its predecessor.

We see how the log-likelihood score improves each iteration. It converges
after about 22 iterations. Let’s have a look at the trained_params after the train-
ing.

Listing 10.35: The parameters after training

1 trained_params

{'p_norm_cms': 0.6021334301303094,
'p_norm_cmd': 0.07088902981523437,
'p_norm_cfs': 0.9904336919724537,
'p_norm_cfd': 0.8392179490424515,
'p_norm_ams': 0.49195927424087027,
'p_norm_amd': 0.04654642501038004,
'p_norm_afs': 0.9978526500251851,
'p_norm_afd': 0.9590619707414763}

The result is not surprising. We see a high probability (almost 1) of all fe-
males to be favored by a norm. However, we see male children (p_norm_cms
and p_norm_cmd) not being favored a lot.

10.4 Predict Survival
Let’s see how the performs on predicting the survival of the passengers.

We apply our proven procedure of a Variational Quantum-Classical Algo-
rithm. We start with pre-processing the data to prepare a quantum state,
evaluate the quantum state, and post-process themeasurement.

The pre-processing is quite simple.

Listing 10.36: Pre‐processing

1 def pre_process(passenger):
2 return (passenger['IsChild'] == 1, passenger['Sex'] == 'female',

passenger['Pclass'])

We take the entry of a passenger and return a tuple of whether the value of



10.4 Predict Survival 317

IsChild is 1, thevalueof Sex is female, and the ticket-class. Weapply these three
values in the quantum circuit.

Listing 10.37: Apply the known data on the quantum circuit

1 def apply_known(qc, is_child, is_female, pclass):
2 if is_child:
3 qc.x(QPOS_ISCHILD)
4
5 if is_female:
6 qc.x(QPOS_SEX)
7
8 qc.x(QPOS_FIRST if pclass == 1 else (QPOS_SECOND if pclass == 2 else

QPOS_THIRD))

If the passenger is a child, we apply an X-gate on the qubit at the position
QPOS_ISCHILD (lines 2-3). Since Qiskit initializes the qubits in state |0⟩, we set
this qubit to |1⟩ for children and leave it in state |0⟩ for adults.

We apply the same logic to set the qubit at position QPOS_SEX to |1⟩ only if the
passenger is female (lines 5-6).

Finally,we set thequbit to |1⟩ that represents the ticket-class of thepassenger
(line 8).

Toapply theknowndata,weneed torewrite theQBNa littlebit. Thus far, the
qbn_titanic takes all the probabilities as parameters. But we want it to apply
theknownvaluesbasedon thepassengerdata and take all theotherprobabil-
ities from the set of trained parameters.

The latter do not change anymore. We only want to do this calculation once.
Therefore,wewrite a function get_trained_qbn that does all the one-time stuff
and returns a simple functionwe can feedwith the data of a single passenger.

The function get_trained_qbn takes thepassengersand the trainedparameters
as input (line 1). It prepares the passenger data (filling the values IsChild and
Norm) (line 3) and calculates the norm_params and the surv_params. These things
are done only once.

Wedefine another function, trained_qbn_titanic, that only takes a tuple of the
threevalues of apassenger (line 7). This returns apreparedPQC (line 17)with
thequantumcircuit (lines 10-15) that applies theknowndataof thepassenger
(line 11), the norm_params (line 12), and the surv_params (line 13).



318 Chapter 10. Bayesian Inference

Listing 10.38: Get the trained QBN

1 def get_trained_qbn(passengers, params):
2
3 prepared_passengers = prepare_data(passengers, params)
4 norm_params = calculate_norm_params(prepared_passengers)
5 surv_params = calculate_surv_params(prepared_passengers)
6
7 def trained_qbn_titanic(passenger):
8 (is_child, is_female, pclass) = passenger
9

10 def circuit(qc, qr, cr):
11 apply_known(qc, is_child, is_female, pclass)
12 apply_norm(qc, norm_params)
13 apply_survival(qc, surv_params)
14
15 qc.measure(qr[QPOS_SURV], cr[0])
16
17 return as_pqc(QUBITS, circuit, hist=False, measure=True, shots=100)
18
19 return trained_qbn_titanic

We return the trained_qbn_titanic-function (line 19).

In the post-processing, we transform the counts we get back from the exe-
cuted PQC into the predicted value of the passenger’s Survival.

Listing 10.39: Post‐processing

1 def post_process(counts):
2 """
3 counts −− the result of the quantum circuit execution
4 returns the prediction
5 """
6 #print (counts)
7 p_surv = counts['1'] if '1' in counts.keys() else 0
8 p_died = counts['0'] if '0' in counts.keys() else 0
9

10 #return int(list(map(lambda item: item[0], counts.items()))[0])
11 return 1 if p_surv > p_died else 0

We use the convenience function classifier_report we created in section 2.7.
But we extend it a little bit. This time, we run the circuit many times and



10.4 Predict Survival 319

evaluatewhetherwe sawmore predicted survivals ormore predicted deaths
in the data.
Listing 10.40: Run the Quantum Naive Bayes Classifier

1 # redefine the run−function
2 def run(f_classify, data):
3 return [f_classify(data.iloc[i]) for i in range(0,len(data))]
4
5 # get the simple qbn
6 trained_qbn = get_trained_qbn(train, trained_params)
7
8 # evaluate the Quantum Bayesian Network
9 classifier_report("QBN",

10 run,
11 lambda passenger: post_process(trained_qbn(pre_process(passenger))),
12 passengers,
13 train['Survived'])

The precision score of the QBN classifier is 0.79
The recall score of the QBN classifier is 0.60
The specificity score of the QBN classifier is 0.90
The npv score of the QBN classifier is 0.78
The information level is: 0.77

The overall information level of the quantum Bayesian network classifier is
about 0.79. It is an improvementof the score of thequantumNaïveBayes clas-
sifierwe created in section 7.



11. The World Is Not A Disk

11.1 The Qubit Phase
“There are more things in heaven and earth, Horatio, than are
dreamt of in yourphilosophy.”

(Hamlet (1.5.167-8), Hamlet to Horatio)

Figure 11.1: Hamlet, Horatio, Marcellus, and the Ghost

Do you remember our introductory example of the quantum coin? Coins
have two states, heads or tails. In the air, our quantum coin is in a state of
superposition of both states.



11.1 The Qubit Phase 321

Let’s have a closer look at this coin. It continuously flips between heads and
tails. Once the coin lands, this rotation determines whether we see heads or
tails.

Look even closer. This coin also spins along its edge.

Figure 11.2: The spinning coin

At first sight, the spin doesn’tmatter for the direction of heads and tails. But
it affects the coin’s trajectory through the air. And thismatters for the orien-
tation once the coin lands, doesn’t it?

In quantum mechanics, particles have such a spin, too. It is the phase. In
physical terms, the quantummechanical phase originates from the concept
that every quantum entitymay be described as a particle and as awave.

Thedebate overwhether light is particles orwavesdates backover threehun-
dred years. In the seventeenth century, Isaac Newton proclaimed that light
consists of a stream of particles. About two hundred years later, in the nine-
teenth century, ThomasYoung countered light consists ofwaves. Hedevised
the double-slit experiment to prove his claim.

In this experiment, abeamof light is aimedatabarrierwith twovertical slits.
The light passes through the slits, and the resulting pattern is recorded on a
photographic plate.

If one slit is covered, there’s a single line of light alignedwith whichever slit
is open. Intuitively, we would expect to see two lines aligned with the slits
if both slits are open. But something else happens. The photographic plate
is entirely separated intomultiple lines of lightness and darkness in varying
degrees.

The implications of Young’s experiment are counter-intuitive if you regard
light as a streamof particles. But itmakes perfect sense once you start think-



322 Chapter 11. The World Is Not A Disk

light

interference
pattern

double-slit
screen

Figure 11.3: The double-slit experiment

ing of light as awave.

Themaincharacteristicofawave is that itgoesupanddownas itmoves. This
entails a variety of other characteristics.

• Thewavelength is the distance overwhich thewave’s shape repeats.
• The amplitude of awave is the distance between its center and its crest.

The following figure depicts these characteristics.

wavelength
amplitude

Figure 11.4: Properties of a wave

Another distinct property of waves is that they interfere with each other.
Simply put, they add up. If you have two waves traveling on the same
medium, they form a third wave representing the sum of their amplitudes
at each point.



11.1 The Qubit Phase 323

Forexample, ifyouhavetwoidenticalwaves thathavetheircrestsat thesame
point, the resultingwave has a greater amplitude.

Input waves

Resulting wave

Figure 11.5: Two interfering waves

But if the waves are shifted so that the crest of one wave overlaps with the
trough of the otherwave, they cancel each other.

These two waves have the same amplitude and the same wavelength. But
they differ in the relative positions of their crests and troughs. This relative
position is the phase of thewave.

For the outside world, the phase of a wave is not observable. Observed indi-
vidually, the twowaves appear identical. But oncewaves interferewith each
other, the phasematters.

Let’s go back to the double-slit experiment and look at how twowaves travel
fromtheslits to thescreen. Thetwoslitshavedifferentdistances toanygiven
pointonthescreen. Withonewavetravelinga longerdistancethantheother,
their relative positions differ for each point on the screen. At some points,
they hit the screen being in the same phase. They constructively interfere
and lighten the area. At other points, one wave is at its crest, whereas the
other is at its trough. They destructively interfere, and the area stays dark.

The qubit is a quantummechanical entity we can describe as awave. It has a



324 Chapter 11. The World Is Not A Disk

Input waves

Resulting wave

Figure 11.6: Two cancelling waves

desctructive
interference
(dark)

constructive
interference
(bright)

Figure 11.7: Interference of double-slit

phase, too.

We learned the qubit is in a state of superposition of states |0⟩ and |1⟩with α
and β are the corresponding amplitudes. Mathematically, the superposition
is defined as |ψ⟩= α|0⟩+β |1⟩. When observed, the probability of the qubit to



11.1 The Qubit Phase 325

result in 0 equalsα2. And, it equals β 2 to result in 1. Thus,α2+β 2 = 1 because
the sumof the probabilities of all possible statesmust add up to 1 (100%).

The sign of the amplitudes does not matter for the resulting measurement
probability. Thus, similar to waves, a qubit with a negative amplitude has
the samemeasurement probability as the original qubit.

Graphically, the qubit state is a vector. And vectors are directed. There is a
difference between a vector and a negative vector (opposite direction). But
themeasurement probabilities are defined as the distance between the head
of the qubit state vector and the standard basis vectors |0⟩ and |1⟩. And dis-
tances have no direction.

There are two different qubit states for each pair of measurement probabili-
ties of |0⟩ and |1⟩. For instance, the states α|0⟩+β |1⟩

2 and α|0⟩−β |1⟩
2 have the identi-

cal measurement probabilities. So does any pair of states |ψ⟩ and |ψ ′⟩whose
state vector ismirrored at the Z-axis as depicted in the following image.

|0⟩

|1⟩

|+⟩= |0⟩+|1⟩√
2|−⟩= |0⟩−|1⟩√

2

|ψ⟩|ψ ′⟩

Figure 11.8: Two different states with the same measurement
probabilities

Regarded as waves, the two states |ψ⟩ and |ψ ′⟩ denote two waves shifted by
half their wavelength. The one’s crest is the other’s trough.

This notion of a qubit lets us distinguish twoopposite phases. But howabout
all theotherpossiblephasesaqubit canbe in? Similar towaves, thephasecan
be any arbitrary value. The onlymeaningful restrictionwe can formulate is
that the phase repeats once it exceeds the wavelength. It may remind you of



326 Chapter 11. The World Is Not A Disk

the angle θ weused to rotate the qubit state vector and change its amplitudes.

We can represent the qubit phase as an angle ϕ (the Greek letter “phi”) that
spans a circle around the center, and that is orthogonal to the circle of the
amplitudes. This circle uses another dimension.

In the following figure, the angle θ describes the probability of the qubit to
result in |0⟩ or |1⟩ and the angle ϕ describes the phase the qubit is in.

|0⟩

|1⟩

x

y

θ ϕ

|ψ⟩

Figure 11.9: The Bloch Sphere

These two circles form a sphere around the center. This sphere is known as
the Bloch Sphere.

TheBlochSphere offers a visual referenceof both thephase and theprobabil-
ities ofmeasuring a qubit as either of the basis states |0⟩ or |1⟩. In this sphere,
the angle θ that determines the measurement amplitudes revolves around
the Y-axis. Correspondingly, the RY -gate we used thus far rotates the qubit
state vector around this axis. It cuts the Z-axis in the basis states |0⟩ and |1⟩.
If we don’t apply a phase shift, it “lies” flat on the plane the X-axis spans. But
once the qubit state has a different phase, it rises from this plane.

The angle φ that determines the phase revolves around the Z-axis. Thus, any
change in the phase of a qubit does not affect the proximity to the Z-axis or
any point on it, such as the basis states |0⟩ and |1⟩ that denote the top and the
bottomof the Z-axis.

Therefore, the phase does not affect themeasurement probabilities.

Mathematically, we could create a three-dimensional sphere using three-



11.1 The Qubit Phase 327

dimensional vectors, such as v =

v0
v1
v2

. Then, however, the third dimension
would matter for the measurement probability. The qubit phase would be
equivalent to the other two dimensions.

Instead, we achieve a three-dimensional sphere with two-dimensional vec-
tors

ψ =

[
α
β

]
forα and β are complexnumbers. A complexnumber is anumber that canbe
expressed in the form a+b · i, where a is the real part and b · i is the imaginary
part. i represents the imaginary unit satisfying the equation i2 = 1. Because
no real number satisfies this equation, the parts a and b · i are independent
of each other. Therefore, we don’t represent a complex number as a line, as
we represent real numbers. But a complex number forms a plane. A complex
number is two-dimensional.

real part

imaginary part
a+bi

a

b

Figure 11.10: Complex numbers

Complex numbers extend the concept of the measurement probabilities α
and β . But to beuseful for ourpurposes,we still require the relationbetween
α and β to be normalized by the equation |α|2 + |β |2 = 1.

For α and β are complex numbers (α,β ∈ C), it becomes mandatory to take
the absolute before we sum their squares. Simple squares would not suffice
anymore because i2 =−1.

In section 3.2, we introduced the polar form of the qubit state in which the
angle θ controls the probabilities ofmeasuring the qubit in either state 0 or 1.

|ψ⟩= cosθ
2 |0⟩+ sinθ

2 |1⟩=
[

cosθ
2

sinθ
2

]
We only need to apply the phase to one of the two amplitudes. Consider the



328 Chapter 11. The World Is Not A Disk

state |−⟩ for instance. We can represent it in twoways.

|−⟩= |0⟩−|1⟩√
2

= −|0⟩+|1⟩√
2

If we added the− to both parameters, wewould result in state |+⟩.

|+⟩= |0⟩+|1⟩√
2

= −|0⟩−|1⟩√
2

Per convention, we put the phase to the amplitude of state |1⟩.

But how do we express the phase? We know it is a function of the angle ϕ .
Let’s insert this into the function.

|ψ⟩= cosθ
2 |0⟩+ f (ϕ) · sinθ

2 |1⟩=
[

cosθ
2

f (ϕ) · sinθ
2

]
In fact,we know some characteristics of f (ϕ). For ϕ = 0, we expect no change
whatsoever. Since we multiply f (ϕ) with β = sinθ

2 , f (ϕ)must equal 1 in this
case. Therefore, f (0) = 1.

Further, with a shift by a full wavelength, we end up in the identical phase.
Due to the normalization, the qubit wavelength is 2π – the perimeter of a
circle. Thus, f (2π) = 1. With a shift by half the wavelength, we effectively
negate the original wave. Therefore, f (π) =−1.

The following figure depicts f (ϕ) graphically. We can see that it’s output is
f (ϕ) = cos(ϕ)+ i · sin(ϕ).

i

−i

1−1 ϕ

f (ϕ)

f (ϕ = 0) = 1

f
(
ϕ = π

2

)
= i

f (ϕ = π) =−1

f
(
ϕ = 3

2 π
)
=−i

sin(ϕ)

cos(ϕ)

Figure 11.11: Characterstics of f(phi)



11.1 The Qubit Phase 329

Leonhard Euler discovered that we could describe such a function by f (ϕ) =
cos(ϕ)+ i · sin(ϕ) = eiϕ . This equation is known as Euler’s formula.

And this gives us the refined qubit state vector of

|ψ⟩= cos
θ
2
|0⟩+ eiϕ sin

θ
2
|1⟩=

[
cosθ

2
eiϕ sinθ

2

]

“But doesn’t eiϕ matter for themeasurement probabilities?”

The part of the amplitude eix makes it a complex number. It has a real part
and an imaginary part. When we calculate the measurement probabilities,
we square the absolute of the amplitudes.

So, let’s lookatwhat squaring the absolute of a complexnumbermeans. Let’s
saywe have a complex number c = a+bi

The absolute square of a complex number c, is calculated bymultiplying it by
its complex conjugate. The conjugate of a complex number (written as c∗) is
the numberwith the sign of the imaginary part reversed. In our case, this is
c∗ = a−bi. This is known as the squared norm. It is defined as |c|2 = c∗c

Wecan transformthis formula as followsbyapplying the thirdbinomial rule
and by inserting the definition of i2 =−1.

|c|2 = c∗c = (a−bi)(a+bi) = a2 − (bi)2 = a2 − (bi)2 = a2 +b2

Now, if the complex number is given by c = eix = cos(ϕ)+ i · sin(ϕ), we can see
that a = cos(ϕ) and b = sin(ϕ).

Per Pythagorean” identities (use the rectangular triangle), the sum of the
squares of sin(ϕ) and cos(ϕ) is 1. Therefore, we can state

|eix|2 = cos(ϕ)2 + sin(ϕ)2 = 1

So whatever the phase is, its absolute square is 1. 1 is the neutral element of
multiplication. Whateverwemultiply by 1 remains unchanged.

Complex numbers allow us to add the dimension of the qubit phase without
touching themeasurement probabilities. While this affects the amplitude of
the qubit state, it does not affect themeasurement probability.

Let’s explore different states in the Bloch Sphere. We use the Python library
qutip for it allows us to easily play around with other visualizations of the
Bloch Sphere (see the documentation for details).

http://qutip.org/docs/4.1/guide/guide-bloch.html


330 Chapter 11. The World Is Not A Disk

The Bloch-class of qutipworks with cartesian coordinates. Let’s write a func-
tion that allows us to use the angles θ and ϕ . If we interpret θ and ϕ as spheri-
cal coordinates (with theradius is1)wecanplotanyqubit stateonthesurface
of the Bloch Sphere.

Listing 11.1: Convenience function to plot a Bloch Sphere using spherical
coordinates

1 from math import pi, sin, cos
2 import matplotlib.pyplot as plt
3 import matplotlib
4 from qutip import Bloch
5
6 def plot_bloch_vector_spherical(theta, phi):
7 b = Bloch()
8 b.clear()
9 vec = [sin(theta)*cos(phi),sin(theta)*sin(phi),cos(theta)]

10 b.add_vectors(vec)
11 return b.show()

Westartwith importing all the libraries and functionsweuse (lines 1-4). The
function plot_bloch_vector_spherical takes two parameters, theta and phi, our
two angles.

Plotting a Bloch Sphere is quite simple. We initialize the Bloch class (line 7),
clear any old data (line 8), add the vectorwewant to show (line 10), and show
the plot (line 11).

We calculate the coordinates of the vector we want to show based on the an-
gles (line 9).

! TheBlochSphereusuallyshowstheY-axis to theright-handside.
Thisdiffers fromthe two-dimensionalperspectiveweused thus
far. In the two-dimensional figures,weplotted theX-axis to the
right.

Let’s start with the statewe already know as |+⟩

Listing 11.2: The qubit state |+>

1 plot_bloch_vector_spherical(pi/2, 0)



11.1 The Qubit Phase 331

Figure 11.12: The state |+> on the Bloch Sphere

And the state |−⟩:

Listing 11.3: The qubit state |‐>

1 plot_bloch_vector_spherical(−pi/2, 0)

Figure 11.13: The state |-> on the Bloch Sphere

Butwe can construct the state |−⟩by applying a phase shift on the state |+⟩by
half a circle π.



332 Chapter 11. The World Is Not A Disk

Listing 11.4: The constructed qubit state |‐>

1 plot_bloch_vector_spherical(pi/2, pi)

Figure 11.14: The state |-> on the Bloch Sphere constructed
through phase shift

Phase shifts affect only qubits in one of the basis states. Turns around the
Z-axis don’t affect a state vector that lies on the Z-axis.
Listing 11.5: Qubit in state |0>

1 plot_bloch_vector_spherical(0, pi/2)

Figure 11.15: The phase does not affect qubits in a basis state



11.2 Visualize The Invisible Qubit Phase 333

11.2 Visualize The Invisible Qubit Phase
The phase of a qubit is the decisive factor when we work with amplitudes.
Even though we can’t measure the phase directly, it is not invisible. Once,
we can use our simulator to visualize it. Second,we can usemath to describe
it precisely.

Whenwe look at the Bloch Sphere, states with a positive amplitude reside at
the front-side of the X- and Z-axes.

Figure 11.16: States with positive amplitudes

By contrast, states with a negative amplitude reside at the back-side of the
Bloch Sphere.

Figure 11.17: States with negative amplitudes



334 Chapter 11. The World Is Not A Disk

Let’s consider some simple states first. If we rotate the qubit state vector
around the Y-axis by the angle θ , we get the following states. For 0 < θ < π,
we can say the phase is positive (blue). For π < θ < 2π, the phase is negative
(red).

Figure 11.18: States spanned by theta

The figure shows that these states lie on the plane the X- and the Z-axes span.
The vector θ specifies the rotation around the Y-axis. Therefore, we call the
corresponding gate RY -gate.

Twovectorsmirroring each other on the Z-axis have the samemeasurement
probability, such as the two vectors depicted in the figure. They share the
samemeasurement probability, but their phase differs.

11.2.1 The Z-gate
The Z-gate reflects the state of a qubit on the Z-axis. It has the similar effect
of the X-gate that reflects the state on the X-axis. A reflection on the X-axis
affects the resultingmeasurement probabilities because it changes the prox-
imities to theendsof theZ-axis (|0⟩and |1⟩). But it leavesuntouched thephase.
Contrariwise, a reflectionontheZ-axisflips thephasebut leaves themeasure-
ment probabilities unchanged.

The following equation denotes the transformationmatrix of the Z-gate.

Z =

[
1 0
0 −1

]
TheZ-gate turnsaqubit in state |+⟩ into state |−⟩. The states |+⟩and |−⟩ reside



11.2 Visualize The Invisible Qubit Phase 335

on the X-axis. Mathematically, the following equation describes this trans-
formation.

HZ|0⟩= 1√
2

[
1 1
1 −1

][
1 0
0 −1

][
1
0

]
= 1√

2

[
1 1
−1 1

][
1
0

]
= 1√

2

[
1
−1

]
= |0⟩−|1⟩√

2
= |−⟩

Let’s have a look at the effect of the Z-gate programmatically.

Qiskit lets us effortlessly show the qubit state vectors. First, we define and
prepare our quantum circuit as usual (lines 4-11). In this case, we apply a sin-
gleHadamardgateonqubit 0 (line 7) andanadditionalZ-gateonqubit 1 (lines
10-11).

We execute the circuit using the 'statevector_simulator'-backend. But instead
of obtaining the counts fromthe execution results,we call the get_statevector
()-function (line 13). The output is an array of the state vectors, like array([
0.5+0.j, 0.5+0.j, −0.5+0.j, −0.5+0.j]).

We can feed this array into the function plot_bloch_multivector (line 14) we im-
ported from qiskit.visualization (line 2). As a result, we get a Bloch Sphere
representation of each qubit.

Listing 11.6: Putting qubit 0 into state |+> and qubit 1 into state |‐>

1 from qiskit import QuantumCircuit, Aer, execute
2 from qiskit.visualization import plot_bloch_multivector
3
4 qc = QuantumCircuit(2)
5
6 # put qubit 0 into state |+>
7 qc.h(0)
8
9 # put qubit 1 into state |−>

10 qc.h(1)
11 qc.z(1)
12
13 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
14 plot_bloch_multivector(out)



336 Chapter 11. The World Is Not A Disk

Figure 11.19: Putting qubit 0 into state |+> and qubit 1 into
state |->

Wecanseebothvectors resideon theY-axis. Their amplitudesyield the same
measurement probability of 0.5 each. The |+⟩ state-vector points to the pos-
itive direction (front) of the X-axis whereas the |−⟩ state-vector points to the
negative side (back).

Let’s look at another example. Let’s rotate the state by a small θ around the
Y -axis beforewe apply the Z-gate.

Listing 11.7: Reflection on the Z‐axis

1 from math import pi
2 qc = QuantumCircuit(2)
3 qc.ry(pi/12, 0)
4 qc.ry(pi/12, 1)
5 qc.z(1)
6
7 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
8 plot_bloch_multivector(out)



11.2 Visualize The Invisible Qubit Phase 337

Figure 11.20: The Z-gate reflects the state on the Z-axis

This second example emphasizes the reflection on the axis. It is not a reflec-
tion on the center of the coordinate system.

The Z-gate has a notable property. It does not affect qubits in state |0⟩ and |1⟩
because these two states reside on the Z-axis.
Listing 11.8: Apply the Z‐gate on a qubit in state |0>

1 qc = QuantumCircuit(2)
2
3 # qubit 0 remains in state |0>
4 qc.i(0)
5
6 # Apply the Z−gate on qubit 1
7 qc.z(1)
8
9 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
10 plot_bloch_multivector(out)



338 Chapter 11. The World Is Not A Disk

Figure 11.21: Effect of the Z-gate on a qubit in state |0>

Whenwe look at themath, the situation is straightforward for state |0⟩.

Z|0⟩=
[

1 0
0 −1

][
1
0

]
=

[
1
0

]
= |0⟩

Weget a confirmation of the visualization. But how about state |1⟩.

Z|1⟩=
[

1 0
0 −1

][
0
1

]
=

[
0
−1

]

The result of the equation is ambiguous. The resulting state vector
[

0
−1

]
is

different from the original vector |1⟩=
[

0
1

]
The phase shift seems to make a difference. But the visualization shows us
that the two vectors are identical.



11.2 Visualize The Invisible Qubit Phase 339

Listing 11.9: Apply the Z‐gate on a qubit in state |1>

1 qc = QuantumCircuit(2)
2
3 # a qubit in state |1>
4 qc.x(0)
5
6 # The effect of the Z−gate on state |1>
7 qc.x(1)
8 qc.z(1)
9

10 out = execute(qc,Aer.get_backend('statevector_simulator')).result().
get_statevector()

11 plot_bloch_multivector(out)

Figure 11.22: Effect of the Z-gate on a qubit in state |1>

Theminussigndoesnot seemtomatter. Butwhathappens ifweput this state
into superposition?



340 Chapter 11. The World Is Not A Disk

Listing 11.10: Apply the ZH‐gates on a qubit in state |1>

1 qc = QuantumCircuit(2)
2
3 # Apply H−gate on a qubit in state |1>
4 qc.x(0)
5 qc.h(0)
6
7 # Apply ZH−gates on a qubit in state |1>
8 qc.x(1)
9 qc.z(1)

10 qc.h(1)
11
12 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
13 plot_bloch_multivector(out)

Figure 11.23: Effect of the ZH-gates on a qubit in state |1>

Again, the visualization tells us that there is no difference between these
states. So, let’s have another lookat themath. Ifweapply theHadamardgate
on state |1⟩ it results in state |−⟩.

H|1⟩= 1√
2

[
1 1
1 −1

][
0
1

]
= 1√

2

[
1
−1

]
= |0⟩−|1⟩√

2
= |−⟩



11.2 Visualize The Invisible Qubit Phase 341

If we apply the Z-gate first, the−-sign jumps from the amplitude of |0⟩ to the
amplitude of |1⟩.

ZH|1⟩=
[

1 0
0 −1

]
· 1√

2

[
1 1
1 −1

][
0
1

]
= 1√

2

[
1 1
−1 1

][
0
1

]
= 1√

2

[
−1
1

]
= −|0⟩+|1⟩√

2
= |−⟩

Remember section 5.2, where elaborate the inability to distinguish between
|0⟩−|1⟩√

2
and −|0⟩+|1⟩√

2
.

As we just saw, there’s no difference in the resulting state when we apply
other quantum gates on either one state. The states α|0⟩ and β |1⟩ form a
shared quantum state. For the resulting qubit state vector, it does not mat-
terwhether α or β contains the phase.

But we’re about to start working with the phase. So, let’s be a little more
meticulous. Qiskit provides another visualization, the “qsphere” represen-
tation of a quantum state. In this representation, the size of the points is pro-
portional to the probability of the corresponding term in the state and the
color represents the phase.

Listing 11.11: create state (|0>‐|1>)/sqrt(2)

1 from qiskit.visualization import plot_state_qsphere
2
3 # Create a quantum circuit with one qubit
4 qc = QuantumCircuit(1)
5
6 # create state (|0>−|1>)/sqrt(2)
7 qc.h(0)
8 qc.z(0)
9

10 out = execute(qc,Aer.get_backend('statevector_simulator')).result().
get_statevector()

11 plot_state_qsphere(out)



342 Chapter 11. The World Is Not A Disk

Figure 11.24: The state (|0>-|1>)/sqrt(2)

Thefigure above shows the qubit in state |0⟩−|1⟩√
2
. Wefirst apply theHadamard

gate (line 5) before using the Z-gate (line 6). The phase applies to the ampli-
tude of the state |1⟩. Thus, we only see state |1⟩ shown in turquoise. State |0⟩
remains red. Both circles have the same size, for both states have the same
measurement probability.

Now, let’s apply the Z- and Hadamard-gates on a qubit in state |1⟩ as we did
before.
Listing 11.12: Apply the ZH‐gates on a qubit in state |1>

1 qc = QuantumCircuit(1)
2
3 # Apply ZH−gates on a qubit in state |1>
4 qc.x(0)
5 qc.z(0)
6 qc.h(0)
7
8 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
9 plot_state_qsphere(out)



11.2 Visualize The Invisible Qubit Phase 343

Figure 11.25: The state (-|0>+|1>)/sqrt(2)

This circuit results in state −|0⟩+|1⟩√
2
. The colors indicate we applied the phase

shift on state |0⟩.

So, we can apply the phase to any one of the two amplitudes, α or β . It is im-
portant that we don’t apply it to both amplitudes because this would effec-
tively revert the overall phase again.
−|0⟩−|1⟩√

2
= |0⟩+|1⟩√

2
= |+⟩.

11.2.2 Multi-Qubit Phase
What about if we have multiple qubits? The following equation denotes the
state of a two-qubit system.

|ψ⟩= α|00⟩+β |01⟩+ γ|10⟩+δ |11⟩=


α
β
γ
δ


The two-qubit system can be in four different states. Each state has an ampli-
tude, too.

We already specified a two-qubit system above to show two Bloch Spheres



344 Chapter 11. The World Is Not A Disk

side by side. Qubit 0 is in state |0⟩−|1⟩√
2
and qubit 1 is in state −|0⟩+|1⟩√

2
.

Let’s have a look at the phases of the four states of this system.
Listing 11.13: Show the phases of a two‐qubit system

1 qc = QuantumCircuit(2)
2
3 # put qubit 0 into state (|0>−|1>)/sqrt(2)
4 qc.x(0)
5 qc.h(0)
6
7 # put qubit 1 into state (−|0>+|1>)/sqrt(2)
8 qc.x(1)
9 qc.z(1)

10 qc.h(1)
11
12 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
13 plot_state_qsphere(out)

Figure 11.26: The phases of a two-qubit system

Wesee two stateswith a shifted phase, |00⟩ and |11⟩. In this notation,we read



11.2 Visualize The Invisible Qubit Phase 345

the qubits from the right (qubit at position 0) to the left (qubit at position 1).
The state |11⟩gets thephase shift for thequbit 0has itsphase in theamplitude
of |1⟩ (as in |0⟩−|1⟩√

2
). Accordingly, state |00⟩gets thephaseshift for thequbit 1has

its phase in the amplitude of |0⟩ (as in −|0⟩+|1⟩√
2
).

Even though this makes sense, it is not the whole truth. Let’s see what hap-
pens if both qubits are in state |0⟩−|1⟩√

2
. We would expect to see a shift in the

phases |01⟩ and |10⟩.

Listing 11.14: Phases of two qubits in state (|0>‐|1>)/sqrt(2)

1 qc = QuantumCircuit(2)
2 # put qubit 0 into state (|0>−|1>)/sqrt(2)
3 qc.x(0)
4 qc.h(0)
5 # put qubit 1 into state (|0>−|1>)/sqrt(2)
6 qc.x(1)
7 qc.h(1)
8 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
9 plot_state_qsphere(out)

Figure 11.27: Phases of two qubits in state (|0>-|1>)/sqrt(2)



346 Chapter 11. The World Is Not A Disk

Deviating from our expectation, we see the phase shift in the states |00⟩ and
|11⟩. The simple reason is phases are relative. Wehave two similar yet shifted
waves. But how could you tell which of the twowaves is the original?

Figure 11.28: Two shifted waves

Therefore,weneed to settlewith the factwe can’t tell thedifferencebetween
|0⟩−|1⟩√

2
and −|0⟩+|1⟩√

2
. Both states are the same: |−⟩= |0⟩−|1⟩√

2
= −|0⟩+|1⟩√

2
.

Theability todistinguishbetweenthese twostateswhenweuseasinglequbit
is spurious. It already disappearswhenwe add a second qubit.

The following circuit creates the state |0⟩−|1⟩√
2
on a single qubit.

Listing 11.15: create state (|0>‐|1>)/sqrt(2) in a single‐qubit circuit

1 # Create a quantum circuit with one qubit
2 qc = QuantumCircuit(1)
3
4 # create state (|0>−|1>)/sqrt(2)
5 qc.h(0)
6 qc.z(0)
7
8 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
9 plot_state_qsphere(out)



11.2 Visualize The Invisible Qubit Phase 347

Figure 11.29: Phase of state (|0>-|1>)/sqrt(2) in a single-qubit
circuit

We see the phase in state |1⟩. Seewhat happenswhenwe define the circuit as
a two-qubit circuit.

Listing 11.16: create state (|0>‐|1>)/sqrt(2) in a two‐qubit circuit

1 # Create a quantum circuit with one qubit
2 qc = QuantumCircuit(2)
3
4 # create state (|0>−|1>)/sqrt(2)
5 qc.h(0)
6 qc.z(0)
7
8 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
9 plot_state_qsphere(out)



348 Chapter 11. The World Is Not A Disk

Figure 11.30: Phase of state (|0>-|1>)/sqrt(2) in a two-qubit
circuit

In a two-qubit circuit, we see the phase in state |00⟩. Accordingly, when we
apply a phase shift for one of the two qubits, we see it in the stateswhere this
qubit is in state |1⟩.

Listing 11.17: Show the phases of a two‐qubit system

1 qc = QuantumCircuit(2)
2
3 # Apply H−gates on both qubits
4 qc.h(0)
5 qc.h(1)
6
7 # Shift the phase of qubit 0
8 qc.z(0)
9

10 out = execute(qc,Aer.get_backend('statevector_simulator')).result().
get_statevector()

11 plot_state_qsphere(out)



11.2 Visualize The Invisible Qubit Phase 349

Figure 11.31: One out of two qubits with phase shift

In this case, we put both qubits into a state of superposition by applying
Hadamard gates (lines 4-5). We shift the phase of the qubit at position 0.
Therefore, we see the states that differ for this qubit (at the right-hand side)
having different phases. Stateswith qubit 0 in state |1⟩have a different phase
than the stateswith qubit 0 in state |0⟩. Again, Qiskitmakes only sense of the
relative phase and indicates the shift for the states where qubit 0 is in state
|0⟩.

The global phase is unobservable. Global phases are the artifacts of themath-
ematical framework we use. They don’t have a physical meaning. If two
states differ only by a global phase, they effectively present the samephysical
system. By contrast, relative phases are the core of quantummechanics and,
therefore, of utmost interest in quantum computing. If two states differ by a
relative phase, they are different systems that evolve in different ways. Even
though they appear identical if measured separately, they have different ef-
fects when interferingwith other quantum systems.

11.2.3 Controlled Z-gate
When we apply the Z-gate on separate qubits, we usually see the phase shift
for those states where the respective qubit is in state |1⟩. When both qubits
are in state |1⟩, the phase shift adds up. Since the Z-gate accounts for a phase



350 Chapter 11. The World Is Not A Disk

shift byhalf awavelength, applying it twice results in the initial phase. Thus,
the state |11⟩ has the same phase as state |00⟩.

Sometimes, we don’t want this effect. Wemight want to switch the phase of
a single state. Then, the controlledZ-gate comes inhandy. Like its controlled
peers, the controlled Z-gate applies the Z-gate on the target qubit only if the
control qubit is in state |1⟩.

The controlled Z-gate has the following transformationmatrix.

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Asa result of theCZ-gate,we see state |11⟩has adifferentphase than theother
three states. The qubit at position 0 must be in state |1⟩, for it is the control
qubit. The qubit at position 1 must be on state |1⟩ because the Z-gate applies
the phase to this part of the qubit state.

TheCZ-gate induces a phase shift for states where both qubits are in state |1⟩.
It does notmatter if we use qubit 0 or qubit 1 as the control qubit. Therefore,
in Qiskit, we use a drawing that does not indicate which one is the control
qubit.

Listing 11.18: The effect of the CZ‐gate

1 qc = QuantumCircuit(2)
2 # Apply H−gates on both qubits
3 qc.h(0)
4 qc.h(1)
5 # Shift the phase of qubit 0
6 qc.cz(0,1)
7 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
8 plot_state_qsphere(out)



11.3 Phase Kickback 351

Figure 11.32: The effect of the CZ-gate

The following figure depicts the quantum circuit with the two Hadamard
gates and the controlled Z-gate.

Figure 11.33: Quantum circuit with CZ-gate

11.3 Phase Kickback
Quantumentanglement is one of the astonishing characteristics of quantum
mechanics. Two entangled particles share a state of superposition—nomat-
ter how far apart they are.



352 Chapter 11. The World Is Not A Disk

From a practical perspective, we can use entanglement to let one qubit con-
trol the state of another. For instance, the controlled NOT-gate (CNOT- or
CX-gate) switches the amplitudes of a target qubit only if the control qubit is
in state |1⟩. Nothing happens if the control qubit is in state |0⟩.

Such controlled quantum gates let us preciselymanipulate amulti-qubit sys-
tem. In section 9.2, we let certain states of the quantum system exhibit the
measurement probabilities we want them to have. We use entanglement to
create a fine-grained probabilistic system.

Another practical characteristic of controlled quantum gates is that they
leave the control qubit untouched.

The following figure depicts the truth table of the CNOT-gate.

A B
0
0

1
1

0
1

0
1

0
1

1
0

A BA
0
0

1
1

=

X

Figure 11.34: Truth table of the CNOT gate

Nomatterwhich combination of qubit valueswe feed into the operation, the
control qubit does not change.

Having a practically applicable notion of quantum transformation gates is
paramount when we work with qubits. However, every once in a while, we
need to remember that a quantum operation is essentially a physical opera-
tion. So is the CNOT-gate.

For every action in physics, there is an opposite reaction. For this reason,we
should be suspicious even of the apparent one-sidedness of the CNOT-gate.



11.3 Phase Kickback 353

Figure 11.35: What I told you was true… from a certain point
of view

Whenever we challenge our intuition in quantum computing, it is good to
consult the underlyingmath.

The CNOT-gate is a two-qubit gate. Thus, it transforms qubit states whose
statewe represent by a four-dimensional vector.

|ψ⟩= α|0⟩|0⟩+β |0⟩|1⟩+ γ|1⟩|0⟩+δ |1⟩|1⟩=


α
β
γ
δ


Accordingly, the CNOT-gate has a 4x4 transformationmatrix.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


There is no effect if the control qubit (at the left-hand position in the Dirac
notation) is in state |0⟩.

CNOT · |00⟩=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


1
0
0
0

=


1
0
0
0

= |00⟩



354 Chapter 11. The World Is Not A Disk

CNOT · |01⟩=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


0
1
0
0

=


0
1
0
0

= |01⟩

But if the control qubit is in state |1⟩, then the controlled qubit switches from
|0⟩ to |1⟩ and vice versa.

CNOT · |10⟩=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


0
0
1
0

=


0
0
0
1

= |11⟩

CNOT · |11⟩=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·


0
0
0
1

=


0
0
1
0

= |10⟩

Themath confirms our intuition.

Whenwe describe the quantum states and operations in terms ofmathemat-
ical formulae, we use the vectors |0⟩ and |1⟩ as a basis. |0⟩ and |1⟩ denote the
standard or computational basis states. These states correspond to the possi-
ble measurements we might obtain when looking at the qubit. We measure
a qubit in state |0⟩ as 0 with absolute certainty. And, we measure a qubit in
state |1⟩ as 1, accordingly. While the basis {|0⟩, |1⟩} is convenient toworkwith
mathematically, it is just a representation of the underlying physics.

Just like the very idea that there is a control qubit embeds a prejudice about
the states of the qubits that invites us to think of the operation as one-
sided, the mathematical basis we chose leads to a specific representation of
the CNOT-transformation. But this is not the only possible representation.
There are infinitely many other possible choices. Our qubits are not limited
to these two basis states. Qubits can be in a superposition of both states.

Consider the Bloch sphere. It is, in the end, a sphere— perfectly symmetric,
with no one point being more special than any other and no one axis more
special than any other. The standard basis is not particularly special, either.

The following figure depicts the two basis states |0⟩ and |1⟩.



11.3 Phase Kickback 355

Figure 11.36: The two basis states

But our two qubits can be in any other state, too.

For instance, there are the states |+⟩=

[
1√
2

1√
2

]
and |−⟩=

[
1√
2

− 1√
2

]
that result from

applying theHadamard-gate on thebasis states. The followingfiguredepicts
these two states.

Figure 11.37: The states |+> and |->

Mathematically, the following matrix represents the application of



356 Chapter 11. The World Is Not A Disk

Hadamard gates on each of the two qubits.

H ⊗H = 1√
2

[
H H
H −H

]
= 1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


So, ifweapplythismatrixontwoqubits instate |00⟩, theyendupinstate |++⟩.

H ⊗H(|00⟩) = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·


1
0
0
0

= 1
2


1
1
1
1


= 1

2 (|0⟩|0⟩+ |0⟩|1⟩+ |1⟩|0⟩+ |1⟩|1⟩)
= 1√

2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)

= |++⟩

(11.1)

The input state |01⟩ results in state |+−⟩.

H ⊗H(|01⟩) = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·


0
1
0
0

= 1
2


1
−1
1
−1


= 1

2 (|0⟩|0⟩− |0⟩|1⟩+ |1⟩|0⟩− |1⟩|1⟩)
= 1√

2
(|0⟩− |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)

= |+−⟩

(11.2)

The input state |10⟩ results in state |−+⟩.

H ⊗H(|10⟩) = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·


0
0
1
0

= 1
2


1
1
−1
−1


= 1

2 (|0⟩|0⟩+ |0⟩|1⟩− |1⟩|0⟩− |1⟩|1⟩)
= 1√

2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩− |1⟩)

= |−+⟩

(11.3)

Finally, if we apply this transformation on two qubits in state |11⟩, we put



11.3 Phase Kickback 357

them into state |−−⟩.

H ⊗H(|11⟩) = 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·


0
0
0
1

= 1
2


1
−1
−1
1


= 1

2 (|0⟩|0⟩− |0⟩|1⟩− |1⟩|0⟩+ |1⟩|1⟩)
= 1√

2
(|0⟩− |1⟩)⊗ 1√

2
(|0⟩− |1⟩)

= |−−⟩

(11.4)

Let’s freshupmatrix-vectormultiplication. Whenwemultiply amatrixwith
acolumnvector (ourquantumstate), theresult isanothercolumnvector, like
this:

M · |v⟩=
[

a b
c d

]
·
[

v0
v1

]
=

[
a · v0 +b · v1
c · v0 +d · v1

]
Foreachrowof thematrix,Wemultiply eachvalue (column) in that rowwith
thex-thvalueof thevector. If allbutonevaluesof thevectorare0andtheone
value is 1, then the position of the 1 denotes the columnof thematrixwe end

up as a result. So, |00⟩=


1
0
0
0

 ends up in the first column, and |11⟩=


0
0
0
1

 ends
up in the fourth column.

Now, let’s apply the CNOT-gate on qubits in superposition. We can calculate
the overall transformationmatrix bymultiplying thematrices of the CNOT-
gate and theH ⊗H transformation.

CNOT (H ⊗H) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 · 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

= 1
2


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1


The sharp-eyed reader may notice that the CNOT-gate switches the second
and fourth columns of theH ⊗H-matrix.

Whenwe apply this transformation to the four combinations of basis states,



358 Chapter 11. The World Is Not A Disk

we can see an interesting pattern.

CNOT (H ⊗H(|00⟩)) = 1
2


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

 ·


1
0
0
0

= 1
2


1
1
1
1


= 1

2 (|0⟩|0⟩+ |0⟩|1⟩+ |1⟩|0⟩+ |1⟩|1⟩)
= 1√

2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)

= |++⟩

(11.5)

CNOT (H ⊗H(|01⟩)) = 1
2


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

 ·


0
1
0
0

= 1
2


1
−1
−1
1


= 1

2 (|0⟩|0⟩− |0⟩|1⟩− |1⟩|0⟩+ |1⟩|1⟩)
= 1√

2
(|0⟩− |1⟩)⊗ 1√

2
(|0⟩− |1⟩)

= |−−⟩

(11.6)

CNOT (H ⊗H(|10⟩)) = 1
2


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

 ·


0
0
1
0

= 1
2


1
1
−1
−1


= 1

2 (|0⟩|0⟩+ |0⟩|1⟩− |1⟩|0⟩− |1⟩|1⟩)
= 1√

2
(|0⟩− |1⟩)⊗ 1√

2
(|0⟩+ |1⟩)

= |−+⟩

(11.7)

CNOT (H ⊗H(|11⟩)) = 1
2


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

 ·


0
0
0
1

= 1
2


1
−1
1
−1


= 1

2 (|0⟩|0⟩− |0⟩|1⟩+ |1⟩|0⟩− |1⟩|1⟩)
= 1√

2
(|0⟩+ |1⟩)⊗ 1√

2
(|0⟩− |1⟩)

= |+−⟩

(11.8)



11.3 Phase Kickback 359

Effectively, if the target qubit (at the right-hand side) is in state |1⟩, the state
of the control qubit flips from |+⟩ to |−⟩ and vice versa.

In short, we can say:

CNOT (|++⟩) = |++⟩

CNOT (|+−⟩) = |−−⟩

CNOT (|−+⟩) = |−+⟩

CNOT (|−−⟩) = |+−⟩

The two states |+⟩ and |−⟩ have the identical measurement probabilities of
|0⟩ and |1⟩. They result in either valuewith a probability of 0.5. So, theCNOT-
gate does not have any directly measurable implications. However, the con-
trol qubit switches its phase. It takes on the phase of the controlled qubit.

Since the phase of the target qubit is kicked up to the control qubit, we call
this phenomenon phase kickback.

Let’s return to practice. The following code plots the Bloch Spheres of the
state |+−⟩.

Listing 11.19: Show state |+‐>

1 # Create a quantum circuit with one qubit
2 qc = QuantumCircuit(2)
3
4 # put qubit 0 into |+>
5 qc.h(0)
6
7 # put qubit 1 into |−>
8 qc.x(1)
9 qc.h(1)

10
11 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
12 plot_bloch_multivector(out)



360 Chapter 11. The World Is Not A Disk

Figure 11.38: The Bloch Spheres of state |+->

Next, we apply the CNOT-gate on this state with the qubit at position is the
control qubit and the qubit at position 1 is the target.

Listing 11.20: Show effect of CNOT‐gate on state |+‐>

1 # Create a quantum circuit with one qubit
2 qc = QuantumCircuit(2)
3
4 # put qubit 0 into |+>
5 qc.h(0)
6
7 # put qubit 1 into |−>
8 qc.x(1)
9 qc.h(1)

10
11 # apply CNOT gate with qubit 0 as control qubit
12 qc.cx(0,1)
13
14 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
15 plot_bloch_multivector(out)



11.3 Phase Kickback 361

Figure 11.39: The Bloch Spheres of CNOT(|+->)

In accordance with the math, it is not the target qubit but the control qubit
at position 0 that switches its phase. Let’s have a look at another situation.

The following circuit applies the Hadamard gate on both qubits and a phase
shift on qubit 1 by using the RZ-gate. Similar to the RY -gate that rotates the
qubit state vector around the Y-axis, the RZ-gate rotates it around the Z-axis
and, therefore, applies a phase.

Listing 11.21: Show effect of RZ‐gate on state |+‐>

1 # Create a quantum circuit with one qubit
2 qc = QuantumCircuit(2)
3
4 # put qubit 0 into |+>
5 qc.h(0)
6
7 # apply phase to qubit 1
8 qc.h(1)
9 qc.rz(pi/2,1)

10
11 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
12 plot_bloch_multivector(out)



362 Chapter 11. The World Is Not A Disk

Figure 11.40: The Bloch Spheres of CNOT(|+->)

We see the qubit at position 0 resides on the X-axis. The qubit at position 1
resides on theY-axis. Let’s also look at the relative phases of the four states of
this two-qubit system.

Figure 11.41: Qubit 1 has a phase



11.3 Phase Kickback 363

We see a phase shift for those states where qubit 1 (in Qiskit, the qubit po-
sitions read from right to left) is in state |1⟩. In the next step, we apply the
CNOT-gatewith qubit 0 as the control qubit and qubit 1 as the target.

Listing 11.22: The phase kickback

1 # Create a quantum circuit with one qubit
2 qc = QuantumCircuit(2)
3
4 # put qubit 0 into |+>
5 qc.h(0)
6
7 # apply phase to qubit 1
8 qc.h(1)
9 qc.rz(pi/2,1)

10
11 # apply CNOT gate with qubit 0 as control qubit
12 qc.cx(0,1)
13
14 out = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()
15 plot_state_qsphere(out)

Figure 11.42: Phase kickback



364 Chapter 11. The World Is Not A Disk

Thefirst thing tonote is the relativephase. States |00⟩ and |11⟩ are in the same
phase that differs from the phase of the states |01⟩ and |10⟩. While it seems as
if the phase flipped for stateswhere the control qubit (right-hand qubit) is |1⟩
it flipped for stateswhere the target qubit is |1⟩. Due tophases are relative,we
can’t tell which phase is the original andwhich is the shifted.

But the more important thing to note is the degree of the shift. The colors
indicate a relative shift of π

2 . This is the phase we applied on qubit 1. Thus,
the CNOT-gate does not always flip phases by half a circuit as it does when
the target qubit is either |+⟩ or |−⟩. But the CNOT-gate flips the phases the
states |01⟩ and |11⟩have. Effectively, it applies the phase of the target qubit on
the control qubit.

Usually, it is good todevelopanon-mathematical intuitionofquantumstates
and operations. Though, we always need to consider that we’re coping with
a quantum mechanical system. Not too seldom, quantum mechanics are
counter-intuitive. We can complement our intuition with math. But math
is not free frompitfalls, either.

From classical computing and for mathematical convenience, all too often,
we rely on the standard basis vectors |0⟩ and |1⟩. But when working with
qubits, we need to remember that they are not limited to these states but can
be in a state of superposition.

We learned the CNOT-gate is not a one-sided operation. It clearly has the po-
tential to affect the state of the control qubit. Even though thephase is not di-
rectlymeasurable, there areways to exploit differences in the phase between
states. In fact, prominent algorithms, suchasGrover’s searchalgorithm,use
this effect. Sowill we in the future.

11.4 Quantum Amplitudes and
Probabilities
Morethanonce inthisbook, Iemphasizedthat thequbit statevectorcontains
amplitudes rather thanmeasurement probabilities.

The amplitudes belong towaves. Because in quantummechanics, the behav-
ior of quantumparticles is described bywave functions.

Waves have three characteristics.

• Thewavelength is the distance overwhich thewave’s shape repeats.
• The phase of a wave is the position on the waveform cycle at a certain
point.



11.4 Quantum Amplitudes and Probabilities 365

• The amplitude of awave is the distance between its center and its crest.

The following figure depicts these three characteristics.

wavelength
amplitude

x

x∗

Figure 11.43: Characteristics of a wave

Aswe can see in the figure, amplitudes can be positive or negative. Whether
theamplitude ispositiveornegativedependsonthe imaginarypoint x. If you
chose a different point x∗, the samewavewould have a negative amplitude.

If you take two identical yet shifted waves, one might have a positive ampli-
tude, whereas the other has a negative at point x. These two waves differ in
their phase. But when you measure either one of these two waves, they are
alike. You don’t see any difference. Their effects on themeasurement proba-
bilities are the same.

Mathematically, the probability ofmeasuring the qubit as 0 or 1 is the square
of the corresponding amplitude. It doesnotmatterwhether the amplitude is
positive or negative.

|ψ⟩= α|0⟩+β |1⟩=
[

α
β

]
with

|α|2 + |β |2 = 1

In the last section 11.1, we learned the amplitudes α and β are complex num-
bers. As such, their imaginary part can be negative when squared (i2 = −1).
Thus, we need to take the absolute of the amplitudes in this normalization
beforewe square them to obtain themeasurement probabilities.

Though, amplitudes and probabilities are two different things.

Thus far, the measurement probabilities were all we cared about. We only



366 Chapter 11. The World Is Not A Disk

cared about amplitudes inside the math. We didn’t yet work with qubit am-
plitudes and phases.

But we canworkwith amplitudes, too. For instance, the Z-gate switches the
sign of the amplitude.

Listing 11.23: Negating the amplitude

1 from qiskit import QuantumCircuit, Aer, execute
2
3 qc = QuantumCircuit(1)
4 qc.h(0)
5 qc.z(0)
6
7 # execute the qc
8 results = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_statevector()

When we look at the resulting amplitudes of the qubit, we see the qubit has
a negative amplitude in state 1. But the measurement probabilities are both
positive.

0

1

0.5

0 1

Am
pl
itu

de
s

Pr
ob

ab
ili

tie
s1√

2

− 1√
2

Figure 11.44: Amplitudes and probabilities

While amplitudes can be negative, probabilities can’t. This is one conse-
quence of the qubit state normalization |α|2 + |β |2 = 1.

Thenormalization formula constrains thevalues themeasurementprobabil-
ities can obtain. It does not constrain the amplitudes.

Butwhy shouldweevencare about the signof a state’s amplitude inquantum
computing if it doesn’tmatter for the resulting probability?



11.4 Quantum Amplitudes and Probabilities 367

The answer iswave interference. Waves have the distinct characteristic that
they interfere with each other. Simply put, they add up. If you have two
waves traveling on the same medium, they form a third wave representing
the sumof their amplitudes at each point.

Input waves

Resulting wave

Figure 11.45: Two interfering waves

Qubits work accordingly. While the sign of the amplitude and the resulting
phase of a qubit do not affect themeasurement probabilities, once qubits in-
terfere with each other, their resulting amplitudes may differ and affect the
measurement probabilities.

This is known as amplitude amplification. It is an essential tool in our quan-
tum computing toolbox.

Let’s have a look at the quantum circuit depicted in the following figure.



368 Chapter 11. The World Is Not A Disk

Figure 11.46: Working with amplitudes

We have two qubits. Both are in a balanced state of superposition after we
applied the first Hadamard-gate on each of them.

At this time, we have four possible states with equal amplitudes and equal
measurement probabilities.

ThefollowingcontrolledZ-gate switches thesignof theamplitudeonlyof the
state |11⟩. It works like the other controlled gates we got to know except for
the applied gate. Here, it is the Z-gate.

The following sequence of Z-gates and another controlled Z-gate encapsu-
lated in H-gates (HZH) is known as Grover’s iterate. It is a reflection circuit
that inverts all states about themean amplitude (not themean probability).

Since three out of four states have a positive amplitude (0.5) but only one has
a negative amplitude (−0.5), themean amplitude is 0.25.

Those states with the positive amplitude result at an amplitude of 0 because
0.5− (2∗0.25) = 0.

The one state with the negative amplitude results in an amplitude of 1 be-
cause−0.5− (2∗ (−0.75)) = 1.

Even though the phase of a qubit state vector (the sign of its amplitude) does
not matter for the resulting measurement probability, it does matter inside
the quantum circuit becausewe canworkwith the phases.

The following code shows the implementation of this circuit and the mea-
surement probabilities.



11.4 Quantum Amplitudes and Probabilities 369

Listing 11.24: Working with amplitudes

1 from qiskit.visualization import plot_histogram
2
3 qc = QuantumCircuit(2)
4 qc.h(0)
5 qc.h(1)
6 qc.cz(0,1)
7 qc.h(0)
8 qc.h(1)
9 qc.z(0)

10 qc.z(1)
11 qc.cz(0,1)
12 qc.h(0)
13 qc.h(1)
14
15 # execute the qc
16 results = execute(qc,Aer.get_backend('statevector_simulator')).result().

get_counts()
17 plot_histogram(results)

Figure 11.47: Result of reflecting amplitudes

The result shows a chance of 1.0 to measure the system as 11. Unlike be-
fore, whenwe directly workedwith themeasurement probabilities, we only
change the phase of the qubit.

Qubits resemble the behavior of waves. As such, their amplitudes matter
when they interact. The circuit we implemented first changes the state |11⟩
(by negating its amplitude). Then, it adds anotherwave that shares the same



370 Chapter 11. The World Is Not A Disk

phase as state |11⟩. It doubles the amplitude of this state from (−)0.5 to 1. For
this phase is the exact opposite of the phase the other three states have. They
cancel out.



12. Working With The Qubit Phase

Machine learning canbe thought of as a searchproblem. Givenonly observa-
tionsof inputsandrelatedoutputs,wecancharacterize the learningproblem
as searching for amapping of inputs to the correct outputs. A goodmapping,
thesolutiontothesearchproblem,allowspredictingtheoutput foranygiven
input.

Logically, the mapping is a function, such as y = f (x)with x as the input and
y as the output. The problem is we don’t know anything about the function
f . If we did, we wouldn’t need to learn it from the data. Wewould specify it
directly.

If we can’t specify the function, the next best thing we can do is find an ap-
proximation of the function f . But again, since we don’t know anything
about themapping function f ,we can’t tell howagoodapproximationwould
look. It could be a mathematical function. It could be a Bayesian system. It
could even be a artificial neural network. There are infinitelymany possible
approximations. We don’t knowwhich kind of approximationworks best.

You can think of all possible approximations of the mapping function as a
huge search space. The learning task is to search this space for a goodenough
approximation. In general, search involves trial and error. You try apossible
solution, you see how it performs, and you adjust your solution accordingly.



372 Chapter 12. Working With The Qubit Phase

12.1 The Intuition Of Grover’s
Algorithm
Inmanysituations,weneed tofindoneparticular itemina setofmany items.
Unsurprisingly, searching algorithms are among the most prominent and
useful algorithms in Computer Science.

Let’s imagine you need to call a famous quantum computing pioneer,
Mr. Grover. You search a phone book for his number because you don’t have
it yet. You open up the book in themiddle, and you see nameswith the start-
ing letter L. For G is before L, you take the first half of the book and open it
up in themiddle again. There you see names with an E. For G is after E, you
open up the book in themiddle between E and L. There you seeMr. Grover’s
number.

The name of this search algorithm is binary search. This algorithm repeat-
edly divides the search interval in half. If the searched item is lower than
the item in the middle of the interval, it narrows the interval to the lower
half. Otherwise, it narrows it to the upper half. It repeats until the value is
found or the interval is empty. The binary search algorithm narrows down
the search space pretty fast and converges to a solution. The only problem is
that the algorithm relies on the data you search to be sorted. The algorithm
doesn’t work if the data isn’t sorted.

This is abigproblembecausenotonlybinary search relies on sorteddata, but
almost all search algorithms do.

If the data is not sorted or structured in any other way, the only valid search
algorithm is a linear search. In linear search, we have to evaluate every sin-
gle item to verify whether it is the searched one or not. While this approach
works for small data, it becomes inappropriate for large data sets.

This is where Grover’s algorithm comes into play. In section 8.2, we got to
know Deutsch’s algorithm that could evaluate a function for two input pa-
rameterswhileonly running it onlyonce. Grover’s algorithmteachesushow
to search for an item in an unsorted listwithout needing to look at each item
one by one but by looking at them all at once. It accomplishes that using two
techniques. First, it uses a quantum oracle to mark the searched state. Sec-
ond, it uses a diffuser that amplifies the amplitude of the marked state to in-
crease itsmeasurement probability.

We can describe quantum systems in terms of their states, amplitudes, and
measurement probabilities. But these are internal descriptions we can’t ob-
serve directly. Whenever we measure a quantum system, we get a single



12.1 The Intuition Of Grover's Algorithm 373

value–the one state this specific system is in.

Ifwemeasure twosimilar systems,wemightmeasuredifferentvalues. Then,
we know that this particular system can be in different states. If we have
many similar systems, wemightmeasure the system in some statesmore of-
ten than in other states. How often we measure a quantum system in a cer-
tain state depends on probability. Each state of a quantum system has a cer-
tainmeasurement probability. The higher it is, themore likely wewill mea-
sure the system in this state.

Themeasurementprobability of a state depends on the amplitudeof this par-
ticular state. Mathematically, the measurement probability is the squared
absolute of the amplitude. Wewill seewhat thismeans in a second.

Grover’s search algorithm starts from a set of qubits in equal superposition.
This means all states have equal amplitudes. Therefore, they all have the
samemeasurementprobability. Ifwemeasure this systemonly once,wewill
find it in any state. Which one it is, is up to chance. If wemeasured this sys-
temmyriads of times, wewould see it in each of the states equally often.

...

searched state

Amplitude

|0000⟩ |0001⟩ |0010⟩ |0111⟩ |1111⟩...

Figure 12.1: Initial states

Thestatewesearchfor isamongthesestates. Thegoal is tochangethesystem
so that ifmeasured, we find the system in this one state. Always.

It is the taskof thequantumoracle to identify the searchedstate. Rather than
amagical ingredient, the quantum oracle is a control structure. It is a quan-
tumoperator. This operator negates the amplitude of the searched state.

Of course, the vital question is: “How does the oracle identify the searched
state?”

The oracle uses any characteristic of the searched quantum state. If we start
with a set of equal states, then, per definition, the states only differ in their
enumeration. If we use four qubits, for example, then there are 24 different



374 Chapter 12. Working With The Qubit Phase

states. Starting from |0000⟩, to |0001⟩, ending at |1111⟩.

Each qubit can have a specific meaning. We could interpret it as a letter. A
letter that does not have 26 different options but only two, |0⟩ and |1⟩. With
a sufficient number of qubits, we could represent all living humans. With 33
qubits, we can represent around 8.5 billion different states. A phonebook of
mankind. Andwe haven’t sorted it.

Now, let’s say four qubits are enough, andMr.Grover is knownas |0010⟩. The
oracleuses the specificcharacteristicof this state to identifying it. That is the
state has a |1⟩ at the third position and |0⟩ otherwise.

Since thequantumoracle takesallqubitsas input, it caneasily transformthis
exact state. It doesn’t matter whether we use four qubits or 33. The oracle
identifiesMr. Grover in a single turn.

The transformation the oracle applies to the searched state is an inversion of
the amplitude.

|0000⟩ |0001⟩ |0010⟩

...

|0111⟩ |1111⟩...

Figure 12.2: State with negative amplitude

In this representation of the amplitudes, we can see a difference between
the searched state and all the other states. We could prematurely declare the
search is over.

The only difference is in the sign of the amplitude. For the measurement
probability results from the amplitude’s absolute square, the sign does not
matter at all.

The amplitude originates from the concept that every quantum entity may
be described as a particle and as awave. Themain characteristic of a wave is
that it goes up and down as it moves. The amplitude is the distance between
the center and the crest of thewave.



12.1 The Intuition Of Grover's Algorithm 375

Ifwe invert theamplitudeofawaveatallpositions, theresult is that the same
wave shifted by half of its wavelength.

These twowaves differ only in their relative position. This is thephase of the
wave. For the outside world, the phase of a wave is not observable. But, ob-
served individually, the two waves appear identical. So, the problem is that
we can’t tell the difference between these twowaves.

Figure 12.3: Wave with a negated amplitude

As a consequence, the systemdoes not appear any different from the outside.
Even though the oracle marked the searched state and it, therefore, differs
from the other states, all states still have the samemeasurement probability.

We need to turn the difference into something measurable. We need to in-
crease the measurement probability of the marked state. This is the task of
the diffuser. The diffuser applies an inversion about themean amplitude.

Let’s have a look at the average amplitude.

...
average
amplitude

|0000⟩ |0001⟩ |0010⟩ |0111⟩ |1111⟩...

Figure 12.4: The average amplitude

With four qubits, we have 16 different states. Each state has an amplitude
of 1√

16
= 1

4 . Each but one state–the searched state has this amplitude. The



376 Chapter 12. Working With The Qubit Phase

searched state has an amplitude of −1
4 . Thus, the average is

15∗ 1
4−

1
4

16 =
14
4

16 =
0.21875.

The average is a little less than the amplitude of all stateswe did notmark. If
we invert these amplitudes by this mean, they end up a little lower than the
average at 0.1875.

Since the amplitude of themarked state is negative, it is pretty far away from
the average. The inversion about the mean has a greater effect. It flips the
amplitude from−0.25 by 2∗ (0.25+0.21875) to 0.6875.

...
average
amplitude

|0000⟩ |0001⟩ |0010⟩ |0111⟩ |1111⟩...

Figure 12.5: Inversion about the mean

The inversion about the mean works well if we search for a single or a few
negative amplitudes amongmany positive amplitudes. Then, this operation
increases the negative amplitudes we know are the correct ones. And this
operation decreases the positive amplitudeswe know arewrong.

This operation increases the negative amplitude by a considerable amount
while decreasing the positive amplitudes by a small amount.

But the more states we have, the lower the overall effect will be. In our ex-
ample, we calculated the new amplitude of the searched state as 0.6875. The
correspondingmeasurementprobability is 0.68752 = 0.47265625. Accordingly,
wemeasure this system only about every other time in the state we are look-
ing for. Otherwise, wemeasure it in any other case.

Of course, we could now measure the system many times and see our



12.2 Basic Amplitude Amplification 377

searched state as themost probable one. But running the algorithm so often
would give away any advantagewe gained fromnot searching all the states.

Instead, we repeat the algorithm. We use the same oracle to negate the am-
plitude of the searched state. Then we invert all the amplitudes around the
mean, again.

However, we must not repeat this process too many times. There is an op-
timal number of times of repeating this process to get the highest chance of
measuring the correct answer. The probability of obtaining the right result
grows until we reach about π

4

√
N with N is the number of states of the quan-

tum system. Beyond this number, the probability of measuring the correct
result decreases again.

In our example with four qubits and N = 16 states, the optimum number of
iterations is 3.

Grover’s algorithm searches unsorted data. It follows a simple procedure. A
quantum oracle inverts the amplitude of the searched state. Then, the dif-
fuser reverses all states about the mean amplitude, therefore, magnifying
the searched state. The algorithm repeats these steps until the solution has a
measurement probability close to 100%.

The number of repetitions depends on the number of states it needs to con-
sider. Since the number of repetitions only increases by around the square
root of the number of states, this algorithm provides a quadratic speedup
compared to a classical linear search–that is the only classical approach that
can search unsorted data.

However, like all quantumcomputer algorithms, Grover’s algorithm is prob-
abilistic. It returns the correct answerwithhighbutnot absolute probability.
Therefore, wemight need to repeat the algorithm tominimize the chance of
failing.

12.2 Basic Amplitude Amplification
In the previous section 12.1, we built the conceptual understanding of how
Grover’s search algorithm works. Building up some intuition is one thing.
Translating this intuition intoaworkingquantumcircuit is awholedifferent
story. Implementing reflections in a quantum circuit requires us to stretch
ourminds. Don’t worry. We start simple.

Grover’s algorithm consists of twomajor components. First, the oracle iden-
tifies and marks a favorable state. Second, the diffuser amplifies the ampli-



378 Chapter 12. Working With The Qubit Phase

tude of good states.

Thefirst stretchofmindinvolvesnot thinking inqubitsbut thinking instates.
Of course, qubits are the computational unit we work with. Of course, the
possiblestatesofamulti-qubit systemdependonthequbitsweuse. Ofcourse,
important visualizations of a quantum system, such as the Bloch Sphere,
build upon the qubit.

Butwealsomustkeep inmindanessential featureofqubits. Wecanentangle
qubits. Andwe can’t represent two entangled qubits by two separated qubits
anymore. Two entangled qubits share their states. We can’t represent one
without the other because if we measure one of the qubits, the other’s state
inevitably changes, too.

Moreover, the power of quantum computing lies in the fact that qubits not
only formstates, butwecanworkwith their statesall atonce. So, rather than
thinking in qubits, we need to think in states.

Let’s start with the simplest case of Grover’s algorithm. We have a single
qubit—two possible states, on and off, |1⟩ and |0⟩.

Thefirst step inGrover’s algorithm is always the same. Weput all qubits into
an equal superposition so that each state has the same amplitude and thus,
the samemeasurement probability. We achieve this through the Hadamard
gate.

Now, both possible states, |0⟩ and |1⟩ have a probability of 0.5 each.

Listing 12.1: Equal superposition of two states

1 from qiskit import QuantumCircuit, Aer, execute
2 from qiskit.visualization import plot_histogram, plot_bloch_multivector,

plot_state_qsphere
3
4 qc = QuantumCircuit(1)
5 qc.h(0)
6
7 # execute the qc
8 results = execute(qc,Aer.get_backend('statevector_simulator')).result()
9 plot_histogram(results.get_counts())



12.2 Basic Amplitude Amplification 379

Figure 12.6: Equal superposition of two states

Further, both states share the same phase.

Figure 12.7: No phase difference

Let’s say the state |1⟩depicts the favorable statewewant tofind. Then, the or-
acle consists of the Z-gate that switches the amplitudewhen the correspond-
ing qubit is in state |1⟩.



380 Chapter 12. Working With The Qubit Phase

Figure 12.8: Circuit with an oracle

As a result, we see the amplitude changed for state |1⟩. The qubit is now in
state |−⟩. Its two states |0⟩ and |1⟩ are in two different phases, now.

Figure 12.9: State |1> has a different phase

Inotherwords,weflipped theamplitudeof state |1⟩ frompositive tonegative.

Both states still have a measurement probability of 0.5. It is the task of the
diffuser tomagnify the amplitude to favor the searched state.



12.2 Basic Amplitude Amplification 381

|0⟩ |1⟩
Am

pl
itu

de
s 1√

2

− 1√
2

Figure 12.10: Flipping the amplitude

Figure 12.11: The phase does not affect the measurement
probabilities

The diffuser in a single-qubit circuit is quite simple. It is anotherH-gate.

Figure 12.12: Circuit with an oracle and a diffuser



382 Chapter 12. Working With The Qubit Phase

This circuit results in state |1⟩with absolute certainty.

Listing 12.2: HZH‐circuit

1 # prepare the circuit
2 qc = QuantumCircuit(1)
3 qc.h(0)
4 qc.z(0)
5 qc.h(0)
6
7 # execute the qc
8 results = execute(qc,Aer.get_backend('statevector_simulator')).result()
9 plot_histogram(results.get_counts())

Figure 12.13: Result of the HZH-circuit

We end upwith our qubit in the desired state |1⟩ because the Hadamard gate
turns thestate |−⟩ into |1⟩. Thefollowingfiguredepicts therotationsweapply
in this circuit.

|0⟩ H Z H

Figure 12.14: Transformations of the HZH-circuit



12.2 Basic Amplitude Amplification 383

Weappliedan important sequenceonthequbit, theHZH-circuit. This circuit
isknownasan identity to theNOT -gate (X-gate) that turnsstate |0⟩ into |1⟩and
vice versa.

The following equation proves this identity.

HZH = 1√
2

[
1 1
1 −1

][
1 0
0 −1

]
1√
2

[
1 1
1 −1

]
=

[
0 1
1 0

]
= X

Then, why would we use the HZH-sequence? If it is similar to the NOT -gate,
why don’t we use that instead?

Simply put, the HZH-sequence is more flexible. It is the simplest form of
Grover’s search algorithm. It starts with all states being equal (the first H-
gate). It applies an oracle (Z-gate). And, it uses a diffuser that amplifies the
amplitude of the selected state |1⟩ (the secondH-gate).

To prove this flexibility, let’s say wewanted to select state |0⟩ instead. This is
the task of the oracle. The starting state and the diffuser remain untouched.
The oracle for state |0⟩ is the I-gate. Or, simply doing nothing.

Figure 12.15: Circuit with an oracle and a diffuser

This circuit results in state |0⟩ thatwemeasure as 0with absolute certainty.

Listing 12.3: HIH‐circuit

1 # prepare the circuit
2 qc = QuantumCircuit(1)
3 qc.h(0)
4 qc.i(0)
5 qc.h(0)
6
7 # execute the qc
8 results = execute(qc,Aer.get_backend('statevector_simulator')).result()
9 plot_histogram(results.get_counts())



384 Chapter 12. Working With The Qubit Phase

Figure 12.16: Result of the HIH-circuit

On closer inspection, we can easily see this circuit does nothing at all. The
I-gate does nothing, and the Hadamard-gate reverts itself. Thus, we end up
in the default initialization state |0⟩.

|0⟩ H I H

Figure 12.17: HIH-sequence

While we could rewrite these two circuits more succinctly, the circuit iden-
tities of HZH = X and HIH = I let us use the general structure of Grover’s al-
gorithm. Simply by changing the oracle, we canmark and amplify different
states. We don’t need to develop a new algorithm for each possible state we
want to select out of a list. Butwe only need to find an appropriate oracle.

This ability comes in handy themore states our quantum systemhas.

The search for one of two possible states does not even deserve to be called a
search. But the exampleofmarking state |1⟩ foreshadowswhat’s to come. We
use a phase shift to increase the amplitude of the favorable state.



12.3 Two‐Qubit Amplification 385

12.3 Two-Qubit Amplification
Let’s continuewith themore interesting circuitwith twoqubits and fourpos-
sible states.

Again, we start with an equal superposition of all states. With four states,
each state has an amplitude of 0.5 and a resulting measurement probability
of 0.25.
Listing 12.4: Equal superposition of four states

1 from qiskit import QuantumCircuit, Aer, execute
2 from qiskit.visualization import plot_histogram, plot_bloch_multivector,

plot_state_qsphere
3
4 qc = QuantumCircuit(2)
5 qc.h(0)
6 qc.h(1)
7
8 # execute the qc
9 results = execute(qc,Aer.get_backend('statevector_simulator')).result()

10 plot_histogram(results.get_counts())

Figure 12.18: Equal superposition of four states

Inthenextstep,weneedto implement theoracle. Itspurpose is tofliptheam-
plitude of the favorable state. For example, let’s say it is in state |10⟩. Remem-
ber,we read the qubits from the right (qubit at position 0) to the left (qubit at
position 1).



386 Chapter 12. Working With The Qubit Phase

Figure 12.19: Two-qubit circuit with an oracle for |10>

The controlled Z-gate (CZ) applies the Z-gate on the target qubit if the control
qubit is in state |1⟩. Thus, this gate applies the phase shift when both qubits
are in state |1⟩ as in state |11⟩. By encapsulating the controlled Z-gate in NOT -
gates thatwe apply on the first qubit, we select the state |10⟩ instead of |11⟩.

The following figure of the states and their phases confirms this effect. We
flipped the phase of state |10⟩. TheCZ-gate entangles both qubits.

Figure 12.20: State |10> has a different phase

Now, we need a diffuser to amplify the amplitude. It starts with applying



12.3 Two‐Qubit Amplification 387

Hadamard gates on all qubits. In the figure below, the diffuser begins right
of the second vertical separator.

Figure 12.21: The diffuser starts with Hadamard gates

This series of Hadamard gates has quite an interesting effect. It switches the
amplitudes of |01⟩ and |10⟩.

Figure 12.22: Switching the amplitudes of |10> and |01>

The successive sequenceof a controlledZ-gate encapsulated inNOT -gateshas
a simple effect. It flips the amplitude of state |00⟩. Furthermore, the con-
trolled Z-gate unentangles both qubits again.



388 Chapter 12. Working With The Qubit Phase

Figure 12.23: Flipping |00> and unentangling the qubits

Figure 12.24: Effect of the diffuser

Now, states |00⟩ and |01⟩ share a phase and states |10⟩ and |11⟩ share a phase.
Formulated differently, the first qubit (right-hand side of the notation) is in
state |+⟩ and the second qubit is in state |−⟩.

Whenwe apply Hadamard gates on both qubits, we turn the first qubit from
|+⟩ into |0⟩, andweturnthesecondqubit from |−⟩ into |1⟩. Wealwaysmeasure
the system in state |10⟩–the statewemarked through the oracle.



12.3 Two‐Qubit Amplification 389

Listing 12.5: Two‐qubit Grover searching |10>

1 qc = QuantumCircuit(2)
2
3 qc.h(0)
4 qc.h(1)
5 qc.barrier()
6
7 qc.x(0)
8 qc.cz(0, 1)
9 qc.x(0)

10
11 qc.barrier()
12 qc.h(0)
13 qc.h(1)
14
15 qc.x(0)
16 qc.x(1)
17 qc.cz(0,1)
18 qc.x(0)
19 qc.x(1)
20
21 qc.barrier()
22 qc.h(0)
23 qc.h(1)
24
25 # execute the qc
26 results = execute(qc,Aer.get_backend('statevector_simulator')).result()
27 plot_histogram(results.get_counts())

Figure 12.25: Result of two-qubit Grover searching |10>



390 Chapter 12. Working With The Qubit Phase

The following figure depicts the complete circuit.

Figure 12.26: The complete circuit

This circuit contains quite a few phase shifts until we apply the Hadamard-
gates at the end, and the qubits result in the desired state that the oracle
marked.

Most of the gates inside this circuit serve a technical purpose. For instance,
theCZ-gate allows us tomark one single state in amulti-qubit system.

Ifwe split the overall circuit intopieces and look at these pieces conceptually,
we can discover a familiar structure. We seeHadamard gates at the start and
the end. The center parts, consistingof the oracle and thediffuser, represent
a Z-gate that we apply on the first qubit and an I-gate to apply on the second
qubit.

The overall pattern of this circuit resembles an HIH-sequence we apply on
thefirst qubit and anHZH-sequenceweapply on the secondqubit. The I-gate
does not change a qubit, and theHadamard gate reverts itself. Thus, thefirst
qubit ends up in the same state it started with. That is |0⟩. The HZH-gate is
identical to a NOT -gate that turns the second qubit from its initial state |0⟩
into |1⟩.

Grover’s circuit follows a simple idea. The first set of Hadamard gates bring
the qubits to a statewhere their phasesmatter. The oracle shifts the phase of
the searched state. Finally, the diffuser rearranges the phases of all states so
that the latter Hadamard gates bring the qubits into themarked state.

The beauty of this circuit is that the only thing that changes is the oracle that
marks the searched state. The diffuser remains the same.

Let’s say we want to search a different state, |01⟩. It is nearly similar to the
circuit we just examined. The only difference is the oracle. And even this is
almost alike. WeuseNOT -gates to shifts the phase of stateswhere the second
qubit is in state |1⟩. The controlled Z-gate then flips the phase of state |01⟩.



12.3 Two‐Qubit Amplification 391

Figure 12.27: The oracle for |01>

As a result, only state |01⟩ has a shifted amplitude.

Figure 12.28: State |01> has a different phase

The diffuser is the same as in the previous case. The controlled Z-gate encap-
sulated inNOT -gates flips the phase of state |00⟩ and unentangles both qubits
again.



392 Chapter 12. Working With The Qubit Phase

Figure 12.29: The effect of the Hadamard gates in the diffuser

This time, after the diffuser is through, we see states |00⟩ and |10⟩ share a
phase.

Figure 12.30: Effect of the diffuser when state |01> is marked

These phases correspond the first qubit in state |−⟩ and the second qubit in
state |+⟩. The closing Hadamard gates turn both qubits into the respective
basis states, again. We end up in state |01⟩ (remember to read from right to
left).



12.3 Two‐Qubit Amplification 393

Figure 12.31: Result of two-qubit Grover searching |01>

Again, the whole circuit represents an HZH sequence and an HIH sequence,
respectively, thatwe apply to the two qubits.

In the following case, we look at is themagnification of state |11⟩. Again, the
only thingweneed to change is the oracle. The oracle that selects state |11⟩ is
quite simple. We only apply theCZ-gate. It flips the phase of this state.

Figure 12.32: The full circuit to amplify |11>



394 Chapter 12. Working With The Qubit Phase

Figure 12.33: The effect of the oracle for |11>

The diffuser is the same as in all other cases. It results in states |00⟩ and |11⟩
sharing a state aswell as states |10⟩ and |01⟩.

Figure 12.34: Effect of the diffuser when state |01> is marked



12.3 Two‐Qubit Amplification 395

These states correspond to the two qubits in state |−⟩ that the closing
Hadamard gates turn into the final state |11⟩.

Finally, there is state |00⟩. This time, wewrap theCZ-gate into NOT -gates we
apply to both qubits.

Figure 12.35: The full circuit to amplify |00>

As a result of the oracle, only state |00⟩ has a different phase.

Figure 12.36: Effect of the diffuser when state |01> is marked

As in all the other cases, the diffuser switches the phase of state |00⟩. This
time, we remove all phase flips before the final Hadamard gates bring back
the qubits into basis states. Thus, we have not applied any HZH-circuit but
twoHIH-sequences.



396 Chapter 12. Working With The Qubit Phase

Figure 12.37: Effect of the diffuser when state |00> is marked

With only four possible states, we need to iterate through the oracle and the
diffuser only once and end up in the searched statewith absolute certainty.



13. Search For The Relatives

Let’s get back to the Titanic. There are still plenty of ways howwe could im-
prove our QBN. A promising feature to include is the relations between pas-
sengers. Thus far, we have entirely ignored any family relationship. Yet, our
dataset contains informationabout thenumberof siblings and spouses (SibSp
) and the number of parents and children (Parch) travelingwith a passenger.

Both fields, SibSp and Parch are numeric values denoting the number of a re-
lated passenger aboard the Titanic.

The following function lets us evaluate how a certain number of related pas-
sengers affects the chance to survive.

Listing 13.1: Convenience function to evaluate the effect of a relationship

1 def evaluate_relation(relation, value):
2 # separate the population
3 population = train[train[relation].eq(value)] if value < 2 else train[

train[relation].ge(value)]
4 p = len(population)/len(train)
5
6 # chance to survive
7 surv = population[population.Survived.eq(1)]
8 p_surv = len(surv)/len(population)
9 return (p, p_surv)

The function evaluate_relation takes twoparameters, thenameof the relation



398 Chapter 13. Search For The Relatives

and the value. We start by separating the population from our training
dataset (line 3). If the provided value is smaller than 2, we select all passen-
gerswith this exact value for the given relation. We summarize all passengers
with a value that is greater or equal to 2. Themarginal probability of having a
certain number of related passengers is given by the size of the selected pop-
ulation divided by the size of the training dataset (line 4).

Next, we further separate the survivors of the population (line 7) and calcu-
late the posterior probability of survival given that the passenger belongs to
the respective population (line 8).

In the following snippet, we call this convenience function for the different
groups.
Listing 13.2: The probabilities of the different populations

1 print("No Sibling: {:.2f} of the passengers, survival: {:.2f}".format(*
evaluate_relation("SibSp", 0)))

2 print("One Sibling: {:.2f} of the passengers, survival: {:.2f}".format(*
evaluate_relation("SibSp", 1)))

3 print("More Siblings: {:.2f} of the passengers, survival: {:.2f}".format(*
evaluate_relation("SibSp", 2)))

4 print()
5 print("No Parent/Child: {:.2f} of the passengers, survival: {:.2f}".

format(*evaluate_relation("Parch", 0)))
6 print("One Parent/Child: {:.2f} of the passengers, survival: {:.2f}".

format(*evaluate_relation("Parch", 1)))
7 print("More Parents/Children: {:.2f} of the passengers, survival: {:.2f}".

format(*evaluate_relation("Parch", 2)))

No Sibling: 0.68 of the passengers, survival: 0.35
One Sibling: 0.23 of the passengers, survival: 0.54
More Siblings: 0.08 of the passengers, survival: 0.27

No Parent/Child: 0.76 of the passengers, survival: 0.34
One Parent/Child: 0.13 of the passengers, survival: 0.55
More Parents/Children: 0.11 of the passengers, survival: 0.46

Thenumberof relativesonboard theTitanic certainlyaffectedwhetherapas-
senger survived. But instead of adding another feature to our QBN, we use
what we have learned to find the relatives of a passenger. Let’s have a look at
a group of passengers.



399

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
249 250 0 2 Carter, Rev. Ernest Courtenay male 54.0 1 0 244252 26.0 NaN S
390 391 1 1 Carter,Mr. WilliamErnest male 36.0 1 2 113760 120.0 B96 B98 S
435 436 1 1 Carter,Miss. Lucile Polk female 14.0 1 2 113760 120.0 B96 B98 S
763 764 1 1 Carter,Mrs. WilliamErnest (Lucile Polk) female 36.0 1 2 113760 120.0 B96 B98 S
802 803 1 1 Carter,Master. WilliamThornton II male 11.0 1 2 113760 120.0 B96 B98 S
854 855 0 2 Carter,Mrs. Ernest Courtenay (LilianHughes) female 44.0 1 0 244252 26.0 NaN S

Apparently, all these passengers share the same last name, Carter. They all
have one sibling or spouse. Four of them have two children or parents. Two
have none.

By looking at the Ticket number and class (Pclass), the Fare, and the Cabin, we
can distinguish two families named Carter. Mr. and Mrs. Ernest Courtenay
Carter (PassengerIds 249 and 854) are a couplewithout children.

The other four Carters shared the same Cabins and Ticket. So, it is pretty safe
to assume they are a family, too. When we look at their age and gender, we
can conclude that the passengerswith the PassengerIds 390 and 763 (both aged
36) aremarried (they are their respective SibSp). And, they are the parents of
the passengers with the PassengerIds 435 (age 14) and 802 (age 11). These two
children are their respective siblings (SibSp).

A lookat theexactnamesof thepassengers confirms this assumption. In 1912,
relationships were a lot more conservative. I believe there were no same-
sex marriages, and the wife took over her husband’s full name (at least in
terms of our dataset). Further, the formal title of a female passenger indi-
cated whether she was married. “Miss” had been the traditional title for an
unmarried woman. “Mrs.,” on the other hand, refers to a married woman.
Further,while the titleMaster indicates a boy, the title “Mr.” not necessarily
amarriedman.

Let’s look at the Goodwins.
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

59 60 0 3 Goodwin,Master. William Frederick male 11.0 5 2 CA 2144 46.9 NaN S
71 72 0 3 Goodwin,Miss. Lillian Amy female 16.0 5 2 CA 2144 46.9 NaN S
386 387 0 3 Goodwin,Master. Sidney Leonard male 1.0 5 2 CA 2144 46.9 NaN S
480 481 0 3 Goodwin,Master. Harold Victor male 9.0 5 2 CA 2144 46.9 NaN S
678 679 0 3 Goodwin,Mrs. Frederick (Augusta Tyler) female 43.0 1 6 CA 2144 46.9 NaN S
683 684 0 3 Goodwin,Mr. Charles Edward male 14.0 5 2 CA 2144 46.9 NaN S

The last one on the list, Mr. Charles Edward Goodwin, has the title “Mr.” at
the age of 14. Hehasfive siblings and twoparents. Sincehis siblingshavefive
siblings, too, it is safe to assume he is notmarried.

The data of this family further reveals we are coping with only a partial list
of the passengers. We aremissingMr. Frederick Goodwin and a child. How-
ever, even the incomplete information we can draw from a passenger’s re-
lated travelers is clear. If we’d be tasked with predicting the survival of
Mr. FrederickGoodwin, the father of five children and the husband of awife
who all died that night, the answer is pretty clear.



400 Chapter 13. Search For The Relatives

Passenger relationships are ameans to improve the performance of our clas-
sifier. Especially whenwe considerwhether the related passengers survived
or not, it confronts uswith the challenge to find the correct – ormost likely –
related passenger first. The conservative family structures and naming con-
ventions facilitate the search. Thinkaboutmoderncultures. Today,wedon’t
call a woman by the name of her husband anymore. Spousesmay keep their
surnames. And we see patch-work families where each spouse brings his or
her children from an earlier marriage. To find the person that is most likely
the related one, we need to consider all passengers and numerous combina-
tions.

This sounds like a good case to apply Grover’s search algorithm.

13.1 Turning the Problem into a Circuit
Our dataset contains roughly 900 of the 1,300 passengers of the Titanic. The
columns SibSp and Parch indicate the number of the respective relatives a pas-
senger has among the other passengers.

For instance, Rev. Ernest Courtenay Carter has one sibling or spouse but no
parents or children traveling with him. But we don’t knowwho the relative
is. We don’t even knowwhether s/he is in our part of the data or not.

Listing 13.3: Passenger no 250

1 train[train["PassengerId"].eq(250)]

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
249 250 0 2 Carter, Rev. Ernest Courtenay male 54.0 1 0 244252 26.0 NaN S

Tofind the respective relative,weneed to consider three columns of interest.
These are the name, the ticket, and the cabin.

First and foremost, we expect two relatives to have the same last name. Back
in 1912, family structureswere very conservative. Let’s look at all the passen-
gerswho share the last namewithMr. Carter.

Listing 13.4: Get potential relatives

1 current_passenger = train[train["PassengerId"].eq(250)]
2 last_name = current_passenger.Name.to_string(index=False).split(',')[0]
3 train[train["Name"].str.contains(last_name)]



13.1 Turning the Problem into a Circuit 401

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
249 250 0 2 Carter, Rev. Ernest Courtenay male 54.0 1 0 244252 26.0 NaN S
390 391 1 1 Carter,Mr. WilliamErnest male 36.0 1 2 113760 120.0 B96 B98 S
435 436 1 1 Carter,Miss. Lucile Polk female 14.0 1 2 113760 120.0 B96 B98 S
763 764 1 1 Carter,Mrs. WilliamErnest (Lucile Polk) female 36.0 1 2 113760 120.0 B96 B98 S
802 803 1 1 Carter,Master. WilliamThornton II male 11.0 1 2 113760 120.0 B96 B98 S
854 855 0 2 Carter,Mrs. Ernest Courtenay (LilianHughes) female 44.0 1 0 244252 26.0 NaN S

We select Mr. Carter by his PassengerId (250) (line 1). In our dataset, the Name
column contains the last name and the first name(s) divided by a comma(,).
Thus, we split the column at the comma and use the first part (at position 0)
(line2). Finally,weextractallpassengerswhosenamecontains this lastname
(line 3).

We get a list of six passengers, includingMr. Carter.

While the full name of passenger 855 (Mrs. Ernest Courtenay Carter) identi-
fies her as the spouse of Mr. Rev. Ernest Courtenay Carter, we don’t want to
mess around with the name too much. Instead, let’s look at the Ticket num-
ber.

In general, the algorithm we’re about to program is a variational hybrid
quantum-classical algorithm consisting of a pre-processing, the parameter-
ized quantum circuit, and the post-processing.

To keep our example small and concise, we pre-select the passengers before
we let theparameterizedquantumcircuit select thecorrectone. Weonlycon-
sider passengerswho share the same name or the same ticket.

It could also make sense to evaluate whether the passengers share the same
Cabin. Butwhenwe look at our data, we can seewe only have the Cabin for 204
passengers. Therefore, we don’t consider this feature now.

Listing 13.5: A look at the data

1 train.info()



402 Chapter 13. Search For The Relatives

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

Since we do not want to find the passenger whose relative we search, we ex-
clude this passenger fromour list.

Listing 13.6: The possible relatives of Mr. Rev. Ernest Courtenay Carter

1 ticket = current_passenger["Ticket"].to_string(index=False)
2 passengerId = current_passenger["PassengerId"]
3
4 group = train[
5 train["PassengerId"].ne(passengerId) & (
6 train["Name"].str.contains(last_name) |
7 train["Ticket"].eq(ticket)
8 )]

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
390 391 1 1 Carter,Mr. WilliamErnest male 36.0 1 2 113760 120.0 B96 B98 S
435 436 1 1 Carter,Miss. Lucile Polk female 14.0 1 2 113760 120.0 B96 B98 S
763 764 1 1 Carter,Mrs. WilliamErnest (Lucile Polk) female 36.0 1 2 113760 120.0 B96 B98 S
802 803 1 1 Carter,Master. WilliamThornton II male 11.0 1 2 113760 120.0 B96 B98 S
854 855 0 2 Carter,Mrs. Ernest Courtenay (LilianHughes) female 44.0 1 0 244252 26.0 NaN S

No other passenger shares the ticket with Mr. Rev Ernest Courtenay Carter.
Thus, we do not need to add another passenger to the list of five passengers
depicted above.



13.1 Turning the Problem into a Circuit 403

Usually, we will find less than 8 passengers who might be the searched rela-
tive. Therefore, three qubits suffice (23 = 8). We encode each passenger by a
binary string that represents themeasurements of the qubits.

For instance,we encode the first passenger (Mr.WilliamErnest Carter)with
the binary string 000, the second with the string 001, the third with 010, and
so on. We encode the fifth passengerMrs. Ernest Courtenay (Lilian Hughes)
Carter, who is the searched relative, with the string 100.

Listing 13.7: Encoding the passengers

1 # number of qubits to represent considered passengers
2 QUBITS = 3
3
4 def encode(pos):
5 bpos = "{:0{}b}".format(pos, QUBITS)
6 return bpos
7
8
9 number_of_rows = len(group.index)

10 for pos in range(0, 2**QUBITS):
11 if pos >= number_of_rows:
12 break
13
14 passenger = group.iloc[[pos]]
15 print(pos, encode(pos), passenger.Name.to_string(index=False))

0 000 Carter, Mr. William Ernest
1 001 Carter, Miss. Lucile Polk
2 010 Carter, Mrs. William Ernest (Lucile Polk)
3 011 Carter, Master. William Thornton II
4 100 Carter, Mrs. Ernest Courtenay (Lilian Hughes)

The encode function takes a passenger as its parameters (line 4). It reformats
the position into a binary string (line 5) and returns this binary position (line
6).

We loop through each possible combination of qubit values we have (line 10).
If our group is smaller (calculated at line 9) than the eight slots we have, we
stop (lines 11-12). Otherwise,We select the passenger at the specifiedposition
(line 14) and show the data (line 15).



404 Chapter 13. Search For The Relatives

We’re ready to create the quantum circuit. The search algorithm consists of
three parts. First,we initialize the quantumcircuit and put all qubits into an
equal superposition usingHadamard gates.
Listing 13.8: Equal superposition of the Hadamard gates

1 RULES=2
2
3 q_pass = QuantumRegister(QUBITS, name='passengers')
4 q_rules = QuantumRegister(RULES, name='rules')
5
6 qc = QuantumCircuit(q_pass, q_rules)
7
8 # put passenger qubits into superposition
9 qc.h(q_pass)

10 qc.barrier()
11
12 qc.draw()

Figure 13.1: Equal superposition of the Hadamard gates

Our quantum circuit will become quite long in comparison to the circuits



13.1 Turning the Problem into a Circuit 405

thus far. It is time to be a little more concise in our commands. Rather
than applying a Hadamard-gate on each qubit separately, we pass the whole
QuantumRegister as an argument (line 9). It applies Hadamard-gates on all
qubits in the register.

Registers are a convenient way to work with qubits and to address them. In
our case, we use three qubits (in the q_pass-register) to represent the passen-
gers. We also specified another register, the q_rules. We can use asmany reg-
isters aswewant in our QuantumCircuit.

Thequbits in the q_rules register serve to represent the rules that governwho
is the searched relative. We reserve one qubit for each attribute we want to
consider (Name, Ticket, and Cabin).

The second and most crucial part of the algorithm is the oracle. Similar to
the oracles in the previous sections, we have to negate the amplitude of the
passengerwewant to select.

The approach we apply inside our oracle is the following. We loop through
all thepassengerswhomightbe the relative. For eachpassenger,we evaluate
whether he or she shares the Name and the Ticket separately. If he or she does,
we switch the corresponding qubit in the q_rules register.

Sincewewill use the oracle quite a few times in our circuit, we put it into the
function oracle.

The oracle function takes four mandatory parameters and one optional pa-
rameter. The passenger denotes the passenger whose relative we search. The
group is the excerpt of the Pandas dataframe with the potential candidates of
being the relative. q_p is the QuantumRegister representing the passengers. q_r
is the QuantumRegister representing the rules. These are allmandatory param-
eters. Finally, the draw is an optional boolean parameter.

We create a separate QuantumCircuit (line 3) that includes the two registers we
took as parameters in this function. The oracle loops through all possible
states we can represent with the specified number of qubits (line 6). With
QUBITS=3, there are 2**3=8 (23) states. We stop once the position of the current
state exceeds the number of passengerswe consider (lines 7-8).

For each used state that represents a passenger, we calculate the binary posi-
tion (line 10), select the state that represents thispassenger (line 13), apply the
rules that governwhether the passenger is the relative (line 16), and unselect
the passenger again (line 19).



406 Chapter 13. Search For The Relatives

Listing 13.9: The oracle‐function

1 def oracle(passenger, group, q_p, q_r, draw=False):
2 # Create a sub−circuit
3 o_qc = QuantumCircuit(q_p, q_r)
4
5 # loop through all passengers
6 for pos in range(0, 2**QUBITS):
7 if pos >= len(group.index):
8 break
9

10 bpos = encode(pos)
11
12 # select the state representing the passenger
13 select_state(bpos, o_qc, q_p)
14
15 # apply the rules
16 apply_rules(passenger, group.iloc[[pos]], o_qc, q_p, q_r)
17
18 # un−select the state representing the passenger
19 select_state(bpos, o_qc, q_p)
20
21 if draw:
22 o_qc.barrier()
23
24 if draw:
25 return o_qc.draw()
26 else:
27 # We return the oracle as a gate
28 Oracle = o_qc.to_gate()
29 Oracle.name = "oracle"
30 return Oracle

The result of the oracle function depends on the draw parameter. If it is True,
we call the circuit’s draw function. If it is False, we turn the whole orcale cir-
cuit into a customquantumgate (line 28) and specify a customname (line 29).
Custom gates can’t include barriers. Therefore, we only structure the visual
representation of the oracle subcircuit, if we draw it (lines 21-22).

The apparent question is how do we select a state and apply the rules. We
postponed the respective implementation by calling functions. Let’s have a
look.



13.1 Turning the Problem into a Circuit 407

Listing 13.10: The select state function

1 def select_state(bpos, qc, qubits):
2 for i in range(0, QUBITS):
3 if bpos[::−1][i] == "0":
4 qc.x(qubits[i])

The select_state function selects or unselects a state. It takes the binary po-
sition, the quantum circuit (qc), and the qubits representing the passengers
as parameters. This function loops through all the qubits (line 2) we use for
representing a passenger. If the binary stringhas a 0 at the position the qubit
represents, we apply the X-gate on this qubit.

For instance, this function applies X-gates on all qubits if we select the state
000. It applies none if we select state 111. And, it applies an X-gate on the first
qubit (at position 0) if we select the state 110.

At line3,wereverse thebinary string (bpos[::−1]). Asa result,weread it from
right to left. This is the order of the qubits.

The next function depicts the application of the rules that governwhether a
passenger is the searched relative.

The apply_rules function takes as parameters the passengerwhose relative we
search, the current passenger who might be the relative, the QuantumRegister
representing the passengers, and the QuantumRegister representing the rules.

It applies two rules. First, we evaluate whether the passenger and the current
share the same Ticket (line 5). The Ticket is a string. Therefore, we parse the
Pandas rows into a simple string (removing the index). If we kept the index,
wewould never find amatch because the two passengers have different posi-
tions in the dataframe. If both passengers share the same Ticket, we apply the
mcx-gate. This is a convenience functionof theQiskit QuantumCircuit that repre-
sents amulti-controlled-X-gate. Thus far, we only used gates with a single or
two control qubits (cx or ccx). Now, we have three qubits we want to control
whether to switch a fourth (the target) qubit.

The underlying rationale is the following one. Before we call the apply_rules
-function, the oracle selects the state representing the current passenger.
Thus, all the three qubits representing the corresponding state are in state
|1⟩. The mcx-gate with the q_pass-QuantumRegister as contol qubits, and the first
qubitof the q_rules-QuantumRegisteras the target-qubitflips the stateof this tar-
get from |0⟩ to |1⟩.

So, if the two passengers share the same Ticket, we flip the qubit that repre-



408 Chapter 13. Search For The Relatives

sents this first rule to |1⟩.

Wedo the same thing for the second rule (lines 9-10). We checkwhether both
passengers share the same last name. Again,we convert the row into a string
. Further, we split the name into the last name (before the comma) and the
first names (after the comma). By using the part at position [0], we only use
the last name.
Listing 13.11: Apply the rules

1 from qiskit.circuit.library import ZGate
2
3 def apply_rules(passenger, current, qc, q_p, q_r):
4 # apply first rule
5 if passenger.Ticket.to_string(index=False) == current.Ticket.to_string(

index=False):
6 qc.mcx(q_p, q_r[0])
7
8 # apply second rule
9 if passenger.Name.to_string(index=False).split(',')[0] == current.Name.

to_string(index=False).split(',')[0]:
10 qc.mcx(q_p, q_r[1])
11
12 # all conditions must be met
13 qc.append(ZGate().control(QUBITS+RULES−1), [*q_p, *q_r])
14
15 # unapply second rule
16 if passenger.Name.to_string(index=False).split(',')[0] == current.Name.

to_string(index=False).split(',')[0]:
17 qc.mcx(q_p, q_r[1])
18
19 # unapply first rule
20 if passenger.Ticket.to_string(index=False) == current.Ticket.to_string(

index=False):
21 qc.mcx(q_p, q_r[0])

Next, we apply another multi-controlled gate (line 13). This is a Z-gate con-
trolledby all except onequbit. Theone exception is the target qubit. Remem-
ber, for a controlled Z-gate, it does notmatter which is the control qubit and
which is the target qubit because it flips the amplitude of the state where all
qubits are in state |1⟩.

Qiskitprovides the ZGate-function (thatwe import fromqiskit.circuit.library,
line1). Weaddcontrols to thegatebycalling control(x)onit,with x is thenum-
ber of controls we want to add. We want to use all qubits but one as control



13.1 Turning the Problem into a Circuit 409

qubits. Therefore, we specify QUBITS+RULES−1 as the number of controls. The
last parameter we pass is a list of the qubits to apply the gate to. We create
a list of all our qubits ([*q_p, *q_r]). The * operator unfolds a list into single
items, in our case, the qubits. By surrounding all the qubits of the two regis-
ters by brackets ([...]), we create a new list of these qubits.

This multi-controlled Z-gate flips the amplitude of the state |11111⟩. Thus,
both qubits representing the rulesmust be in state |1⟩, too.

Subsequently, we unselect the application of the rules again (lines 16-21). We
do this the samewaywe applied the rules in the first place.

We’re ready tohavea lookatouroracle. Wepass the requiredparameters and
set the draw parameter to True to get a drawing of this sub-circuit.

Listing 13.12: Showing the oracle circuit

1 oracle(current_passenger, group, q_pass, q_rules, True)

Figure 13.2: The oracle circuit

Wedivided eachpassenger bybarriers (the vertical bars). Thefirst passenger
we evaluate has the binary string 000. Therefore, we select the correspond-
ing state by applying X-gates on all three qubits. The first rule (same Ticket)
does not apply becausewe don’t see a controlled-X-gatewith the target qubit
rules_0. But we do see a controlled -X-gate with the target qubit rules_1. It
indicates this passenger shares the same last name. The five connected dots
across all qubits represent the controlled-Z-gate. Subsequently, we undo the



410 Chapter 13. Search For The Relatives

controlled-X-gate and also undo the selection of the state (single X-gates) be-
forewe continuewith the next passenger.

Thecircuit shows the lastpassengerof theoracle contains controlled-X-gates
on both rules-qubits. This is the state 100 that represents the fifth passenger
in our group:
4 100 Carter , Mrs. Ernest Courtenay (Lilian Hughes)

The third part of our algorithm is the amplifier. Again, we create a conve-
nience function to create it for us.
Listing 13.13: The amplifier‐function

1 def amplifier(passenger, q_p, draw=False):
2 # Create a sub−circuit
3 a_qc = QuantumCircuit(q_p)
4
5 a_qc.h(q_p)
6 a_qc.x(q_p)
7 a_qc.append(ZGate().control(QUBITS−1), q_p)
8 a_qc.x(q_p)
9 a_qc.h(q_p)

10
11 if draw:
12 return a_qc.draw()
13 else:
14 # We return the oracle as a gate
15 Amplifier = a_qc.to_gate()
16 Amplifier.name = "amplifier"
17 return Amplifier

We apply the same structure as in the oracle. The amplifier function takes
three mandatory parameters, the passenger, the QuantumRegister representing
the passengers, and the optional parameter draw (line 1).

We create another sub-circuit (line 3). The amplifier consists of a multi-
controlled-Z-gate encapsulated in X- (lines 6 and 8) and H- gates (lines 5 and
9).

If the drawparameter is set to True,wedrawthe circuit (lines 11-12). Otherwise,
we turn this sub-circuit into a gate (line 15), specify its name (line 16), and re-
turn this gate (line 17).

The following figure depicts the amplifier circuit.



13.1 Turning the Problem into a Circuit 411

Listing 13.14: Showing the amplifier circuit

1 amplifier(passenger, q_pass, draw=True)

Figure 13.3: The amplifier circuit

Let’s put these pieces together.

Listing 13.15: The search‐algorithm

1 qc = QuantumCircuit(q_pass, q_rules)
2
3 # put passenger qubits into superposition
4 qc.h(q_pass)
5
6 # Apply the oracle
7 qc.append(oracle(current_passenger, group, q_pass, q_rules), [*q_pass, *

q_rules])
8
9 # Apply the amplifier

10 qc.append(amplifier(current_passenger, q_pass), q_pass)
11
12 qc.draw()



412 Chapter 13. Search For The Relatives

Figure 13.4: The complete circuit

Thanks to the preparationwork, ourmain algorithm is relatively small. We
define a QuantumCircuitwith two QuantumRegisters (line 1). We applyHadamard-
gates on all qubits inside the q_pass-register (line 4). Then, we apply the ora-
cle (line 7) and the amplifier (line 10) by appending them to ourmain circuit.
The append function takes two parameters. The first is the gate thatwe create
in our convenience functions. The second is a list of qubits that we want to
apply to this gate to. The oracle uses all qubits. The amplifier only uses the
passenger-qubits.

Are you curious? Let’s run this circuit.

Listing 13.16: Result of the search algorithm

1 results = execute(qc,Aer.get_backend('statevector_simulator')).result()
2 plot_histogram(results.get_counts())



13.1 Turning the Problem into a Circuit 413

Figure 13.5: Result of the search algorithm

Our algorithm measures state 00100 with the highest probability of 0.781.
This is the state representing the searched relative ofMr. Rev. Ernest Courte-
nay Carter. It isMrs. Ernest Courtenay (LilianHughes) Carter.

Even though the result is quite evident, there’s one thingmissing. At the end
of section 12.1, wementionedwe need to repeat the amplificationmore than
once, depending on the number of stateswe have.

In our case, we have 23 states. Therefore we need to apply the amplifier π
4

√
8

times. Let’s put this calculation into a separate function.

Listing 13.17: Apply the amplifier multiple times

1 def rounds(number_of_rounds, qc, current_passenger, group, q_pass,
q_rules):

2 print ("{} iterations".format(number_of_rounds))
3 for i in range(0,round(number_of_rounds)):
4 qc.append(oracle(current_passenger, group, q_pass, q_rules), [*q_pass,

*q_rules])
5 qc.append(amplifier(current_passenger, q_pass), q_pass)

Besides the usual parameters, the rounds function takes the number_of_rounds
and repeats the oracle followed by the amplifier accordingly. Let’s have a
look.



414 Chapter 13. Search For The Relatives

Listing 13.18: Search algorithm with repeated amplification

1 from math import pi
2 qc = QuantumCircuit(q_pass, q_rules)
3
4 # put passenger qubits into superposition
5 qc.h(q_pass)
6 rounds(pi*sqrt(2**QUBITS)/4, qc, current_passenger, group, q_pass,

q_rules)
7 qc.draw()

2.221441469079183 iterations

Figure 13.6: Circuit with repeated amplification

With eight state or three qubits,weneed to iterate through the amplification
2.22 times. We round this to 2. The followingfigure depicts the results of this
circuit.
Listing 13.19: Results of the repeated amplification

1 results = execute(qc,Aer.get_backend('statevector_simulator')).result()
2 plot_histogram(results.get_counts())



13.1 Turning the Problem into a Circuit 415

Figure 13.7: Results of the repeated amplification

The measures show an improved result. Now, we receive the correct
searched relativewithaprobability of 0.945. Further,wecreatedaprettyflex-
ible algorithm. Let’s saywewant our circuit to consist of 10 qubits represent-
ing the passengers.

! This circuit takes quite awhile on a classical computer.

Listing 13.20: Running a circuit with 10 passenger‐qubits

1 QUBITS=10
2
3 q_pass = QuantumRegister(QUBITS, name='passengers')
4 q_rules = QuantumRegister(RULES, name='rules')
5 qc = QuantumCircuit(q_pass, q_rules)
6
7 # put passenger qubits into superposition
8 qc.h(q_pass)
9 rounds(pi*sqrt(2**QUBITS)/4, qc, current_passenger, group, q_pass,

q_rules)
10 results = execute(qc,Aer.get_backend('statevector_simulator')).result()
11 "Probability of finding '100': {}".format(results.get_counts()['

000000000100'])



416 Chapter 13. Search For The Relatives

In the circuit above, we search the one state out of 210 = 1024 states. The
only thing we need to change is the QUBITS value. Then, we renew the q_pass
-QuantumRegister and the QuantumCircuit. The output shows we used 25 itera-
tions, and the circuit has a probability of 0.999 to result in the correct state.

When you run this circuit on your local machine, it needs quite some time.
Simulating twelve qubits altogether is already a challenge for a classical com-
puter.

13.2 Multiple Results
Passengersmay not only have a single sibling, spouse, parent, or child. They
can havemany. For instance, the Carter family, whose father isMr.William
Ernest Carter, consists of the parental couple and two children.

Beforewe seewhat happens, let’s even further structure our code. Wedefine
the prepare_group-function. It takes a PassengerId and returns the correspond-
ing passenger and a list of potential relatives.

Listing 13.21: Prepare the search

1 def prepare_group(passengerId):
2 current_passenger = train[train["PassengerId"].eq(passengerId)]
3 last_name = current_passenger.Name.to_string(index=False).split(',')[0]
4 train[train["Name"].str.contains(last_name)]
5
6 ticket = current_passenger["Ticket"].to_string(index=False)
7 passengerId = current_passenger["PassengerId"]
8
9 group = train[

10 train["PassengerId"].ne(passengerId) & (
11 train["Name"].str.contains(last_name) |
12 train["Ticket"].eq(ticket)
13 )]
14 return (current_passenger, group)

We also define the find_relatives function. It takes the passenger and the
group and runs the search algorithm.



13.2 Multiple Results 417

Listing 13.22: Run the search for a passenger's relatives

1 def find_relatives(current_passenger, group):
2 q_pass = QuantumRegister(QUBITS, name='passengers')
3 q_rules = QuantumRegister(RULES, name='rules')
4 qc = QuantumCircuit(q_pass, q_rules)
5
6 # put passenger qubits into superposition
7 qc.h(q_pass)
8 rounds(pi*sqrt(2**QUBITS)/4, qc, current_passenger, group, q_pass,

q_rules)
9 results = execute(qc,Aer.get_backend('statevector_simulator')).result()

10 return plot_histogram(results.get_counts())

So, let’s see what happens if we run our algorithm to search for the relatives
ofMr.WilliamErnest Carter.
Listing 13.23: Search for the relatives of Mr. William Ernest Carter.

1 QUBITS=3
2 (current_passenger, group) = prepare_group(391)
3 find_relatives(current_passenger, group)

Figure 13.8: Result of the search algorithm

Whenwe look at the table of potential relatives, we see the algorithm found
all but the actual relatives.



418 Chapter 13. Search For The Relatives

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
249 250 0 2 Carter, Rev. Ernest Courtenay male 54.0 1 0 244252 26.0 NaN S
435 436 1 1 Carter,Miss. Lucile Polk female 14.0 1 2 113760 120.0 B96 B98 S
763 764 1 1 Carter,Mrs. WilliamErnest (Lucile Polk) female 36.0 1 2 113760 120.0 B96 B98 S
802 803 1 1 Carter,Master. WilliamThornton II male 11.0 1 2 113760 120.0 B96 B98 S
854 855 0 2 Carter,Mrs. Ernest Courtenay (LilianHughes) female 44.0 1 0 244252 26.0 NaN S

The problem is the number of iterations. When we havemore than one cor-
rect relative, calculating the required iterations is a little different. If we
search forM results, we need to iterate π

4

√
N
M times.

Listing 13.24: Run the search for mutliple relatives

1 def find_relatives(current_passenger, group, cnt_searched):
2 q_pass = QuantumRegister(QUBITS, name='passengers')
3 q_rules = QuantumRegister(RULES, name='rules')
4 qc = QuantumCircuit(q_pass, q_rules)
5
6 # put passenger qubits into superposition
7 qc.h(q_pass)
8 rounds(pi/4*sqrt(2**QUBITS/cnt_searched), qc, current_passenger, group,

q_pass, q_rules)
9 results = execute(qc,Aer.get_backend('statevector_simulator')).result()

10 return plot_histogram(results.get_counts())

We adjust the calculation of required iterations accordingly (line 8). Fortu-
nately, our dataset indicates the number of relatives we search for. This is
the sumof a passenger’s SibSp and Parch values.

Listing 13.25: Result of the search with adjusted number of iterations

1 find_relatives(current_passenger, group, current_passenger["SibSp"]+
current_passenger["Parch"])



13.2 Multiple Results 419

Figure 13.9: Result of the search algorithm for mutliple
relatives

When we run the adjusted circuit, we see a decreased number of iterations.
The updated algorithmfinds the correct three relatives.



14. Sampling

14.1 Forward Sampling
In the previous chapter 10, we learned how to apply a variational method to
learn a hidden variable. Variational methods approximate the distribution
of a hidden variable analytically.

Sampling-basedmethodsworkdifferently. Instead of calculating thehidden
distribution, they approximate it empirically. The principle is straightfor-
ward. Thesemethods repeatedly select an instance and calculate thediscrete
valueof thehiddenvariable for this instance. Let’s saywehavea coin, andwe
want todetermine theprobabilityofgettingheads. Wedonotanalyze the tex-
ture and structure of the coin. We toss it over and over again and count the
times it lands heads up. Having tossed it for a hundred times, we got quite a
good approximation of the probability of getting heads.

Samplingbuildsuponsimulation. Wedonotnecessarily select real instances
fromour data. Butwe generate random instances based on our data.

In ourQBN, eachvariable has a probability table (theCPT).We startwith the
variables thathavenoparents. TheirCPTsdenote themarginal (withoutcon-
ditions) probabilityof the respectivevalues. Weuse thisprobability toassign
a value to a new instance.

We continue with the child variables. Their probability tables tell us how
likely the variable takes on a particular value given the values of its parents.
Since our instance alreadyhas a value for theparent variable,we canassign a



14.1 Forward Sampling 421

value for thechildvariable. Asingle instance isnot representativeofourdata.
It could be a very unlikely case that we would only observe one in a million
times. Therefore, we repeat creating instances many times. The higher the
number of instances, the closer our generated population of instances repre-
sents the probabilities given by our probability tables. We get a good estima-
tion of the probability a variable takes on. Thismethod is known as forward
sampling.

We already did this when we used our QBN to calculate the marginal proba-
bility to survive the Titanic shipwreck.

Listing 14.1: Preparing the trained QBN

1 def get_trained_qbn(passengers, params, hist=True):
2
3 prepared_passengers = prepare_data(passengers, params)
4 norm_params = calculate_norm_params(prepared_passengers)
5 surv_params = calculate_surv_params(prepared_passengers)
6
7 def qbn_titanic():
8 def circuit(qc, qr=None, cr=None):
9 apply_ischild_sex(qc)

10 apply_norm(qc, norm_params)
11 apply_class(qc)
12 apply_survival(qc, surv_params)
13
14 qc.measure(QPOS_SURV, cr[0])
15
16 return as_pqc(QUBITS, circuit, hist=hist, cnt_classical=1, measure=

True, shots=1000)
17 return qbn_titanic()

A quantum simulator is the perfect example of a sampling algorithm. It al-
lows us to specify the number of instances to draw (shots). OurQBN specifies
the probabilities that govern the creation of the instances.

The get_trained_qbn-function creates a PQC based on the passenger data and
the parameters we trained previously. As a result, we get themarginal prob-
ability that a passenger survived in accordancewith our data.

Listing 14.2: Use the QBN for forward sampling

1 get_trained_qbn(train, trained_params)



422 Chapter 14. Sampling

Figure 14.1: Result of forward sampling

14.2 Bayesian Rejection Sampling
Our QBN is well trained. Yet, when we look back to all the CPT it consists
of (see section 10.3), we haven’t completed it. We still miss the CPT of being
favored by a Norm given the passenger’s Sex and Age. And we miss the CPT of
Survival given the Norm and the Pclass. So let’s catch up on this.
Listing 14.3: Preparing the trained QBN to measure the norm

1 def get_trained_qbn_norm(passengers, params):
2
3 prepared_passengers = prepare_data(passengers, params)
4 norm_params = calculate_norm_params(prepared_passengers)
5 surv_params = calculate_surv_params(prepared_passengers)
6
7 def qbn_titanic():
8 def circuit(qc, qr=None, cr=None):
9 apply_ischild_sex(qc)

10 apply_norm(qc, norm_params)
11 apply_class(qc)
12 apply_survival(qc, surv_params)
13
14 qc.measure(QPOS_ISCHILD, cr[0])
15 qc.measure(QPOS_SEX, cr[1])
16 qc.measure(QPOS_NORM, cr[2])
17
18 return as_pqc(QUBITS, circuit, hist=False, cnt_classical=3, measure=

True, shots=10000)
19 return qbn_titanic()



14.2 Bayesian Rejection Sampling 423

Again, estimating thenumbers in theCPTof aBayesiannetworkbuilds upon
counting howmany times that event occurred in our training data.

First, we need to change the variables wemeasure.

Instead of the qubit at position QPOS_SURV that represents whether a passen-
ger survived, we measure the qubits representing whether a passenger was
a child (QPOS_ISCHILD, line 14), whether she was female (QPOS_SEX, line 15), and
whether shewas favored by a norm (QPOS_NORM, line 16).

Sincewemeasure threequbits,weneed tospecify thecorrespondingnumber
of classical bits (cnt_classical=3). Further,we specify not to drawahistogram
(hist=False) becausewewant to get the raw data.

Listing 14.4: Obtain the measurements

1 norm_mes = get_trained_qbn_norm(train, trained_params)
2 norm_mes

{'000': 5392,
'001': 307,
'010': 50,
'011': 17,
'100': 753,
'101': 78,
'110': 3194,
'111': 209}

As a result, we get a Python dictionary whose keys represent the states and
whose values denote the number of counts of each state. The state is a binary
string read from right to left.

The right-handbit represents the classical bit at position 0 –whether the pas-
senger was a child (==1) or not (==0). The middle bit represents whether the
passengerwas female (==1) ormale (==0). The left-handbit showswhether the
passengerwas favored by a norm (==1) or not (==0).



424 Chapter 14. Sampling

Listing 14.5: Calculate the conditional probabilities of being favored by a norm

1 print("Chance to be favored by norm")
2 print("Female children: {:.2f} ".format(norm_mes['111']/(norm_mes['111']+

norm_mes['011'])))
3 print("Female adults: {:.2f} ".format(norm_mes['110']/(norm_mes['110']+

norm_mes['010'])))
4 print("Male children: {:.2f} ".format(norm_mes['101']/(norm_mes['101']+

norm_mes['001'])))
5 print("Male adults: {:.2f} ".format(norm_mes['100']/(norm_mes['100']+

norm_mes['000'])))

Chance to be favored by norm
Female children: 0.92
Female adults: 0.99
Male children: 0.21
Male adults: 0.13

This time, we aim to calculate conditional probabilities. We aim to calculate
the chance tobe favoredbyanormgiven thepassenger’s genderandwhether
she was a child. The samples we createmay belong to one out of four groups
(female children, male children, female adults, and male adults). Accord-
ingly, we calculate the conditional probabilities of being favored by a Norm by
counting the number of instances where the passenger of the specific group
was favored divided by the size of thewhole group.

For instance, the probability of a female child being favored is given by the
count of favored female children (norm_mes['111']) divided by the sum of all
female children (favored norm_mes['111'] or unfavored norm_mes['011']).

We refer to this kind of sampling as rejection sampling. Let’s say we only
wanted to calculate the probability of a female child being favored. Then,we
would only keep the instances that contain the corresponding evidence and
reject (throw away) all other instances.

Since wewant to calculate the probabilities of all the groups, we keep the in-
stances, butwe regard each group separately.

Next, we calculate the conditional probability of survival.



14.2 Bayesian Rejection Sampling 425

Listing 14.6: Preparing the trained QBN to measure survival

1 def get_trained_qbn_surv(passengers, params):
2
3 prepared_passengers = prepare_data(passengers, params)
4 norm_params = calculate_norm_params(prepared_passengers)
5 surv_params = calculate_surv_params(prepared_passengers)
6
7 def qbn_titanic():
8 def circuit(qc, qr=None, cr=None):
9 apply_ischild_sex(qc)

10 apply_norm(qc, norm_params)
11 apply_class(qc)
12 apply_survival(qc, surv_params)
13
14 qc.measure(QPOS_NORM, cr[0])
15 qc.measure(QPOS_FIRST, cr[1])
16 qc.measure(QPOS_SECOND, cr[2])
17 qc.measure(QPOS_THIRD, cr[3])
18 qc.measure(QPOS_SURV, cr[4])
19
20 return as_pqc(QUBITS, circuit, hist=False, cnt_classical=5, measure=

True, shots=10000)
21 return qbn_titanic()

In the quantum circuit, we measure the corresponding qubits (lines 14-18).
The rest remains unchanged.

Listing 14.7: Obtain the measurements

1 surv_mes = get_trained_qbn_surv(train, trained_params)
2 surv_mes



426 Chapter 14. Sampling

{'10010': 307,
'10011': 1000,
'10100': 93,
'10101': 863,
'11000': 225,
'11001': 1285,
'00010': 1043,
'00011': 67,
'00100': 1074,
'00101': 91,
'01000': 2836,
'01001': 1116}

As a result, we get a list of states and their counts. The meaning of each bit
changed according to the changed measurements. The left qubit denotes
survival, the second bit whether the passenger had a third-class ticket, the
third bit whether the passenger had a second-class ticket, the fourth bit
whether the passenger had a first-class ticket, and the fifth bit whether the
passengerwas favored by a Norm.

Again, we calculate the probabilities by dividing the number of survivors of
a group by the size of the group.

Listing 14.8: Calculate the conditional probabilities of survival

1 print("Chance to survive")
2 print("Favored 1st: {:.2f} ".format(
3 surv_mes['10011']/(surv_mes['10011']+surv_mes['00011'])))
4 print("Favored 2nd: {:.2f} ".format(
5 surv_mes['10101']/(surv_mes['10101']+surv_mes['00101'])))
6 print("Favored 3rd: {:.2f} ".format(
7 surv_mes['11001']/(surv_mes['11001']+surv_mes['01001'])))
8 print("Unfavored 1st: {:.2f} ".format(
9 surv_mes['10010']/(surv_mes['10010']+surv_mes['00010'])))

10 print("Unfavored 2nd: {:.2f} ".format(
11 surv_mes['10100']/(surv_mes['10100']+surv_mes['00100'])))
12 print("Unfavored 3rd: {:.2f} ".format(
13 surv_mes['11000']/(surv_mes['11000']+surv_mes['01000'])))



14.3 Quantum Rejection Sampling 427

Chance to survive
Favored 1st: 0.94
Favored 2nd: 0.90
Favored 3rd: 0.54
Unfavored 1st: 0.23
Unfavored 2nd: 0.08
Unfavored 3rd: 0.07

Let’s put these numbers into the CPTs of our QBN.

female
P(Sex)

male
0.35 0.65

Sex isChild

Norm

child
P(isChild)

adult
0.08 0.92

female

P(Norm = Favored|Sex, isChild)

male
child
adult

0.21

Class

1st
P(isChild)

2nd
0.24 0.21

Survival

P(Survival = True|Norm,Class)

0.94favored
unfavored

0.54

3rd

1st 2nd 3rd

0.55

0.99 0.13

0.90

0.23 0.070.08

0.92

Figure 14.2: The completed CPT

14.3 Quantum Rejection Sampling
Rejection sampling is a fancy name for a straightforward method. We cre-
ate samples and pick the ones that contain the evidence we’re interested in.



428 Chapter 14. Sampling

Theproblemwith this type of sampling is thatwe generatemany sampleswe
don’t use. Let’s have a critical look at the following case of calculating the
probability of female children being favored by a norm.

Listing 14.9: Evaluate the effectiveness.

1 norm_mes = get_trained_qbn_norm(train, trained_params)
2 print("{:.2f} of female children were favored by a norm ".format(
3 norm_mes['111']/(norm_mes['111']+norm_mes['011'])))
4 print("Considered {} samples ".format(
5 norm_mes['111']+norm_mes['011']))
6 print ("Acceptance of {:.1f}% of the samples".format(
7 (norm_mes['111']+norm_mes['011'])/100))

0.94 of female children were favored by a norm
Considered 210 samples
Acceptance of 2.1% of the samples

Werepeated our quantumcircuit 10,000 times, but only around 200 instances
were femalechildren. Of course, this isnotbadper se. It reflectsourdata that
contains only very few female children.

It results in only 2% of the samples being useful. This is quite a waste of re-
sources and can become a problem if the network becomes complex.

Wouldn’t it be great ifwehadawayof increasing theprobability of obtaining
the proper evidence?

In fact, there is! In a QBN, a quantum state represents a possible configura-
tion of passenger characteristics. In the previous chapter 12 we got to know
amplitude amplification – amethod that allowsus to increase theprobability
ofmeasuring a certain state.

Let’s start with the oracle. It is quite simple. A simpleCCZ-gate flips the am-
plitude of the state where the relevant qubits are in state |1⟩ (line 5). We only
want to select female children. But these directly affect whether the passen-
ger was favored by a norm. In our circuit, we entangle these qubits. There-
fore, include the qubit at the position QPOS_NORM in the controlled Z-gate. You
can add further qubits (such as the qubit at position QPOS_SURV) if you like. But
this is not required.

Further, if we wanted to select male children, female adults, or male adults,



14.3 Quantum Rejection Sampling 429

wewould need to encapsulate the controlled Z-gate into the respective NOT -
gates on the qubit wewish to obtain a different value.

Listing 14.10: The oracle‐function

1 def oracle(qr, draw=False):
2 # Create a sub−circuit
3 o_qc = QuantumCircuit(qr)
4
5 o_qc.append(ZGate().control(2), [qr[QPOS_ISCHILD], qr[QPOS_SEX], qr[

QPOS_NORM]])
6
7 if draw:
8 return o_qc.draw()
9 else:

10 # We return the oracle as a gate
11 Oracle = o_qc.to_gate()
12 Oracle.name = "oracle"
13 return Oracle

The oracle function creates and returns a custom gate named “oracle” (lines
11-13). The following image depicts our oracle.

Figure 14.3: The oracle for female children

The next gate we create is the amplifier. Thus far, we learned the amplifier
to consist of a controlled Z-gate encapsulated intoHadamard- andNOT -gates.
Our amplifier is almost alike. However, we do not use Hadamard-gates. But



430 Chapter 14. Sampling

weuse apart of the actual implementationof ourquantumBayesiannetwork
instead. We use the function apply_ischild_sexwe created in section 10.3. Ba-
sically, this function applies RY -gates on the qubits at the positions QPOS_SEX
and QPOS_ISCHILD by the angle representing the correspondingmarginal prob-
abilities.

The rest of the amplifier remains the standard amplifier we already know.
Again,we apply a controlled Z-gate insideNOT -gates. However, this time,we
must apply the controlled Z-gate only on the two qubits whose statewewant
toamplify. Theseare thequbits at thepositions QPOS_SEXand QPOS_ISCHILD (line
8).

Listing 14.11: The amplifier‐function

1 def amplifier(qr, draw=False):
2 # Create a sub−circuit
3 a_qc = QuantumCircuit(qr)
4
5 apply_ischild_sex(a_qc) # H
6 a_qc.x(qr[QPOS_ISCHILD])
7 a_qc.x(qr[QPOS_SEX])
8 a_qc.cz(qr[QPOS_ISCHILD], qr[QPOS_SEX])
9 a_qc.x(qr[QPOS_ISCHILD])

10 a_qc.x(qr[QPOS_SEX])
11 apply_ischild_sex(a_qc) # H
12
13 if draw:
14 return a_qc.draw()
15 else:
16 # We return the oracle as a gate
17 Amplifier = a_qc.to_gate()
18 Amplifier.name = "amplifier"
19 return Amplifier

The following image depicts the amplifier.



14.3 Quantum Rejection Sampling 431

Figure 14.4: The amplifier

We are ready to put the circuit together. We start with preparing the passen-
gers (line 3) and calculating the parameters (lines 4-5). Usually, themain cir-
cuit starts with a series of Hadamard gates. But we don’t want all qubits to
start in a balanced state of superposition. Instead, we apply our QBN inside
the amplifier (line 11)

Then, the amplification consists of two iterationsof theoracle and the ampli-
fier (lines 13-17).

Before we apply the rest of our QBN (applying the norm and the survival,
lines 21-22), we need to apply NOT -gates on the amplified qubits (lines 19-20)

Finally, wemeasure the qubits we’re interested in (lines 24-26)



432 Chapter 14. Sampling

Listing 14.12: Prepare the amplified QBN

1 def get_trained_qbn_amp(passengers, params):
2
3 prepared_passengers = prepare_data(passengers, params)
4 norm_params = calculate_norm_params(prepared_passengers)
5 surv_params = calculate_surv_params(prepared_passengers)
6
7 def qbn_titanic():
8 def circuit(qc, qr=None, cr=None):
9

10 # amplifier replacing the H−gates
11 qc.append(amplifier(qr), qr)
12
13 # Amplification
14 qc.append(oracle(qr), qr)
15 qc.append(amplifier(qr), qr)
16 qc.append(oracle(qr), qr)
17 qc.append(amplifier(qr), qr)
18
19 qc.x(QPOS_ISCHILD)
20 qc.x(QPOS_SEX)
21 apply_norm(qc, norm_params)
22 apply_survival(qc, surv_params)
23
24 qc.measure(QPOS_ISCHILD, cr[0])
25 qc.measure(QPOS_SEX, cr[1])
26 qc.measure(QPOS_NORM, cr[2])
27
28 return as_pqc(QUBITS, circuit, hist=False, cnt_classical=3, measure=

True, shots=10000)
29 return qbn_titanic()

We’re ready to run our amplifiedQBN.

Listing 14.13: Evaluate the effectiveness of the amplified QBN

1 amp_mes = get_trained_qbn_amp(train, trained_params)
2 print("{:.2f} of female children were favored by a norm ".format(
3 amp_mes['111']/(amp_mes['111']+amp_mes['011'])))
4 print("Considered {} samples ".format(
5 amp_mes['111']+amp_mes['011']))
6 print ("Acceptance of {:.1f}% of the samples".format(
7 (amp_mes['111']+amp_mes['011'])/100))



14.3 Quantum Rejection Sampling 433

0.94 of female children were favored by a norm
Considered 9809 samples
Acceptance of 98.1% of the samples

The result is astonishing. First and most importantly, we obtain the same
result of whether female childrenwere favored by a norm. Butwe increased
the probability of female children in the sample to around 98%. Therefore,
we could reduce the overall number of generated samples and have enough
evidence to conclude from the sample.

Grover’s algorithmhasbecome famous forbeing able to searchanunordered
list of items in fewer steps than a classical algorithm can. But amplitude am-
plification is a general technique. It lets usmanipulate a quantum system to
obtaina statewewant it tohave. This is somethinguseful beyond just search-
ing for a state.



15. What's Next?

You’ve reached the end of Hands-On Quantum Machine Learning with
Python–Volume 1. I hope you enjoyed reading it. And I hope you stay with
me in the journey of learning about quantummachine learning.

We learnedhow to create, train, anduse a probabilistic quantumsystem. We
explored how to develop sophisticated quantum circuits. And we learned
howtouseentanglementand interference to reduce thecomplexityof aprob-
lem at hand. Yet, we have just scratched the very surface of quantum ma-
chine learning. There is a lot to discover in quantummachine learning. And
you’rewell-equipped for this journey.

My work on QuantumMachine Learning is not finished. You may have no-
ticed the declaration “Volume 1”. I already plan the second volume. While
I have not settled for the final content, my goal is to concentrate on quan-
tum machine learning algorithms, such as the variational quantum eigen-
solver (VQE), quantum approximate optimization algorithm (QAOA), quan-
tumBoltzmannmachines, and quantumneural networks (QNN).

There’s so much to learn. Don’t miss the regular updates on Substack,
Medium, andwww.pyqml.com. If you like, please providemewith feedback
at mail@pyqml.com.

You can alsomailme if youhave any other questions regarding quantumma-
chine learning in general. I’ll strive to reply.

Thank you for reading.

https://pyqml.substack.com/
https://pyqml.medium.com/
https://www.pyqml.com
mailto:mail@pyqml.com


PyQML

Hands-On Quantum Machine
Learning With Python
Dr. Frank Zickert

You're interested in quantum computing
and machine learning... But you don't
know how to get started? Let me help.

If you can't explain it simply, you
don't understand it well enough.

Albert Einstein.

Whether you just get started with quantum computing
and machine learning or you're already a senior machine
learning engineer, Hands-On Quantum Machine Learning
With Python is your comprehensive guide to get started
with Quantum Machine Learning - the use of quantum
computing for the computation of machine learning al-
gorithms.
This book offers a practical, hands-on exploration of
quantum machine learning.


	Introduction
	Who This Book Is For
	Book Organization
	Why Should I Bother With Quantum Machine Learning?
	Quantum Machine Learning - Beyond The Hype
	What is Machine Learning?
	What is Quantum Computing?
	How Does Machine Learning Work?
	What Tasks Are Quantum Computers Good At?
	The Case For Quantum Machine Learning

	Quantum Machine Learning In The NISQ Era
	I learned Quantum Machine Learning The Hard Way
	Quantum Machine Learning Is Taught The Wrong Way
	Configuring Your Quantum Machine Learning Workstation
	Python
	Jupyter
	Libraries and Packages
	Virtual Environment
	Configuring Ubuntu For Quantum Machine Learning with Python
	How To Setup JupyterLab For Quantum Computing — On Windows


	Binary Classification
	Predicting Survival On The Titanic
	Get the Dataset
	Look at the data
	Data Preparation and Cleaning
	Missing Values
	Identifiers
	Handling Text and Categorical Attributes
	Feature Scaling
	Training and Testing

	Baseline
	Classifier Evaluation and Measures
	Unmask the Hypocrite Classifier

	Qubit and Quantum States
	Exploring the Quantum States
	Visual Exploration Of The Qubit State
	Bypassing The Normalization
	Exploring The Observer Effect
	Parameterized Quantum Circuit
	Variational Hybrid Quantum-Classical Algorithm

	Probabilistic Binary Classifier
	Towards Naïve Bayes
	Bayes' Theorem
	Gaussian Naïve Bayes

	Working with Qubits
	You Don't Need To Be A Mathematician
	Quantumic Math - Are You Ready For The Red Pill?
	If You Want To Gamble With Quantum Computing…

	Working With Multiple Qubits
	Hands-On Introduction To Quantum Entanglement
	The Equation Einstein Could Not Believe
	Single Qubit Superposition
	Quantum Transformation Matrices
	Transforming Single Qubits
	Two-Qubit States
	Two-Qubit Transformations
	Entanglement

	Quantum Programming For Non-mathematicians
	Representing a marginal probability
	Calculate the joint probability
	Calculate the conditional probability


	Quantum Naïve Bayes
	Pre-processing
	PQC
	Post-Processing

	Quantum Computing Is Different
	The No-Cloning Theorem
	How To Solve A Problem With Quantum Computing
	The Quantum Oracle Demystified

	Quantum Bayesian Networks
	Bayesian Networks
	Composing Quantum Computing Controls
	Circuit implementation

	Bayesian Inference
	Learning Hidden Variables
	Estimating A Single Data Point
	Estimating A Variable
	Predict Survival

	The World Is Not A Disk
	The Qubit Phase
	Visualize The Invisible Qubit Phase
	The Z-gate
	Multi-Qubit Phase
	Controlled Z-gate

	Phase Kickback
	Quantum Amplitudes and Probabilities

	Working With The Qubit Phase
	The Intuition Of Grover's Algorithm
	Basic Amplitude Amplification
	Two-Qubit Amplification

	Search For The Relatives
	Turning the Problem into a Circuit
	Multiple Results

	Sampling
	Forward Sampling
	Bayesian Rejection Sampling
	Quantum Rejection Sampling

	What's Next?

