

Copyright © 2021 Dr. Frank Zickert
PUBLISHED BY PYQML
www.pygqml.com

The contents of this book, unless otherwise indicated, are Copyright © 2021
Dr. Frank Zickert, pygml.com. All rights reserved. Books like this are made
possible by the time invested by the authors. If you received this book and
did not purchase it, please consider making future books possible by buying
a copy at https:/www.pygml.com today.

Release 1.0, May 2021

1.1
1.2
1.3

1.4

14.1
14.2
14.3
144
1.4.5

1.5
1.6
1.7

1.8

1.8.1
1.8.2
1.8.3
1.8.4
1.8.5
1.8.6

Introduction ... 7
Who This BOOK IS FOPr ...ttt ittt it ittt it eienaeanannns 7
BoOK Organizationcoviiiiiiiii ittt it e 9
Why Should I Bother With Quantum Machine Learning? 10
Quantum Machine Learning - Beyond The Hype 11
What is Machine Learning? i 11
What is Quantum Computing? 13
How Does Machine Learning Work? 15
What Tasks Are Quantum Computers Good At? 16
The Case For Quantum Machine Learning 18
Quantum Machine Learning In The NISQEra, 19
Ilearned Quantum Machine Learning The Hard Way 2l
Quantum Machine Learning Is Taught The Wrong Way 24
Configuring Your Quantum Machine Learning Workstation 26
Pythom ... 7
JUDYEED . . o oo _7
Libraries and Packages e 7
Virtual Environment 28
Configuring Ubuntu For Quantum Machine Learning with Python 28

How To Setup JupyterLab For Quantum Computing --- On Windows 30

Q.1
.2
.3

.4

24.1
2.4.2
2.4.3
244
2.4.5

R.5
R.6
.7

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

5.1
5.2
5.5

6.1

Binary Classification 33
Predicting Survival On The Titanic i, 33
GettheDataset ... i e 34
Lookatthedata i i, 35
Data Preparationand Cleaningcciiiiiiiinnnon.. 38
Missing Values 38
Identifiers 40
Handling Text and Categorical Attributes 42
Feature Scaling 43
Training and Testing 45
BasEline ..o e e e et 46
Classifier Evaluationand Measuresc.covvteeneenenenn. 49
Unmask the Hypocrite Classifier i, 53
Qubit and Quantum States ...l 62
Exploring the Quantum States 62
Visual Exploration Of The Qubit State 72
Bypassing The Normalization 74
Exploring The ObserverEffect 79
Parameterized Quantum Circuit i i, 84
Variational Hybrid Quantum-Classical Algorithm 89
Probabilistic Binary Classifier 100
Towards Naive Bayescoiiiiiiniiiii ittt iiinennenn. 101
Bayes Theoremcoiiitiiii ittt ittt ieneaneennns 105
Gaussian Naive Bayescci ittt e e e e 109
Working with Qubits 113
You Don't Need To Be A Mathematician 113
Quantumic Math - Are You Ready For The Red Pill? 124
If You Want To Gamble With Quantum Computing... 134
Working With Multiple Qubits 147

Hands-On Introduction To Quantum Entanglement 147

6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

6.3

6.3.1
6.3.2
6.3.3

7.1
7.2
7.3

8.1
8.2
8.3

9.1
9.2
9.8

10

10.1
10.2
10.3
10.4

11
11.1

The Equation Einstein Could Not Believe 159
Single Qubit Superposition 160
Quantum Transformation Matrices 161
Transforming Single Qubits 162
Two-Qubit States 162
Two-Qubit Transformations 164
Entanglement 167
Quantum Programming For Non-mathematicians 173
Representing a, marginal probability 176
Calculate the joint probability 178
Calculate the conditional probability 186
Quantum Naive Bayes ..., 204
Pre-processing ... e e e 206
PR . e e 209
POSt-PrOCESSINE vttt e e e e 222
Quantum Computing Is Different 225
The No-Cloning Theorem ..., 25
How To Solve A Problem With Quantum Computing 231
The Quantum Oracle Demystified, 244
Quantum Bayesian Networks 253
Bayesian NetworKsttt i et e 255
Composing Quantum Computing Controls 259
Circuit implementation 74
Bayesian Inference ... 281
Learning Hidden Variablescciiiiiiiiiiiiiinnnnn.. 282
Estimating A SingleDataPoint 283
Estimating A Variablecc i, 294
Predict Survival e e 316
The World Is Not ADisk ..., 320

The QUbit Phaseot e i e 320

6

11.2 Visualize The Invisible Qubit Phasecoivuon... 333
11.2.1 The Z-gate 334
11.2.2 Multi-Qubit Phase 343
11.2.3 Controlled Z-gate e 349
11.8 Phase KickbacCKc.cciiiiiiiiiiiiiiiiiiiiinnnennennn. 351
11.4 Quantum Amplitudes and Probabilities 364
12 Working With The Qubit Phase 371
12.1 The Intuition Of Grover's Algorithm 372
12.2 Basic Amplitude Amplification 377
12.3 Two-Qubit Amplification i 385
13 Search For The Relativescccoviviun.. 397
13.1 Turning the Problem intoa Circuit 400
13.8 MUultiple ReSUILS oottt e i e e e e e e 416
14 SampPlng ..ot 420
14.1 Forward Samplingc.uiiiiiiiiiii ittt 420
14.2 Bayesian Rejection Samplingo, 422
14.3 Quantum Rejection Samplingcc i, 427

15 What's Next? ..o 434

1.1

Welcome to Hands-On Quantum Machine Learning With Python. Thisbook
isyour comprehensive guide to get started with “Quantum Machine Learning”
- the use of quantum computing for the computation of machine learning
algorithms.

Hands-On Quantum Machine Learning With Python strives to be the per-
fect balance between theory taught in a textbook and the actual hands-on
knowledge you’ll need to implement real-world solutions.

Inside this book, you will learn the basics of quantum computing and ma-
chine learning in a practical and applied manner. And you will learn to use
state-of-the-art quantum machine learning algorithms.

By the time you finish this book, you’ll be well equipped to apply quantum
machine learning to your projects. Then, you will be in the pole position to
become a “Quantum Machine Learning Engineer” — the job to become the sexi-
est job of the 2020s.

Who This Boolk 1Is For

This book is for developers, programmers, students, and researchers who
have at least some programming experience and want to become proficient
in quantum machine learning.

Don’t worry if you're just getting started with quantum computing and ma-
chine learning. We will begin with the basics, and we don’t assume prior

8 Chapter 1. Introduction

knowledge of machine learning or quantum computing. So you will not get
left behind.

If you have experience in machine learning or quantum computing, the re-
spective parts may repeat concepts you're already familiar with. However,
this may make learning the corresponding new topic easier and provide a
slightly different angle to the known.

This book offers a practical, hands-on exploration of quantum machine
learning. Rather than working through tons of theory, we will build up prac-
tical intuition about the core concepts. We will acquire the exact knowledge
we need to solve practical examples with lots of code. Step by step, you will
extend your knowledge and learn how to solve new problems.

Of course, we will do some math. Of course, we will cover a little physics.
But I don’t expect you to hold a degree in any of these two fields. We will
go through all the concepts we need. While this includes some mathemati-
cal notation and formulae, we keep it at the minimum required to solve our
practical problems.

The theoretical foundation of quantum machine learning may appear over-
whelming at first sight. But, be assured that it is not harder than learning a
new programming language when put into the proper context and explained
conceptually. And this is what’s inside Hands-On Quantum Machine Learn-
ing With Python.

Of course, we will write code. A lot of code. Do you know a little Python?
Great! If you don’t know Python but another language, such as Java,
Javascript, or PHP, you’ll be fine, too. If you know programming concepts
(such asif-then else-constructs and loops), then learning the syntax is a piece
of cake. If you're familiar with functional programming constructs, such as
map, filter, and reduce, you're already well equipped. If not, don’t worry. We
will get you started with these constructs, too. We don’t expect you to be a se-
nior software developer. We will go through all the source code—Iline by line.

By the time you finish the first few chapters of this book, you will be profi-
cient with doing the math, understanding the physics, and writing the code
you need to graduate to the more advanced content.

This book is not just for beginners. There is alot of advanced content in here,
too. Many chapters of Hands-On Quantum Machine Learning With Python
cover, explain, and apply quantum machine learning algorithms developed
in the last two years. You can directly apply the insights this book provides
in your job and research. The time you save by reading through Hands-On
Quantum Machine Learning With Python will more than pay for itself.

1.2

1.2 Book Organization 9

Book Organization

Machine learning and quantum computing rely on math, statistics, physics,
and computer science. This is a lot of theory. Covering it all upfront would
be pretty exhaustive and fill at least one book without any practical insight.

However, without understanding the underlying theoretical concepts, the
code examples on their own do not provide many practical insights, either.
While libraries free you from tedious implementation details, the code, even
though short, does not explain the core concepts.

This book provides the theory needed to understand the code we’re writing
to solve a problem. For one thing, we cover the theory when it applies, and
we need it to understand the background of what we are doing. Secondly, we
will embed the theory into solving a practical problem and directly see it in
action.

As a result, the theory spreads among all the chapters, from simple to com-
plex. You may skip individual examples if you like. But you should have a
look at the theoretical concepts discussed in each chapter.

We start with a Variational Hybrid Quantum-Classical Algorithm to solve a
binary classification task. First, we have a detailed look at binary classifica-
tion in chapter 2. Then, in chapter 3, we introduce the basic concept of the
guantum bit, the quantum state, and how measurement affects it. Based on
these concepts, we build our first Parameterized Quantum Circuit and use it
to solve our binary classification task. Such a hybrid algorithm combines the
gquantum state preparation and measurement with classical optimization.

Then, we learn how to work with single qubits (chapter 5) and with multi-
ple qubits (chapter 6). And we explore the astonishing phenomenon of quan-
tum entanglement. This serves as our basis to develop a Quantum Naive
Bayes classifier (chapter 7). In chapter 8, we dive deep into the specificities of
how quantum computing is different from classical computing and how we
solve problems the quantum way. It enables us to create and train a quantum
Bayesian network (chapter 9).

By now, you’ll be experienced in dealing with the probabilistic nature of
gubits. It’s time to take it one step further. We learn about the qubit phase
(chapter 11) and how we can use it to tap the potential of quantum systems
(chapter 12). We use it to search the relatives of a passenger on board the Ti-
tanic (chapter 13) and approximate a variable’s distribution in our quantum
Bayesian network. (chapter 14).

You can find the complete source code of this book this Github repository.

https://github.com/quantum-machine-learning/Hands-On-Quantum-Machine-Learning-With-Python-Vol-1

1.3

10 Chapter 1. Introduction

Why Should I Bother With Quantum
Machine Learning?

In the recent past, we have witnessed how algorithms learned to drive cars
and beat world champions in chess and Go. Machine learning is being ap-
plied to virtually every imaginable sector, from military to aerospace, from
agriculture to manufacturing, and from finance to healthcare.

But these algorithms become increasingly hard to train because they consist
of billions of parameters. Quantum computers promise to solve such prob-
lems intractable with current computing technologies. Moreover, their abil-
ity to compute multiple states simultaneously enables them to perform an
indefinite number of superposed tasks in parallel. An ability that promises
to improve and to expedite machine learning techniques.

Unlike classical computers based on sequential information processing,
quantum computing uses the properties of quantum physics: superposition,
entanglement, and interference. But rather than increasing the available
computing capacity, it reduces the capacity needed to solve a problem.

But quantum computing requires us to change the way we think about com-
puters. It requires a whole new set of algorithms. Algorithms that encode
and use quantum information. This includes machine learning algorithms.

Anditrequires a new set of developers. Developers who understand machine
learning and quantum computing. Developers capable of solving practical
problems that have not been solved before. A rare type of developer. The
ability to solve quantum machine learning problems already sets you apart
from all the others.

Quantum machine learning promises to be disruptive. Although this merger
of machine learning and quantum computing, both areas of active research,
islargelyin the conceptual domain, there are already some examples where it
is being applied to solve real-life problems. Google, Amazon, IBM, Microsoft,
and a whole fleet of high-tech startups strive to be the first to build and sell
quantum machine learning systems.

The opportunity to study a technology right when it is about to prove its
supremacy is a unique opportunity. Don’t miss it.

1.4

l.4.1

1.4 Quantum Machine Learning - Beyond The Hype 11

Quantum Machine Learning -
Be_jov\d The Hj[oe

If there were two terms in computer science that I would describe as overly
hyped and poorly understood, I would say machine learning and quantum com-
puting.

Quantum Machine Learning is the use of quantum computing for the compu-
tation of machine learning algorithms. Could it be any worse?

Figure 1.1: Which future will it be?

There are many anecdotes on these two technologies. They start at ma-
chines that understand the natural language of us humans. And they end at
the advent of the Artificial General Intelligence that either manifests as the
Terminator-like apocalypse or the Wall-E-like utopia.

Don’t fall for the hype! An unbiased and detailed look at a technology helps
not to fall for the hype and the folklore. Let’s start with machine learning.

What is Machine Learning?

“Machine learning is a thing-labeler, essentially.” - Cassie Kozyrkov, Chief
Decision Scientist at Google, source -

With machine learning, we aim to put a label onto a yet unlabeled thing. And

https://www.linkedin.com/pulse/simplest-explanation-machine-learning-youll-ever-read-cassie-kozyrkov

12 Chapter 1. Introduction

there are three main ways of doing it: classification, regression, and segmen-
tation.

In classification, we try to predict the discrete label of an instance. Given the
input and a set of possible labels, which one is it? Here’s a picture. Isita cat
oradog?

Figure 1.2: Is it a cat or a dog?

Regression is about finding a function to predict the relationship between
some input and the dependent continuous output value.

effective kax rate

gross icome

Figure 1.3: Effective tax rate by gross income

1.42

1.4 Quantum Machine Learning - Beyond The Hype 13

For example, given that you know your friends’ income and the effective tax
rates, can you estimate your tax rate given your income even though you
don’t know the actual calculation?

And segmentation is the process of partitioning the population into groups
with similar characteristics, which are thuslikely to exhibit similar behavior.
Given that you produce an expensive product, such as yachts, and a popula-
tion of potential customers, whom do you want to try to sell to?

=
-
S
v
3
wtd
<
v
ral
Fo
3
O

gross ihcome

Figure 1.4: Customer Segmentation

What is Quantum Computing?

Quantum computing is a different form of computation. It uses three fun-
damental properties of quantum physics: superposition, interference, and
entanglement.

Superposition refers to the quantum phenomenon where a quantum system
can exist in multiple states concurrently.

¢ The quantum system does not exist in multiple states concur-

* rently. It exists in a complex linear combination of a state 0 and
astate 1. Itisa different kind of combination that is neither “or”
nor isit "and.” We will explore this state in-depth in this book.

14 Chapter 1. Introduction

Figure 1.5: The quantum superposition

Quantum interference is what allows us to bias quantum systems toward
the desired state. The idea is to create a pattern of interference where the
paths leading to wrong answers interfere destructively and cancel out, but
the paths leading to the correct answer reinforce each other.

Interfering waves

R
R

resulting wave

Figure 1.6: Interference of waves

Entanglement is an extremely strong correlation between quantum parti-
cles. Entangled particles remain perfectly correlated even if separated by
great distances.

l4.3

1.4 Quantum Machine Learning - Beyond The Hype 15

Figure 1.7: Entanglement

Do you see the Terminator already? No? Maybe Wall-E? No again?

Maybe it helps to look at how these things work.

How Does Machine Learning Work?

There are myriads of machine learning algorithms out there. But every one
of these algorithms has three components:

- The representation depicts the inner architecture the algorithm uses
to represent the knowledge. It may consist of rules, instances, decision
trees, support vector machines, neural networks, and others.

- The evaluation is a function to evaluate candidate algorithm parame-
terizations. Examples include accuracy, prediction and recall, squared
error, posterior probability, cost, margin, entropy, and others.

- The optimization describes the way of generating candidate algorithm
parameterizations. It is known as the search process - for instance,
combinatorial optimization, convex optimization, and constrained op-
timization.

The first step of machine learning is the development of the architecture, the
representation. The architecture specifies the parameters whose values hold
the representation of the knowledge. This step determines how suited the
solution will be to solve a specific problem. More parameters are not always
better. For example, ifalinear function can solve our problem, trying to solve
it with a solution that consists of millions of parameters is likely to fail. On

144

16 Chapter 1. Introduction

theother hand, an architecture with very few parameters may be insufficient
to solve complex problems such as natural language understanding.

Represeh&o&iov\

Measure
Evaluakion

OPEimizaEion

Figure 1.%: A generalized notion of machine learning

Once we settled for the architecture to represent the knowledge, we train our
machine learning algorithm with examples. Depending on the number of pa-
rameters, we need many examples. Next, the algorithm tries to predict the
label of each instance. Finally, we use the evaluation function to measure
how well the algorithm performed.

The optimizer adjusts the representation to parameters that promise bet-
ter performance concerning the measured evaluation. It may even involve
changing the architecture of the representation.

Learning does not happen in giant leaps. Instead, it takes tiny steps. To yield
agood performance and depending on the complexity of the problem, it takes
several iterations of this general process until the machine can put the cor-
rect label on a thing.

What Tasks Are Quantum Compu&ers
Grood AE?

The world of quantum mechanicsis different from the physics we experience
in our everyday situations. So is the world of quantum computing different
from classical (digital) computing.

What makes quantum computing so powerful isn’t its processing speed. It is
rather slow. What makes quantum computing so powerful isn’t its memory,

1.4 Quantum Machine Learning - Beyond The Hype 17

either. It is absurdly tiny. We're talking about a few quantum bits.

What makes quantum computing so powerful is the algorithms it makes pos-
sible because these algorithms exhibit different complexity characteristics
than their classical equivalents. To understand what that means, let’s have
a brieflook at complexity theory. Complexity theory is the study of the com-
putational effort required to run an algorithm.

For instance, the computational effort of addition is ¢'(n). This means that
the effort of adding two numbers increases linearly with the size (digits) of
the number. The computational effort of multiplication is ¢'(n?). The effort
increases by the square of the number size. These algorithms are said to be
solvable in polynomial time.

But these problems are comparably simple. For example, the best algorithm
solving the problem of factorization, finding the prime factors of an n-digit
number, is &(¢"'/3). It means that the effort increases exponentially with the
number of digits.

=
~—
~
b
i)
ud
%
3
S
3
Q
J

Problem size p

Figure 1.9: Graphs of common complexity functions

The difference between ¢(n?) and ¢(¢"'/3) complexity must not be underes-
timated. While your smartphone can multiply numbers with 800 digits in a
few seconds, the factorization of such numbers takes about 2,000 years on a
supercomputer.

A proper quantum algorithm (such as Shor’s algorithm) can use superposi-
tion to evaluate all possible factors of a number simultaneously. And rather
than calculating the result, it uses interference to combine all possible an-

1.4.6

18 Chapter 1. Introduction

swers in a way that yields a correct answer. This algorithm solves a factoriza-
tion problem with & ((logn)?(loglogn)(logloglogn)) complexity. This is a poly-
nomial complexity! So is multiplication.

Quantum computing is powerful because it promises to solve certain types of
mathematical calculations with reduced complexity.

Do you see the Terminator or Wall-E now? Not yet?

The Case For Quantum Machine Learning

Quantum machine learning is the use of quantum computing for the compu-
tation of machine learning algorithms.

We have learned that machine learning algorithms contain three compo-
nents: representation, evaluation, and optimization.

When we look at the representation, current machine learning algorithms,
such as the Generative Pre-trained Transformer 3 (GPT-3) network, pub-
lished in 2020, come to mind. GPT-3 produces human-like text, but it has
175 billion parameters. In comparison, the IBM Q quantum computer has
27 quantum bits, only. Thus, even though quantum bits store a lot more in-
formation than a classical bit does (because it is not either 0 or 1), quantum
computers are far away from advancing machine learning for their represen-
tation ability.

During the evaluation, the machine learning algorithm tries to predict the
label of a thing. Classically, this involves measuring and transforming data
points. For instance, neural networks rely on matrix multiplications. These
are tasks classical computers are good at. However, if you have 175 billion pa-
rameters, then calculating the resulting prediction takes quite many matrix
multiplications.

Finally, the algorithm needs to improve the parameters in a meaningful way.
The problem is to find a set of parameter values that result in better perfor-
mance. With 175 billion parameters, the number of combinations is endless.

Classical machine learning employs heuristics that exploit the structure of
the problem to converge to an acceptable solution within a reasonable time.
However, despite the use of even advanced heuristics, training the GPT-3
would require 355 years to train on a single GPU (Graphics Processing Unit)
and cost $4.6 million. To get a feeling of what reasonable means in this con-
text.

The main characteristic of quantum computing is the ability to compute mul-
tiple states concurrently. A quantum optimization algorithm can combine

1.6

1.5 Quantum Machine Learning In The NISQ Era 19

all possible candidates and yield those that promise good results. Therefore,
quantum computing promises to be exponentially faster than classical com-
puters in the optimization of the algorithm. But this does not mean we only
look at the optimization. Instead, the optimization builds upon running an
evaluation, and the evaluation builds upon the representation. Thus, tap-
ping the full potential of quantum computing to solve the machine learning
optimization problem requires the evaluation and the representation to inte-
grate with the quantum optimizer.

Keeping in mind what classical machine learning algorithms can do today. If
we expect quantum computing to reduce the complexity of training such al-
gorithms by magnitudes, then the hype becomes understandable because we
are “only” magnitudes away from things like Artificial General Intelligence.

But of course, building Artificial General Intelligence requires more than
computation. It needs data. And it needs the algorithms.

The development of such algorithms is one of the current challenges in quan-
tum machine learning. But there’s another aspect to cope with in that chal-
lenge. That aspect is that we are in the NISQ era.

Quantum Machine Learning In The
NISQ Era

Quantum computing is a different form of computation. Aswejustlearned, a
form can change the complexity of solving problems, making them tractable.
But this different form of computation brings its challenges.

Digital computers need to distinguish between two states: 0 and 1. The cir-
cuits need to tell the difference between high voltage and low voltage. When-
ever there is a high voltage, it is 1 and if there is a lower voltage, it is 0. This
discretization means that errors must be relatively large to be noticeable, and
we can implement methods for detecting and correcting such errors.

Unlike digital computers, quantum computers need to be very precise be-
cause they keep a continuous quantum state. Quantum algorithms base on
specific manipulations of continuously varying parameters. In quantum
computers, errors can be arbitrarily small and impossible to detect, but still,
their effects can build up to ruin a computation. This fragile quantum state is
very vulnerable to the noise coming from the environment around the quan-
tum bit. For example, noise can arise from control electronics, heat, or impu-
ritiesin the quantum computer’s material itself and cause serious computing
errors that may be difficult to correct.

20 Chapter 1. Introduction

But to keep the promises quantum computers make, we need fault-tolerant
devices. We need devices to compute Shor’salgorithm for factoring. Weneed
machines to execute all the other algorithms that we know in theory that
solve problems intractable for digital computers.

But such devices require millions of quantum bits. This overhead is re-
quired for error correction since most of these sophisticated algorithms are
extremely sensitive tonoise. Current quantum computers have up to 27 quan-
tum bits. Even though IBM strives for a1000-quantum bits computer by 2023,
we expect the quantum processors in the near term to have between 50 and
100 quantum bits. Even if they exceed these numbers, they remain relatively
small and noisy. These computers can only execute short programs since the
longer the program is, the more noise-related output errors will occur.

Nevertheless, programs that run on devices beyond 50 quantum bits become
extremely difficult to simulate on classical computers already. These rel-
atively small quantum devices can do things infeasible for a classical com-
puter.

And this is the era we’re about to enter. The era when we can build quan-
tum computers that, while not being fault-tolerant, can do things classical
computers can’t. We describe this era by the term “Noisy Intermediate-Scale
Quantum” - NISQ.

Noisy because we don’t have enough qubits to spare for error correction. And
“Intermediate-Scale” because the number of quantum bits is too small to
compute sophisticated quantum algorithms but large enough to show quan-
tum advantage or even supremacy.

The current era of NISQ-devices requires a different set of algorithms, tools,
and strategies.

For instance, Variational Quantum-Classical Algorithms have become a pop-
ular way to think about quantum algorithms for near-term quantum devices.
In these algorithms, classical computers perform the overall machine learn-
ing task on information they acquire from running the hard-to-compute cal-
culations on a quantum computer.

The quantum algorithm produces information based on a set of parameters
provided by the classical algorithm. Therefore, they are called Parameter-
ized Quantum Circuits (PQCs). They are relatively small, short-lived, and
thus suited for NISQ-devices.

https://quantum-journal.org/papers/q-2018-08-06-79/
https://quantum-journal.org/papers/q-2018-08-06-79/

1.6

1.6 Ilearned Quantum Machine Learning The Hard Way 2l

I learned Quantum Machine
Learning The Hard Wouj

I did not have the fortune to take a quantum computing class in college, not
to speak of a course in quantum machine learning. At the time, it wouldn’t
have been much fun either. In the early 2000s, quantum computing was just
about to take the step from a pure theory to evaluation in research labs. It
was a field for theoretical physicists and mathematicians.

Atthetime, I haven'teven heard aboutit. WhenIdid for thefirst time, I think
it was around 2008, researchers had successfully entangled qubits and were
able to control them. Then, of course, Star Trek-like transportation came to
mind when I heard two physically apart particles could share a state so that
it was possible to change the state of one particle by observing the other.

Yet, until around 2014, I did not pay much attention. I was too busy writ-
ing my doctoral dissertation about assessing the effort caused by the require-
ments in a software development project. When I returned to everyday life,
I was just right in time to experience the end of the second AI winter and the
advent of practical machinelearning. What had been theory thus far became
a reality now.

When I got into machine learning, the field was already quite evolved. Li-
braries such as Scikit-Learn, later Keras, TensorFlow, and PyTorch made ma-
chine learning algorithms convenient. So even though my favorite books
were published sometime later, there were already many good books and
learning material available.

My favorite books are Hands-On Machine Learning with Scikit-
Learn and TensorFlow by Aurélien Géron, released in 2017, and
Deep Learning with Python by Francois Chollet, released in
2018.

L

But the models we’re developing today become increasingly hard to train. As
mentioned before, Open AI's GPT-3 model that uses deep learning to produce
human-like text would require 355 years on a single GPU. Thus, it is hard
to believe that we can reach the upcoming milestones classically. This in-
sight brought quantum computing back into my focus. Quantum computing
promises to reduce the computational complexity of specific algorithms by
magnitudes. It promises to solve tasks in a few seconds classical computers
would need thousands of years for. It may even prevent us from the next Al

22 Chapter 1. Introduction

winter caused by the inability to reach the following milestones of machine
learning.

Figure 1.10: The Al Winter

In 2018, I started to deep dive into quantum machine learning. Scientific
papers and a few academic books were all I could find. And these did not
cover quantum machine learning but quantum computing in general. So I
was happy about every little piece.

These quantum computing publications left me scratching my head. Most of
the papers are pretty heavy on math and assume you’re familiar with much
physical jargon. I could not even find an appropriate starting point or guid-
ance on how to structure my learning efforts.

Frustrated with my failed attempts, I spent hours searching on Google. Fi-
nally, I hunted for quantum tutorials, only to come up empty-handed.

I could see the potential value of quantum computing for machine learning.
Yet, I couldn’t see how all these parts of quantum computing fit together.
Entry-level material was hard to find. And practical guides were simply not
existent. I wanted to get started, but I had nothing to show for my effort, ex-
cept for a stack of quantum computing papers on my desk that I hardly un-
derstood.

Finally, Iresorted tolearning the theory first. Then, I heard about Qiskit, the
IBM quantum SDK for Python. Its documentation was relatively poor at the
time, especially if you were not familiar with all the physical jargon and its
underlying theory. But it let me experience what some of these things like
superposition, entanglement, and interference meant practically.

This practical knowledge enabled me to connect quantum computing with
the algorithms I knew from machine learning. I found my way to quantum
machine learning success through myriads of trial-and-error experiments,

1.6 Ilearned Quantum Machine Learning The Hard Way 23

countless late nights, and much endurance. I believe that painstakingly
working everything outin small pieces impacted how I understand quantum
machine learning. Again, though, I would recommend not taking the same
path.

My takeaways are:

+ You don’t need to cram all the theory before you start applying it.

» Youdon’t need to work through tons of equations.

« You don’t need to be a mathematician to master quantum machine
learning.

« Youdon’t need to be a physicist to understand quantum machine learn-
ing.

« You'll do great as a programmer, an engineer, a data scientist, or any
other profession.

« But quantum machine learning is taught the wrong way.

When I started studying the quantum part of quantum machine learning, I
took a deep dive into theory and math. Because this is what most quantum
computing resources focus on.

Of course, it is desirable to have an understanding of the underlying math
and the theory. But more importantly, you need to have a sense of what the
concepts mean in practice. You need to know what you can do and how you
need to do it. But you don’t need to know how it works physically.

Don’t get me wrong. In quantum machine learning, theory and math are es-
sential. But if you don’t use the theoretical knowledge and apply it to solve
real-world tasks, then you’ll have a hard time finding your space in the quan-
tum machine learning world. So it would be best if you became a quantum
machine learning practitioner from the very beginning. In contrast to the
dayswhen I started, today, there are quite a few resources available. But most
of them fall into one of the following categories.

- Theoretical papers with lots of equations prove some quantum speedup
of an algorithm. Yet, they don’t show any code.

« Textbooks on quantum computing explain the concepts. But they are
short on showing how to use them for a purpose.

- Blog posts show you an actual algorithm in code. But they don’t relate
the code to any underlying concept. While you see it works, you don’t
learn anything about why and how it works.

By no means do I want to say these resources are not worth reading. But none
of these resources are helpful to learn how to apply quantum machine learn-
ing. For someone just about to start with quantum machine learning, you

1.7

24 Chapter 1. Introduction

would need to invest a lot of time and effort for little to no practical return.

There is a fundamental disconnect between theory and practice. There’s a
gap I want to help to fill with Hands-On Quantum Machine Learning with
Python so you can learn in a more efficient-a better way.

This is the book I wish I had when I first started studying quantum machine
learning. Inside this book, you’ll find practical walkthroughs and hands-on
tutorials with lots of code. The book introduces new theory just in time you
need it to take the next step. You’ll learn a lot of theory. But you're not left
alone with it. We directly apply our newly acquired knowledge to solve an
actual problem.

Wewill not onlyimplement different quantum machine learning algorithms,
such as Quantum Naive Bayes and Quantum Bayesian Networks. But we also
use them to solve actual problems taken from Kaggle.

By the time you finish this book, you’ll know these algorithms, what they do,
why you need them, how they work, and most importantly, how to use them.

Hands-On Quantum Machine Learning With Python strives to be the perfect
balance between theory taught in a textbook and the actual hands-on knowl-
edge you’ll need to implement real-world solutions.

Thisbookis your comprehensive guide to get started with Quantum Machine
Learning-the use of quantum computing for machine learning tasks.

Quantum Machine Learning Is
Taught The Wrong Way

The literature on quantum computing is full of physical jargon and formulae.
Let’s take the Variational Quantum Eigensolver (VQE), for instance.

VQE can help us to estimate the energy of the ground state of a
given quantum mechanical system. Thisisthe upper bound of the
lowest eigenvalue of a given Hamiltonian. It builds upon the vari-
ational principle that is described as: (¥, |H|¥,) >=Ey

If you don’t hold a degree in physics, the first and natural reaction is to put
the article away.

“Well, nice try. Maybe the whole topic is not for me”, you think. “Maybe,
quantum computing is beyond my reach”.

1.7 Quantum Machine Learning Is Taught The Wrong Way 25

Don’t give up that fast. Physicists and mathematicians discovered most of
the stuff in quantum computing. Of course, they build upon the knowledge
of their peers when they share insights and teach their students. So it is rea-
sonable that they use the terms they are familiar with.

You wouldn’t use the vocabulary of a bartender to explain programming and
machine learning either, would you? But maybe, we should.

It is reasonable to assume a certain kind of knowledge when we talk or write
about something. But should we restrain students of other, nearby disci-
plines fromlearning the stuff? For example, why shouldn’t we supporta com-
puter scientist or a software engineer in learning quantum computing?

I've got a clear opinion. I believe anyone sincerely interested in quantum
computing should be able to learn it. There should be resources out there
catering to the student’s needs, not to the teacher’s convenience. But, of
course, thisrequiresateacherto explain the complex stuffin allegedly simple
language.

if you can’t explain it simply,
ou don't understand it
well enough,

Figure 1.11: Albert Einstein

I wouldn’t dare to say I understood quantum computing well enough to ex-
plain it with the vocabulary bartenders use. But I'd give it a shot explaining
it to a computer scientist and a software engineer. I don’t see a reason to re-
strict this field to physicists only.

Of course, itis desirable to understand the underlying theory of quantum me-
chanics. Of course, it is desirable to be able to do the math. But, more impor-
tantly, you need to understand how to solve a certain problem.

In quantum computing, we use quantum superposition, entanglement, and
interference to solve tasks. These are astonishing and maybe counter-
intuitive phenomena. But no matter how weird they may appear, quantum

1%

26 Chapter 1. Introduction

mechanical systems adhere to a particular set of physical laws. And these
laws make the systems behave in specific ways. How deep do you have to
know the physical laws? How much quantum math do you need?

I don’t believe anyone (including me) understands how a classical computer
works. Yet, we all use them. We even program them! I learned how to code
a classical computer because my teachers explained it to me in a way I could
understand back then.

My high-school teacher explained the concepts of data types and algorithms
in an applied way. He taught me how they work and what they are good for.
So even though-or maybe because-we didn’t go through electro-mechanical
circuits and information theory, I learned to program.

“Maybe quantum computing is different,” you say? “Maybe, the stuffin there
is too complex to learn without a degree in physics!”

The theoretical foundation of quantum machine learning may appear over-
whelming at first sight. But, be assured, when put into the proper context
and explained conceptually, it is not more complicated than learning a new
programming language.

I genuinely believe developers, programmers, and students who have at least
some programming experience can become proficient in quantum machine
learning. However, teaching quantum machine learning the right way re-
quires a different approach-a practical approach.

Rather than working through tons of theory, a good approach builds up prac-
tical intuition about the core concepts. I think it is best to acquire the exact
theoretical knowledge we need to solve practical examples.

Quantum machine learning relies on math, statistics, physics, and computer
science. Covering it all upfront would be pretty exhaustive and fill at least
one book without any practical insight. However, without understanding
the underlying theoretical concepts, code examples on their own do not pro-
vide valuable insights, either.

This books combines practical examples with the underlying theory.

Confiquring Your Quanbtum
Machine Learning Workstation

Even though thisbookisabout quantum machinelearning, Idon’t expect you
to have a quantum computer at your disposal. Thus, we will run most of the

11?11

1.7

1.%.3

1.8 Configuring Your Quantum Machine Learning Workstation 7

code examples in a simulated environment on your local machine. But we
will need to compile and install some dependencies first.

We will use the following software stack:

- Unix-based operating system (not required but recommended)
« Python, including pip
- Jupyter (not required but recommended)

’Pvf:hosr\

For all examples inside Hands-On Quantum Machine Learning With
Python, we use Python as our programming language. Python is easy to
learn. Its simple syntax allows you to concentrate on learning quantum
machine learning rather than spending your time with the specificities of
the language.

Most importantly, machine learning tools, such as PyTorch and Tensorflow,
as well as quantum computing tools, such as Qiskit and Cirq, are available as
Python SDKs.

3&.&,?3&@‘
Jupyter notebooks are a great way to run quantum machine learning exper-

iments. They are a de facto standard in the machine-learning and quantum
computing communities.

A notebook is a file format (.ipynb). The Jupyter Notebook app lets you edit
your file in the browser while running the Python code in interactive Python
kernels. The kernel keeps the state in memory until it is terminated or
restarted. This state contains the variables defined during the evaluation of
code.

A notebook allows you to break up long experiments into smaller pieces you
can execute independently. You don’t need to rerun all the code every time
you make a change. But you can interact with it.

Libraries and Packages
We will use the following libraries and packages:
« Scikit-learn

- Pandas
+ Qiskit

https://jupyter.org

l.¥4

1.%.6

28 Chapter 1. Introduction

Scikit-learn is the most helpful library for machine learning in Python. It
containsarange of supervised and unsupervised learning algorithms. Scikit-
learn builds upon a range of other handy libraries, such as:

« NumPy: Work with n-dimensional arrays

« SciPy: Fundamental library for scientific computing
- Matplotlib: Comprehensive 2D/3D plotting

« IPython: Enhanced interactive console

« Sympy: Symbolic mathematics

Pandas provides convenient data structures and analysis tools. Qiskit is
IBM’s quantum computing SDK.

Virtual Environment

Like most programming languages, Python has its package installer. This is
pip. It installs packages from the Python Package Index (PyPI) and other in-
dexes.

By default, it installs the packages in the same base directory shared among
all your Python projects. Thus, it makes an installed package available to all
your projects. This seems to be good because you don’t need to install the
same packages repeatedly.

However, if any two of your projects require different versions of a package,
you’ll be in trouble because there is no differentiation between versions. You
would need to uninstall one version and install another whenever you switch
working on either one of the projects.

Thisiswhere virtual environments come into play. Their purposeisto create
an isolated environment for each of your Python projects. It’s no surprise,
using Python virtual environments is the best practice.

Configuring Ubuntu For Quanbtum
Machine Learning with Python

In this section, we go through the installation on Ubuntu Linux. An Ubuntu
Linux environment is highly recommended when working with quantum
machine learning and Python because all the tools you need can be installed
and configured quickly.

Other Linux distributions (such as Debian) or MacOS (that also builds upon
Unix) are also ok. But there are a few more aspects to consider.

All the code should work on Windows, too. However, the configuration of a

1.8 Configuring Your Quantum Machine Learning Workstation 29

Windows working environment can be a challenge on its own. Fortunately,
there is a way out. So, if you have a Windows operating system, look at the
next section 1.8.6 before you continue with the following instructions.

We accomplish all steps by using the Linux terminal. To start, open up your
command line and update the apt—get package manager.

$ sudo apt-get update

$ sudo apt-get upgrade

$ sudo apt-get install -y build-essential wget python3-dev \
libreadline-gplv2-dev libncurseswb-dev libssl-dev \
libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev \
libffi-dev

The next step downloads and installs Python 3.8.5 (the latest stable release at
the time of writing).

$ mkdir /tmp/Python38

$ cd /tmp/Python38

$ wget https://www.python.org/ftp/python/3.8.5/Python-3.8.5.tar.xz
$ tar xvf Python-3.8.5.tar.xz

$ cd /tmp/Python38/Python-3.8.5

$./configure

$ sudo make altinstall

If you want to have this Python version as the default, run
$ sudo 1n -s /usr/local/bin/python3.8 /usr/bin/python

Python is ready to work. Let’s now install and update the Python package
manager pip:

$ wget https://bootstrap.pypa.io/get-pip.py && python get-pip.py
$ pip install --upgrade pip

You might need to restart your machine to recognize pip as a command.

As mentioned, we install all the Python packages in a virtual environment.
So, we need to install virtualenv:

$ sudo apt-get install python3-venv

To create a virtual environment, go to your project directory and run venv.
The following parameter (here env) specifies the name of your environment.

$ python -m venv env

1.%.6

30 Chapter 1. Introduction

You'll need to activate your environment before you can start installing or
using packages.

$ source env/bin/activate

When you’re done working on this project, you can leave your virtual envi-
ronment by running the command deactivate. If you want to reenter, call
source env/bin/activate again.

We’re now ready to install the packages we need.
Install Jupyter:

$ pip install jupyter notebook jupyterlab --upgrade
Install Qiskit

$ pip install giskit

If you don’t install Qiskit in the virtual environment, you should add the ——
user flag. Otherwise, the installation might fail due to missing permissions.

Install further dependencies required of Qiskit and Scikit-Learn. Ifyoudon’t
use a virtual environment, use the ——user flag here, too.

$ pip install numpy scipy matplotlib ipython pandas sympy nose seaborn

Install Scikit-Learn, with the ——user flag if you're not using a virtual environ-
ment.

$ pip install scikit-learn

Install drawing libraries:

$ pip install pylatexenc ipywidgets qutip
You’re now ready to start. Open up JupyterLab with

$ jupyter lab

How To Setup 3%1@3&@_&&&2 For Quankum
COMPM&EMQ — O Windows

If you're a Python developer, there’s no way around a Unix-based operating
system. Python is alanguage to write software that’s usually supposed to run
at a server. And most servers run some kind of Linux.

https://jupyter.org/install
https://qiskit.org/documentation/install.html#install
https://scikit-learn.org/stable/install.html

1.8 Configuring Your Quantum Machine Learning Workstation 31

Figure 1.12: Windows, Jupyter, Qiskit

Consequently, the default configuration in Python caters to the specificities
of a Unix-based system. While Python works on Windows, too, it requires a
lot more attention to get all the configuration details right. Starting from the
path separator that is not a slash but a backslash (\) to the different charset
(windows—1252), to different commands (e.g. del /s /qinstead of rm), Windows
differs in quite a few aspects.

While Linux is great for developing, you may prefer Windows in other situa-
tions. Maybe you don’t even have a choice. Your working computer simply
runs Windows. Full stop.

Fortunately, there’s a solution - at least if you're running Windows 10. Win-
dows 10 contains WSL2, the Windows Subsystem for Linux. It lets you run a
full Ubuntu Linux inside Windows. Windows 10 must be updated to version
2004 and Intel’s virtualization technology must be enabled in BIOS settings.

In the first step, we need to activate the Windows Subsystem for Linux op-
tional feature. Open PowerShell as Administrator and run the following
command:

dism.exe /online /enable—feature /featurename:Microsoft—Windows—
Subsystem—Linux /all /norestart

In the next step, we update the subsystem to WSL2. Download the latest ker-
nel update for your system from https: //aka.ms/ws12kernel and install the MSI
package.

Now, we enable the Virtual machine platform and set WSL2 as the default
version.

dism.exe /online /enable—feature /featurename:
VirtualMachinePlatform /all /norestart
wsl —set—default—version 2

Finally, we can install a Linux distribution as if it was a normal program.

32 Chapter 1. Introduction

Open the Microsoft store, search for “Ubuntu 20.04 LTS”, and install the pro-
gram. Once the installation finishes, you can start Ubuntu from your start
menu. On the first start, you need to create a new Unix user and specify a
password.

You can proceed with the installation of the libraries and packages as de-
scribed in the previous section 1.8.5.

2.1

Predicting Survival On The Titanic

The sinking of the Titanic is one of the most infamous shipwrecks in history.

On April 15,1912, the Titanic sank after colliding with an iceberg. Being con-
sidered unsinkable, there weren’t enough lifeboats for everyone on board.
Asaresult, 1502 out of 2224 passengers and crew members died that night.

Of course, the 722 survivors must have had some luck. But it seems as if cer-
tain groups of people had better chances to survive than others. Therefore,
the Titanic sinking has also become a famous starting point for anyone inter-
ested in machine learning.

If you have some experience with machine learning, you’ll probably know
the legendary Titanic ML competition provided by Kaggle.

Ifyoudon’t know Kaggle yet, Kaggleisamong the world’slargest data science
communities. It offers many exciting datasets, and therefore, it is an excel-
lent place to get started.

The problem to be solved is simple. Use machine learning to create a model
that, given the passenger data, predicts which passengers survived the Ti-
tanic shipwreck.

R.R

34 Chapter 2. Binary Classification

Creb the Dakaset

To get the dataset, you’ll need to create a Kaggle account (it’s free) and join the
competition. Even though Kaggleisall about competitions, youdon’t need to
take part in them actively by uploading your solution.

Figure 2.1: The Titawnic $hipwreck‘

When you join a competition, you need to accept and abide by the rules that
govern how many submissions you can make per day, the maximum team
size, and other competition-specific details.

You’'ll find the competition data in the Data tab at the top of the competition
page. Then, scroll down to see the list of files.

There are three filesin the data:

* train.csv
* test.csv
* gender_submission.csv

The file train.csv contains the data of a subset of the Titanic’s passengers.
This file is supposed to serve your algorithm as a basis to learn whether a pas-
senger survived or not.

The file test.csv contains the data of another subset of passengers. It serves
to determine how well your algorithm performs.

https://www.kaggle.com/c/titanic/data

R.3

2.3 Look at the data 35

The gender_submission.csv file is an example that shows how you should struc-
ture your predictions if you plan to submit them to Kaggle. Since we’re here
to start learning and not yet be ready to compete, we’ll skip this file.

Download the files train.csv and test.csv.

Loolke ok the daka

The first thing we need to do is to load the data. We use Pandas for that. Itis
renowned in the machine learning community for data processing. It offers
a variety of useful functions, such as a function to load .csv-files: read_csv.

Listing 2.1: Load the data from the csv-files

8 import pandas as pd

2

k] train = pd.read_csv('./data/train.csv')
Y test = pd.read_csv('./data/test.csv')

We loaded our data into train and test. These are Pandas DataFrames.

ADataFrame keepsthe datain a two-dimensional structure with labels. Such as
a database table or a spreadsheet. It provides a lot of valuable attributes and
functions out of the box.

For instance, the DataFrame’s attribute shape provides a tuple of two integers
that denote the number of rows and columns.

Let’s have a look:
Listing 2.2: The shapes of the Titanic datasets

W8 print('train has {} rows and {3} columns'.format(*train.shape))
P print('test has {3} rows and {} columns'.format(*test.shape))

train has 891 rows and 12 columns
test has 418 rows and 11 columns

We can see we have 891 training and 418 testing entries. But, more interest-
ingly, the train dataset has one more column than the test dataset.

36 Chapter 2. Binary Classification

The pataFrame’s info() method shows some more detailed information. Have
a look at the train dataset.

Listing 2.3: The structure of the train dataset

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
Column Non-Null Count Dtype
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

The info method returns a list of the columns: their index, their names, how
many entries have actual values (are not null), and the type of values.

Let’s have a look at the test dataset, too.

Listing 2.4: The structure of the test dataset

test.info()

2.3 Look at the data 37

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
Column Non-Null Count Dtype
0 PassengerId 418 non-null int64
1 Pclass 418 non-null int64
2 Name 418 non-null object
3 Sex 418 non-null object
4 Age 332 non-null float64
5 SibSp 418 non-null int64
6 Parch 418 non-null int64
7 Ticket 418 non-null object
8 Fare 417 non-null float64
9 Cabin 91 non-null object
10 Embarked 418 non-null object
dtypes: float64(2), int64(4), object(5)
memory usage: 36.0+ KB

When comparing both info, we can see the test dataset misses the column
Survived, indicating whether a passenger survived or died.

As Kaggle notes, they use the test dataset to evaluate the submissions. If they
provided the correct answer, it wouldn’t be much of a competition anymore,
would it? It is our task to predict the correct label.

Since we do not plan to submit our predictions to Kaggle to evaluate how our
algorithm performed, the test dataset is quite useless for us.

So, we concentrate on the train dataset.

The info output is relatively abstract. Wouldn’t it be good to see some actual
data? No problem. That’s what the head method is for.

The head method shows the column heads and the first five rows. So, with
this impression, let’s go through the columns. You can read an explanation
on the Kaggle page, too.

Listing 2.5: Look at the data

train.head()

R4

. 4.1

38 Chapter 2. Binary Classification

Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

1 0 A/521171 7.2500 NaN
PC17599 71.2833 C85
STON/02. 3101282 7.9250 NaN
113803 53.1000 CiI23
373450 8.0500 NaN

3 Braund, Mr. Owen Harris male 22.0
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
3 Heikkinen, Miss. Laina female 26.0
1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
3 Allen, Mr. William Henry male 35.0

W N - o
OO~
ococoo
nunna®n|m

2 1
3 1
4 1
5 0

Each column represents one feature of our data. The PassengerId is a consec-
utive number identifying each row. Survived is the indicator of whether the
passenger survived (0 = No, 1 = Yes). Pclass is the ticket class (1 = 1st, 2 = 2nd, 3
= 3rd). Then we have self-explanatory Name, Sex, and Age.

SibSp denotes the number of this passenger’s siblings or spouses aboard the
Titanic. Parch indicates the number of this passenger’s parents or children
aboard the Titanic.

Then, there is the Fare the passenger paid, the cabin number, and the port of
embarkation (embarked) (C = Cherbourg, Q = Queenstown, S = Southampton).

Daka ‘F’repara&iah and Cleaning

Our data have different types. There are numerical data, such as Age, SibSp,
Parch, and Fare. There are categorical data. Some of the categories are repre-
sented by numbers (Survived, Pclass). Some are represented by text (Sex and
Embarked). And there is textual data (Name, Ticket, and Cabin).

This is quite a mess for data we want to feed into a computer. Furthermore,
when looking at the result of train.info(), you can see that the counts vary for
different columns. While we have 891 values for most columns, we only have
714 for Age, 204 for cabin, and 889 for Embarked.

Before we can feed our data into any machine learning algorithm, we need to
clean up.

Missing Values

Most machine learning algorithms don’t work well with missing values.
There are three options of how we can fix this:

+ Get rid of the corresponding rows (removing the passengers from con-
sideration)

« Get rid of the whole column (remove the entire feature for all passen-
gers)

« Fill the missing values (for example, with zero, the mean, or the me-
dian)

2.4 Data Preparation and Cleaning 39

Listing 2.6: Cope with missing values

option 1
We only have two passengers without it. This is bearable
train = train.dropna(subset=["Embarked"])

option 2
We only have very few information about the cabin, let's drop it
train = train.drop("Cabin", axis=1)

1
R
3
4
s
&
7
¥
K

option 3

The age misses quite a few times. But intuition

says it might be important for someone's chance to survive.
mean = train["Age"].mean()

train["Age"] = train["Age"].fillna(mean)

train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 11 columns):
Column Non-Null Count Dtype
0 PassengerId 889 non-null int64
1 Survived 889 non-null int64
2 Pclass 889 non-null int64
3 Name 889 non-null object
4 Sex 889 non-null object
5 Age 889 non-null float64
6 SibSp 889 non-null int64
7 Parch 889 non-null int64
8 Ticket 889 non-null object
9 Fare 889 non-null float64
10 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(4)
memory usage: 83.3+ KB

We can accomplish these things easily using DataFrame’s dropna(), drop(), and
fillna() methods. Thereisnoone best option in general. But you should care-
fully consider the specific context.

There are only two passengers whose port of embarkation we don’t know.

.42

40 Chapter 2. Binary Classification

These account for less than 1% of our data. If we disregard these two passen-
gers entirely, we won’t see completely different results. Thus, we drop these
rows (line 3) with the dropna-method.

The dropna-method takes the column ("Embarked") as a named parameter subset.
This parameter specifies the columns that determine whether to remove the
row (passenger). If at least one value of these columns is missing, the row gets
removed.

The situation is different concerning the cabin. We only have this informa-
tion for 204 out of 991 passengers. It is questionable if this is enough to draw
any information from. We don’t know why these values miss. Even if we
found the cabin to be highly correlated with the survival of a passenger, we
wouldn’t know whether this correlation can be generalized to all passengers
or whether there is a selection bias, meaning that the fact that we know the
Cabin depends on some other aspect.

We drop the whole column with the method drop. Then, we provide the col-
umn (Cabin) we want to remove as a positioned argument. The value 1 we pro-
vide as a named argument axis specifies that we want to remove the whole
column.

Next, we know the Age of 714 passengers. Removing all the passengers from
consideration whose Age we don’t know doesn’t seem to be an option because
they account for about 22% of our data, quite a significant portion. Removing
the whole column doesn’t seem to be a good option either. First, we know
the Age of most of the passengers, and intuition suggests that the Age might be
influential for someone’s chance to survive.

We fill the missing values with the fillna method (line 13). Since we want to
fill only the missing values in the Age column, we call this function on this
column and not the whole DataFrame. We provide as an argument the value
we want to set. This is the mean age of all passengers we calculated before
(line 12).

Great. We now have 889 rows, ten columns, and no missing data anymore.

Identifiers

The goal of machine learning is to create an algorithm that can predict data.
Or, as we said before: to put a label on a thing. While we use already labeled
data when building our algorithm, the goal is to predict labels we don’t know
yet.

We don’t tell our algorithm how it can decide which label to select. Instead,

2.4 Data Preparation and Cleaning 41

we say to the algorithm, “here is the data. Figure it out yourself.” That be-
ing said, an intelligent algorithm may be able to memorize all the data you
provide it with. This is referred to as overfitting. The result is an algorithm
performing well on known data but poorly on unknown data.

If our goal was only to predict labels we already know, the best thing we could
do is memorize all passengers and whether they survived. But if we want to
create an algorithm that performs well even on unknown data, we need to
prevent memorization.

We have not even started building our algorithm. Yet, the features we use in
our algorithm affect whether the algorithm can memorize data because we
have potential identifiers in our data.

When looking at the first five entries of the dataset, three columnsappear sus-
picious: the PassengerId, the Name, and the Ticket.

The PassengerId is a consecutive number. Therefore, there should be no con-
nection between how big the number is and whether a passenger survived.

Neither should the name of a passenger or the number on a ticket be a deci-
sive factor for survival. Instead, these are data identifying single passengers.
Let’s validate this assumption.

Let’s have alook at how many unique values are in these columns.

Listing 2.7: Unique values in columns

U8 print('There are {3} different (unique) PassengerIds in the data'
Pd . format(train["PassengerId"].nunique()))

k3 print('There are {3} different (unique) names in the data'

¥ .format(train["Name"].nunique()))

" print('There are {} different (unique) ticket numbers in the data'
1] .format(train["Ticket"].nunique()))

There are 889 different (unique) PassengerIds in the data
There are 889 different (unique) names in the data
There are 680 different (unique) ticket numbers in the data

Name and Passengerld are perfect identifiers. Therefore, each of the 889 rowsin
our dataset has a unique value.

And there are 680 different Ticket numbers. A possible explanation for the

42 Chapter 2. Binary Classification

Ticket not to be a perfect identifier may be family tickets. Yet, a prediction
based on this data appears to support memorization rather than learning
transferable insights.

We remove these columns.

Listing 2.8: Remove identifying data

f8 train = train.drop("PassengerId", axis=1)
Pd train = train.drop("Name", axis=1)

k23 train = train.drop("Ticket", axis=1)

4

4 train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 8 columns):

Column Non-Null Count Dtype

0 Survived 889 non-null int64
1 Pclass 889 non-null int64
2 Sex 889 non-null object
3 Age 889 non-null float64
4 SibSp 889 non-null int64
5 Parch 889 non-null int64
6 Fare 889 non-null float64
7 Embarked 889 non-null object

dtypes: float64(2), int64(4), object(2)

memory usage: 62.5+ KB

2.4.3 Handling Text and Cateqorical Attributes

Many machine learning algorithms work with numbers, nothing but num-
bers. If we want to use textual data, we need to translate it into numbers.

Scikit-Learn provides a transformer for this task called LabelEncoder.

21414

2.4 Data Preparation and Cleaning 43

Listing 2.9: Transforming textual data into numbers

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

1

2

3

Y for col in ['Sex', 'Embarked']:
] le.fit(train[coll)
&
7
¥

train[col] = le.transform(train[coll])

train.head()

Survived Pclass Sex Age SibSp Parch Fare Embarked

0 0 3 1 22.0 1 0 7.2500 2
1 1 1 0 38.0 1 0 71.2833 0
2 1 3 0 26.0 0 0 7.9250 2
3 1 1 0 35.0 1 0 53.1000 2
4 0 3 1 35.0 0 0 8.0500 2

First, we import the LabelEncoder (line 1) and initialize an instance (line 2).
Then, we loop through the columns with textual data (Sex and Embarked) (line
4). For each column, we need to fit the encoder to the datain the column (line
5) before we can transform the values (line 6).

Finally, let’s have another look at our DataFrame. You can see that both, sex and
Embarked are now numbers (int64). In our case, e represents male, and 1 repre-
sents female passengers. But when you rerun the transformation, you may
yield different assignments.

Feature Scaling

Machine learning algorithms usually work with numbers with identical
scales. If numbers have different scales, the algorithm may consider those
with higher scales to be more important.

Even though all our data is numerical, it is not yet uniformly scaled. For ex-
ample, the values of most of the columns range between 0 and 3. But Age and
Fare have far bigger scales.

The max method returns the maximum value in a column. As we can see, the
oldest passenger was 80 years old, and the highest fare was about 512.

44 Chapter 2. Binary Classification

Listing 2.10: The maximum values

W8 print('The maximum age is {}'.format(train["Age"].max()))
P print('The maximum fare is {}'.format(train["Fare"].max()))

The maximum age is 80.0
The maximum fare is 512.3292

A common way to cope with data of different scales is min-max-scaling (also
known as normalization). This process shifts and rescales values so that they
end up ranging from e to 1. It subtracts the minimum value from each value
and divides it by the maximum minus the minimum value.

Scikit—Learn provides the MinMaxScaler transformer to do this for us.

Listing 2.11: Normalization of the data.

8 from sklearn.preprocessing import MinMaxScaler

k21 scaler = MinMaxScaler()
‘'8 scaler.fit(train)
] train = scaler.transform(train)

VA print('The minimum value is {3} and the maximum value is {}'
.format(train.min(), train.max()))

The minimum value is 0.0 and the maximum value is 1.0

Again, we first import the transformer (line 1) and initialize it (line 3). Then,
we fit the transformer to our data (line 4) and transform it (line 5).

Asaresult, all the data in our dataset range between 0.0 and 1.e.

/ The scaler returns a Numpy-array instead of a Pandas
* DataFrame.

R 4.6

2.4 Data Preparation and Cleaning 45

Training and Testing

We already mentioned the goal of building an algorithm that performs well
on data it already knows and predicts the labels of yet unknown data. That’s
why itisessential to separate the dataintoatraining and a testing set. We use
the training set to build our algorithm. And we use the testing set to validate
its performance.

Even though Kaggle provides a testing set, we skipped it for not including the
Survived column. This is because we would need to ask Kaggle every time we
wanted tovalidateit. To keep things simple and do the validation on our own,
we rather spare some rows from the Kaggle training set for testing.

Separating a test set is quite simple. Scikit-learn provides a useful method for
that, too. Thisis train_test_split.

Further, we need to separate the input data from the resulting label we want
to predict.

Listing 2.12: Separating input from labels and training from testing sets

from sklearn.model_selection import train_test_split

input_data = train[:, 1:8]
labels = train[:, 0]

train_input, test_input, train_labels, test_labels = train_test_split(
input_data, labels, test_size = 0.2)

OX P wre

print('We have {} training and {3} testing rows'.format(train_input.shape
[0], test_input.shape[0]))
print('There are {} input columns'.format(train_input.shape[1]))

[y
0

We have 711 training and 178 testing rows
There are 7 input columns

We separate the input columns from the labels with Python array indices
(lines 3-4). The first column (position @) contains the Survived flag we want
to predict. The other columns have the data we use as input.

train_test_split separates the training from the testing data set. The param-
eter test_size = 0.2 (= 20%) specifies the portion we want the testing set to
have.

R.&

46 Chapter 2. Binary Classification

We can see that our training data set consists of 711 entries. Accordingly, our
testing set consists of 178 entries. We have input seven columns and single-
column output. Let’ssave our prepared data tousein the future without need-
ing to repeat all these steps.

Listing 2.13: Save the data to the filesystem

¥ import numpy as np

2

] with open('data/train.npy', 'wb') as f:
¥ np.save(f, train_input)

] np.save(f, train_labels)

yd with open('data/test.npy’', 'wb') as f:
;4 np.save(f, test_input)
¥l np.save(f, test_labels)

Baseline

Now, we have our input data and the resulting labels. And we have it sepa-
rated into a training and a testing set. The only thing left is our algorithm.

Ouralgorithm should predict whether a passenger survived the Titanic ship-
wreck. This is a classification task since there are distinct outcome values.
Specifically, it is a binary classification task because there are precisely two
possible predictions (survived or died).

Before developing a quantum machine learning algorithm, let’s implement
the simplest algorithm we can imagine: a classifier that guesses.

Listing 2.14: A random classifier

8 import random

P4 random. seed(a=None, version=2)
3

P4 def classify(passenger):

i1 return random.randint(@, 1)

We import the random number generator (line 1) and initialize it (line 2).

Our classifier is a function that takes passenger data as input and returns ei-
ther e or 1 as output. Similar to our data, @ indicates the passenger died and 1
the passenger survived.

2.5 Baseline 47

To use the classifier, we write a Python function that runs our classifier for
each item in the training set.

Listing 2.15: The classification runner

Wl def run(f_classify, x):
P4 return list(map(f_classify, x))

This function takes the classifier-function as the first argument (we can re-
place the classifier later) and the input data (as x) as the second parameter
(line1).

It uses Python’s map function to call the classifier with each item in x and re-
turn an array of the results.

Let’srun it.
Listing 2.16: Run the classifier

result = run(classify, train_input)

When we run the classifier with our train_input, we receive a list of predic-
tions.

Since our goal is to predict the actual result correctly, we need to evaluate
whether the prediction matches the actual result.

Let’s have a look at the accuracy of our predictions.

Listing 2.17: Evaluate the classifier

def evaluate(predictions, actual):
correct = list(filter(

lambda item: item[0] == item[1],

list(zip(predictions,actual))

return '{} correct predictions out of {}. Accuracy {:.0f} %' \
.format(len(correct), len(actual), 100*len(correct)/len(actual))

1
R
3
4
=))
&
7
¥
2

print(evaluate(run(classify, train_input), train_labels))

48 Chapter 2. Binary Classification

347 correct predictions out of 711. Accuracy 49 %

We define another function named evaluate. It takes the predictions of our
algorithm and the actual results as parameters (line 1).

Theterm list(zip(predictions,actual)) (line4) createsalist of 2-item lists. The
2-item lists are pairs of a prediction and the corresponding actual result.

We filter these items from the list where the prediction matches the actual
result (lambda item: item[@] == item[1]) (line 3). These are the correct predic-
tions. The length of the list of correct predictions divided by the total num-
ber of passengers is our Accuracy.

Great! We are already correct in half of the cases (more or less). Thisisnota
surprise when guessing one out of two possible labels.

But maybe we can do even better? I mean without any effort. We know that
more people died than survived. What if we consistently predicted the death
of a passenger?

Listing 2.18: Always predict a passenger died

Wl def predict_death(item):

P4 return 0

3

¥4 print(evaluate(run(predict_death, train_input), train_labels))

436 correct predictions out of 711. Accuracy 61 %

We’re up to an accuracy of 61% of our predictions. Not too bad. This value
that is the ratio between the two possible actual values, is the prevalence.

Let’s consider a different task for a moment. Let’s say you're a doctor, and
your job is to predict whether a patient has cancer. Only 1% of your patients
have cancer. If you expected no cancer all the time, your accuracy would be
astonishing 99%! But you would falsely diagnose the patients that have can-
cer. And for the resulting lack of treatment, they’re going to die.

Maybe theaccuracy of the predictions aloneis not a good measure to evaluate
the performance of our algorithm.

R.&

2.6 Classifier Evaluation and Measures 49

Classifier Evaluation and Measures

As we mentioned in section 1.4.3, the evaluation is one central part of every
machine learning algorithm. It may seem trivial at first sight. Yet, deciding
on the right measure is a crucial step. When you optimize your algorithm
towards better performance, you will inevitably optimize the scores in your
evaluation function.

We will get to know more sophisticated evaluation functions in this book.
But right now, we keep it simple. For example, a better way to evaluate the
performance of a classifier is to look at the confusion matrix.

Specificity
—_—

Predicted
Death (negative) Survived (positive)

False
Negatives Positives

True
Negatives Positives

V
3
3
>
)
>
;LJ
[¥]
sud
-6
V
} 5
o~
)
>
;.j
&
V
2

Precision

D
Recall

Figure 2.2: Confusion makbrix

The general idea is to compare the predictions with the actual values. So, for
example, in binary classification, there are two possible actual values: true or
false. And there are two possible predictions: true or false.

There are four possibilities:

« True Negatives (TN): a passenger who died was correctly predicted

- False Positives (FP): a passenger who died was wrongly predicted to sur-
vive

- False Negatives (FN): a passenger who survived was wrongly predicted
todie

- True Positive (TP): a passenger who survived was correctly predicted

50 Chapter 2. Binary Classification

Let’s have a look at the confusion matrix of the predict_death classifier.

Listing 2.19: Confustion matrix of the predict death classifier

B from sklearn.metrics import confusion_matrix
2

23 predictions = run(predict_death, train_input)
4 confusion_matrix(train_labels, predictions)

array([[436, 0],
[275, 011)

Scikit-Learn provides the confusion_matrix method that we import (line 1). It
takes the actual values as first and the predictions as the second parameter
(line 3).

It returns a two-dimensional array. The first row shows the true negatives
(TN) and the false positives (FP). And, the second row shows the false nega-
tives (FN) and the true positives (TP).

We can define the accuracy we measured thus far as:

Y TruePositives +) TrueNegatives
Total Population

Accuracy = (2.1)
It does not care whether there is a systematic error, such as the algorithm’s
inability to correctly predict a passenger who survived (true positives), as
long as it performs well at correctly predicting passengers who die (true neg-
atives).

The confusion matrix offers us more detailed measures of our classifier per-
formance. These are:

« precision

- recall

- specificity

- negative predictive value (NPV)

The precision is the “accuracy of the positive predictions.” It only looks at
the positive predictions. These are predictions that the passenger survived.

Y TruePositives

Precision =
recision Y AllPredictedPositives

(2.2)

2.6 Classifier Evaluation and Measures 51

Let’s have a look at the code:
Listing 2.20: The precision score

k8 from sklearn.metrics import precision_score
P4 print('The precision score of the predict_death classifier is {3}

-~

k2] . format(precision_score(train_labels, predictions)))

The precision score of the predict_death classifier is 0.0

Scikit-Learn provides a function to calculate the precision_score. It takes the
list of actual values and the list of predicted values as input.

Since we did not have a single positive prediction, our precisionisnot defined.
Scikit-Learn interprets this as a score of 0. 0.

The recall is the “accuracy of the actual positives.” It only looks at the actual
positives.

Y TruePositives
Y AllActual Positives

Recall = (2.3)

In Python, itis:
Listing 2.21: The recall score

8 from sklearn.metrics import recall_score
P print('The recall score of the predict_death classifier is {}'

-~

k3 . format(recall_score(train_labels, predictions)))

The recall score of the predict_death classifier is 0.0

Even though recall is defined (the number of actual positives is greater than
0), the scoreis 0.0 again because our classifier did not predict a single survival
correctly. Itis not a surprise when it always predicts death.

The specificityisthe “accuracy of the actual negatives.” It only looks at actual
negatives (deaths).

Y TrueNegatives
Y AllActualNegatives

Specificity = (2.4)

52 Chapter 2. Binary Classification

And the “negative predictive value” (NPV) is the “accuracy of the negative
predictions.”
Y TrueNegatives

NegativePredictiveValue(NPV):ZA”P SictedNeodl (2.5)
redictedNegatives

These two functions are not provided out of the box. But with the values we
get from the confusion matrix, we can calculate them easily:

Listing 2.22: The specificity and the npv

Wl def specificity(matrix):
return matrix[0][0]/(matrix[0]1[0]+matrix[@1[1]) if (matrix[0][0]+matrix
[01[1] > 0) else @

def npv(matrix):
return matrix[0][0]1/(matrix[@1[0]+matrix[1]1[0]) if (matrix[@][0]+matrix
[1][0] > 0) else 0

cm = confusion_matrix(train_labels, predictions)

print('The specificity score of the predict_death classifier is {:.2f}'.
format(specificity(ecm)))

print('The npv score of the predict_death classifier is {:.2f}'.format(
npv(cm)))

The specificity score of the predict_death classifier is 1.00
The npv score of the predict_death classifier is 0.61

The function specificity takes the confusion matrix asa parameter (line1). It
divides the true negatives (matrix[@1[0]) by the sum of the true negatives and
the false positives (matrix[01[1]) (line 2).

The function npv takes the confusion matrix as a parameter (line 4) and di-
vides the true negatives by the sum of the true negatives and the false nega-
tives (matrix[11[0]).

These four scores provide a more detailed view of the performance of our clas-
sifiers.

Let’s calculate these scores for our random classifier as well:

R.7

2.7 Unmask the Hypocrite Classifier 53

Listing 2.23: The scores of the random classifier

I8 random_predictions = run(classify, train_input)
random_cm = confusion_matrix(train_labels, random_predictions)

The precision score of the random classifier is 0.38
The recall score of the random classifier is 0.49

The specificity score of the random classifier is 0.50
The npv score of the random classifier is 0.61

While the predict_death classifier exhibitsa complete absence of precision and
recall, it has excellent specificity. It reaches an NPV score that matches the
percentage of negatives in our test dataset (the prevalence).

The random classifier produces balanced scores. You’ll get a little bit differ-
ent scores every time you run the classifier. But the values seem to stay in
certain ranges. While the precision of this classifier is usually below e.4 the
npv is above 0.6.

The confusion matrix and related measures give you much information. But
sometimes, you need a more concise metric. For example, the evaluation
function in a machine learning algorithm must return a single measure to
optimize.

And this single measure should unmask a classifier that does not add any
value.

Unmask the Hypocrite Classifier

Even though the predict_death classifier does not add any insight, it outper-
forms the random classifier concerning overall accuracy. This is because it

54 Chapter 2. Binary Classification

exploits the prevalence, the ratio between the two possible values, not being
0.5.

The confusion matrix reveals more details on certain areas. For example, it
shows that the predict_death classifier lacks any recall and predicts actual pos-
itives. This is no surprise since it always predicts death.

But having a whole set of metrics makes it difficult to measure real progress.
How do we recognize that one classifier is better than another? How do we
even identify a classifier that adds no value at all? How do we identify such a
hypocrite classifier?

Let’s write a generalized hypocrite classifier and see how we can unmask it.

Listing 2.24: A hypocrite classifier

i def hypocrite(passenger, weight):
P return round(min(1,max(0,weight*0.5+random.uniform(@, 1))))

The hypocrite classifier takes the passenger data and a weight value. The weight
is a number between —1 and 1. It denotes the classifier’s tendency to predict
death (negative values) or survival (positive values).

The formula weight*0.5+random.uniform(e, 1) generates numbersbetween —0.5
and 1.5. Theminand max functions ensure the result tobe betweeneand 1. The
round function returns either o (death) or 1 (survival).

Depending on the weight, the chances to return one or the other prediction
differs.

If weight is —1, it returns —1*0.5+random.uniform(@, 1), a number between —0.5
and 0.5. A number almost always rounding to o (predicted death).

If weight is 0, the formula returns —1*e+random.uniform(e, 1). This is our ran-
dom classifier.

If weight is 1, it returns 1*0.5+random.uniform(e, 1), a number that is always
greater than 0.5 and thus, rounding to 1(predicted survival).

We can choose the tendency from -1 to 1. —1 always predicts death, o is en-
tirely random, 1 always predicts survival.

Let’s have a look at how the predictions vary. We pass the weight as a hyper-
parameter. Try different values, if you like.

2.7 Unmask the Hypocrite Classifier 55
Listing 2.25: The scores of the hypocrite classifier

8 w_predictions = run(lambda passenger: hypocrite(passenger, —0.5),
train_input)
Pd w_cm = confusion_matrix(train_labels, w_predictions)

.format(precision_score(train_labels, w_predictions)))
print('The recall score of the hypocrite classifier is {:.2f}'
.format(recall_score(train_labels, w_predictions)))

The precision score of the hypocrite classifier is 0.38
The recall score of the hypocrite classifier is 0.22

The specificity score of the hypocrite classifier is 0.77
The npv score of the hypocrite classifier is 0.61

If you run the hypocrite classifier a few times, you may get a feeling for its per-
formance. But let’s create a visualization of it.

The following code runs the hypocrite classifier for different values of weight.

The range of allowed weights is between —1and 1. We divide this range into 40

(cnt_steps) steps (line 4). We create lists of the indices (steps=[@, 1, ..., 38,

39], line 7) and of the weights at every step (weights=[—1, —0.95, ... 0.9, 0.95,
1.01, lines 10-13).

We run the hypocrite classifier for every step (lines 17-19) and put the results
into 1_predictions (line 16). Based on the predictions and the actual results,
we calculate the confusion matrix for every step (line 26) and store them in

1_cm (line 25).

56 Chapter 2. Binary Classification

Listing 2.26: Run the hypocrite classifiers

import numpy as np

number of steps to consider between —1 and 1
cnt_steps = 40

a list of the step numbers [0, 1, ..., 38, 39]
steps = np.arange(@, cnt_steps, 1).tolist()

1
R
3
4
s
&
7
¥
K

list of the weights at every step [—1, —0.95, ... 0.9, 0.95, 1.0]
weights = list(map(

lambda weight: round(weight, 2),

np.arange(—1, 1+2/(cnt_steps—1), 2/(cnt_steps—1)).tolist()
))

list of predictions at every step
1_predictions = list(map(
lambda step: run(
lambda passenger: hypocrite(passenger, weights[step]),
train_input
))
steps

))

list of confusion matrices at every steo

1_cm = list(map(
lambda step: confusion_matrix(train_labels, 1_predictions[step]),
steps

))

The next piece of code takes care of rendering the two graphs.

The green graph depicts the number of predicted survivals at a step. The red
graph shows the number of expected deaths.

2.7 Unmask the Hypocrite Classifier 57
Listing 2.27: Plot the distribution of predictions

import matplotlib.pyplot as plt
import matplotlib

create a graph for the number of predicted deaths
deaths, = plt.plot(
weights, # point at x—axis
list(map(lambda cur: 1_cm[cur][@1[0]+1_cm[curl[1][0], steps)),
'lightsalmon', # color of the graph
label="'Predicted death'

1
2
3
4
s
&
7
¥
2

create a graph for the number of predicted survivals

] survivals, = plt.plot(

weights, # point at x—axis

list(map(lambda cur: 1_cm[cur][@1[1]1+1_cml[curl[1]1[1], steps)),
'lightgreen', # color of the graph

label="'Predicted survival'

)

plt.legend(handles=[deaths, survivals],loc='upper center',
bbox_to_anchor=(0.5, —0.15), framealpha=0.0, ncol=2)

plt.xlabel("Weight")

plt.ylabel("Number of predictions")

plt.show()

tions

Mumber of predic

=1.00 =075 =0.50 -0.25 0.00 0.25 0.50
Weight
Predicted death — Predicted survival

Figure 2.3: Distribution of predictions based on the weight

58 Chapter 2. Binary Classification

We can see that the hypocrite classifier generates the expected tendency in its
predictions. At weight=—1, it always predicts death, at weight=0 it is 50:50, and
at weight=1 it always predicts survival.

Let’s see how the different hypocrite classifiers perform at the four metrics de-
pending on the weight.

Listing 2.28: Metrics of the hypocrite classifier

W8 1_precision = list(map(lambda step: precision_score(train_labels,
1_predictions[step]),steps))

Pd 1_recall = list(map(lambda step: recall_score(train_labels, 1_predictions
[step]l),steps))

] 1_specificity = list(map(lambda step: specificity(l_cm[stepl),steps))

Y3 1_npv = list(map(lambda step: npv(l_cm[step]),steps))

In these four lines, we calculate the four metrics at each step. Let’s visualize
them.

Listing 2.29: Plot the performance measures

I8 m_precision, = plt.plot(weights, 1_precision, 'pink', label="precision")

Pd m_recall, = plt.plot(weights, 1_recall, 'cyan', label="recall")

m_specificity, = plt.plot(weights, 1_specificity, 'gold', label="
specificity")

m_npv, = plt.plot(weights, 1_npv, 'coral', label="npv")

plt.legend(
handles=[m_precision, m_recall, m_specificity, m_npv],
loc="upper center',
bbox_to_anchor=(0.5, —0.15),
framealpha=0.0,
ncol=4)

plt.xlabel("Weight")
plt.ylabel("Number of predictions")
3 plt.show()

2.7 Unmask the Hypocrite Classifier 59

tions

=]
[:T]
E
(=
=
[=]
.
:F]
=
E
=
=

-1.00 —0.75 —0.50 —0.25 0.00 0.25 175 100
Weight
= precision recall = specificity np

Figure 2.4: Performance measures of the hypocrite classifier

These graphs show some exciting characteristics. specificity and recall
are directly related to the classifier’s tendency to predict death (higher
specificity) or to predict survival (higher recall).

Except for the edge cases where all predictions are death, or all are survival,
the values for precision and npv seem to be horizontal lines. precision relates
to the prevalence 0of 39% survivals in our data and npv to the prevalence of 61%
deaths.

Listing 2.30: Calculating the mean of the measures

¥4 1_mean = list(map(lambda step: sum(step)*0.25, zip(1l_precision, 1_recall,
1_specificity, 1_npv)))

Pd m_mean, = plt.plot(weights, 1_mean, 'pink', label="Mean of the measures")

3

¥4 plt.legend(handles=[m_mean],loc="upper center',

] bbox_to_anchor=(0.5, —0.15),framealpha=0.0)

1] plt.ylim(o, 1)

¥4 plt.show()

60 Chapter 2. Binary Classification

—1.00 —0.75 —0.50 —.25 0.00 0.25

= Mean of the measures

Figure 2.5: The mean of the measures discloses the absence of
any information gain

When looking at the mean of all four measures, we see an almost flat line. Its
drops at the edges are due to precision and npv being 0 there because there are
no predicted survivals (left edge) respectively no predicted deaths (right edge)
to calculate some measures.

This line indicates that the overall level of information provided by all hyp-
ocrite classifiersis equal. And the level is about 0.5. That is the baseline for a
binary classifier, for there are only two possible outcomes.

Even though specific types of hypocrite classifiersare able to trick a single mea-
sure (like accuracy, recall, precision, or npv) by exploiting the prevalence, when
looking at all complementary measures at once, we can unmask the hypocrite
classifier.

However, thisdoesnotimply that the mean of these measuresis the best mea-
sure to evaluate the performance of your classifier with. Depending on your
task at hand, you may, for instance, favor precision over recall. Rather, the
implication is that you should look at the overall level of information pro-
vided by the classifier, too. You should not let yourself be dazzled by the clas-
sifier’s performance at a single measure.

Finally, let’s create a reusable function that calculates the measures forusand
displays the results.

2.7 Unmask the Hypocrite Classifier

Listing 2.31: A reusable function to unmask the hypocrite classifier

def classifier_report(name, run, classify, input, labels):
cr_predictions = run(classify, input)
cr_cm = confusion_matrix(labels, cr_predictions)

cr_precision = precision_score(labels, cr_predictions)

cr_recall = recall_score(labels, cr_predictions)

cr_specificity = specificity(cr_cm)

cr_npv = npv(cr_cm)

cr_level = 0.25%(cr_precision + cr_recall + cr_specificity + cr_npv)

1
R
3
4
s
&
7
¥
2

print('The precision score of the {} classifier is {:.2f}'
.format(name, cr_precision))

print('The recall score of the {} classifier is {:.2f}'
.format(name, cr_recall))

print('The specificity score of the {} classifier is {:.2f}'
.format(name, cr_specificity))

print('The npv score of the {} classifier is {:.2f}'
.format(name, cr_npv))

print('The information level is: {:.2f}'
.format(cr_level))

Let’s use this function to get a report of our random classifier.

Listing 2.32: The report of the random classifier

Wl classifier_report(
P4 "Random PQC",

1 run,

Y classify,

1 train_input,

] train_labels)

The precision score of the Random PQC classifier is 0.38
The recall score of the Random PQC classifier is 0.51

The specificity score of the Random PQC classifier is 0.47
The npv score of the Random PQC classifier is 0.61

The information level is: 0.49

3.1

In this chapter, we start with the very basics of quantum computing-the
quantum bit. And we will write our first quantum circuit. A quantum circuit
is a sequence of quantum bit transformations-the quantum program. Let’s
start with the basics.

Exploring the Quantum States

The world of quantum mechanics is different. A quantum system can bein a
state of superposition. A popular notion of superposition is that the system
is in different states concurrently unless you measure it.

For instance, the spin of a particle is not up or down, but it is up and down at
the same time. But when you look at it, you find it either up or down.

Or, let’s say you flip a quantum coin. In the air, it has both values, heads and
tails. If and only if you catch it and look at it, it decides for a value. Once
landed, itis a normal coin with heads up or tails up.

Anothernotion of superpositionisthat the systemis truly random and there-
fore distinguishes it from the systems we know. Tossing a (normal) coin,
for instance, seems random because whenever you do it, the conditions are
slightly different. And even tiny differences can change the outcome from
heads to tails. The coin is sensitive dependent to initial conditions.

If we were able to measure all conditions precisely, we could tell the out-
come. In classical mechanics, there is no randomness. Things in our every-

3.1 Exploring the Quantum States 63

day world, such asthe coin, seem random. But they are not. If measured with
infinite precision, randomness would disappear. By contrast, a quantum sys-
tem is truly random.

Maybe you wonder: Ok, it’s random. Where’s the big deal?

The big thing is the consequences. In a classic system, a system sensitive de-
pendent to initial conditions, the answer to a question is already determined
before we ask it.

Rather than watching the baseball match tonight, you spend the evening
with your friends. When you return home, even though you don’t know the
results, the match is over, and there is a definite result. There could be differ-
ent results, but you simply don’t know the result until you look at it.

Contrarily, in a quantum system, the answer to a question is not determined
up until the time you ask it. And since it is not determined yet, you still can
change the probabilities of measuring distinct states.

Do you have doubts? Good! Not even Einstein liked this notion. It led him to
his famous statement of God does not play dice.

God does not
ptaj dice,

Figure 3.1: Albert Einstein

Many physicists, including Einstein, proposed the quantum state, though
hidden, to be a well-defined state. This is known as the hidden variable the-
ory.

There are statistically distinct behaviors between a system following the hid-
den variable theory and a quantum system following the superposition prin-
ciple. And experiments showed that the quantum mechanical predictions
were correct.

For now, let’s accept the quantum state is something different. Later in this

64 Chapter 3. Qubit and Quantum States

book, we will have a closer look atit. And its consequences. But this requires
a little more theory and math.

We turn to the quantum computer. Let’s say you have a quantum bit. We call
it qubit. Unless you observe its value, it is in a superposition state of e and 1.
Once you observe its value, you’ll get @ or 1.

The chances of a qubit to result in either one value don’t need to be 50:50. It
can be 25:75, 67:33, or even 100:0. It can be any weighted probability distribu-
tion.

The probability distribution a qubit has when observed depends on its state.
The quantum state.

In quantum mechanics, we use vectors to describe the quantum state. A pop-
ular way of representing quantum state vectors is the Dirac notation’s “ket”-
construct that looks like |y). In Python, we don’t have vectors. But we have
arrays. Luckily, their structures are similar.

Let’s have a look. We start with the simplest case. Let’s say we have a qubit
that, when observed, always has the value 0. If you argued this qubit must
have the value o even before it is observed, you wouldn’t be completely wrong.
Yet, you'd be imprecise. Before it is observed, this qubit has the probability of
1 (= 100%) to have the value e when observed.

These are the equivalent representations (ket, vector, array) of a qubit that
always results in e when observed:

|0) = H and in Python [1, e].

Accordingly, the following representations depict a qubit that always results
in 1 when observed:

1) = m and in Python [e, 11.
Ok, enough with the theory for now. Let’s have a look at the code of such a
qubit.

If you haven’t configured your workstation yet, have a look at the brief expla-
nation of how to set up the working environment (section 1.8).

Now, open the Jupyter notebook and test whether Qiskit works.

3.1 Exploring the Quantum States 65
Listing 3.1: Verify Qiskit version

B import qiskit
PY qiskit.__qiskit_version__

{'qiskit-terra': '0.16.4',
'qiskit-aer': '0.7.4',
'qiskit-ignis': '0.5.2"',
'qiskit-ibmgq-provider': '0.11.1',
'giskit-aqua': '0.8.2',

'qiskit': '0.23.5'}

If you get a response like this, Qiskit works. Great! We’re ready to create our
first qubit.

Listing 3.2: The first qubit

¥ from giskit import QuantumCircuit

2

] # Create a quantum circuit with one qubit

¥4 qc = QuantumCircuit(1)

-]

18] # Define initial_state as |1>

Vd initial_state = [0,1]

¥

¥l # Apply initialization operation to the qubit at position 0
i¥e] gc.initialize(initial_state, 0)

The fundamental unit of Qiskit is the quantum circuit. A quantum circuitisa
model for quantum computation. The program, if you will. Our circuit con-
sists of a single qubit (line 4).

We define [0,1] as the initial_state of our qubit (line 7) and initialize the first
and only qubit (at position e of the array) of our quantum circuit with it (line
10).

Remember [0,1]? Thisis the equivalent to |1) = [(1)] . And in plain English, it

is a qubit resulting in the value 1 when observed.

This is it. It’s now time to boot our quantum computer. In case you don’t

66 Chapter 3. Qubit and Quantum States

have one, no problem. We can simulate it. (In case you have one: “Cool, let me
know”).

Listing 3.3: Prepare the simulation backend

M from giskit import execute, Aer

2

2] # Tell Qiskit how to simulate our circuit

¥"q backend = Aer.get_backend('statevector_simulator')
=1

19 # Do the simulation, returning the result

A result = execute(qc,backend).result()

Qiskit provides the Aer package (that we import atline1). It provides different
backends for simulating quantum circuits. The most common backend isthe
statevector_simulator (line 4).

The execute function (that we import at line 1, too) runs our quantum circuit
(qc) at the specified backend. It returns a job object that has a useful method
job.result(). This returns the result object once our program completes it.

Let’s have alook at our qubit in action.

Qiskit uses Matplotlib to provide useful visualizations. A simple histogram
will do. The result object provides the get_counts method to obtain the his-
togram data of an executed circuit (line 5).

The method plot_histogram returns a Matplotlib figure that Jupyter draws au-
tomatically (line 8).

We see we have a 100% chance of observing the value 1.

Listing 3.4: The measured qubit

8 from giskit.visualization import plot_histogram
P4 import matplotlib.pyplot as plt

3

4 # get the probability distribution

] counts = result.get_counts()

)

VA # Show the histogram

p:4 plot_histogram(counts)

3.1 Exploring the Quantum States 67

Figure 3.2: The qubit state

1.00
0.75

0.50

4]
[i]
=
._E
g
i |
o
&

0.25

0.00

Now, let’s move on to a more advanced case. Say, we want our qubit to result
in either o or 1 with the same probability (50:50).

In quantum mechanics, there is the fundamental principle superposition. It
says any two (or more) quantum states can be added together (“superposed”),
and the result will be another valid quantum state.

Wait! We already know two quantum states, |0) and |1). Why don’t we add
them? |0) and |1) are vectors. Adding two vectors is straightforward.

Avectorisageometricobject that hasa magnitude (orlength) and a direction.
Usually, they are represented by straight arrows, starting at one point on a
coordinate axis and ending at a different point.

You can add two vectors by placing one vector with its tail at the other vec-
tor’s head. The straight line between the yet unconnected tail and the yet
unconnected head is the sum of both vectors. Have a look at the figure 3.3.

Mathematically, it is as easy.

Letii = {ul] and v = [vl} be two vectors.
Uy V)

The sum of 7 and v is:

- |urt+w
b= LZ +VJ (3.1)

<

68 Chapter 3. Qubit and Quantum States

Figure 3.3: Adding two vectors

Accordingly, our superposed state should be y*:

W= oy =[] []

superposition

*w (“psi”) is a common symbol used for the state of a quantum system.

We have a computer in our hands. Why don’t we try it?

Listing 3.5: First attempt to superpose two states

8 # Define state |psi>
initial_state = [1, 1]

Redefine the quantum circuit
gc = QuantumCircuit(1)

Initialise the 0th qubit in the state "initial_state’
gc.initialize(initial_state, 0)

oX g P w

execute the qc
results = execute(qc,backend).result().get_counts()

1 # plot the results
plot_histogram(results)

QiskitError: 'Sum of amplitudes-squared does not equal one.'

It didn’t quite work. It tells us: QiskitError: 'Sum of amplitudes—squared does

not equal one.'.

3.1 Exploring the Quantum States 69

The amplitudes are the values in our array. They are proportional to proba-
bilities. And all the probabilities should add up to exactly 1 (100%). We need
to add weights to the quantum states |0) and |1). Let’s call them « and S.

We weight |0) with a and |1) with 8. Like this:

i =0y +p11) = g 15| = 5]

Amplitudes are proportional to probabilities. We need to normalize them so
that o> 4+ B2 = 1. If both states |0) and |1) should have the same weight, then
o = . And therefore, we can solve our equation to a:
1 1
2, 2 2 2
at+o=le2- ' =lesa" =-a=—
2 V2
And we insert the value for both @ and 8 (both are equal). Let’s try this quan-
tum state:

The corresponding array in Python is: [1/sqrt(2), 1/sqrt(2)]. Don’t forget to
import sqrt.

Listing 3.6: Weighted initial state

from math import sqrt

Define state |psi>
initial_state = [1/sqrt(2), 1/sqrt(2)]

Redefine the quantum circuit
gc = QuantumCircuit(1)

1
R
3
4
s
6
7
¥
2

Initialise the Oth qubit in the state "initial_state’
gc.initialize(initial_state, 0)

execute the qc
results = execute(qc,backend).result().get_counts()

plot the results
plot_histogram(results)

70 Chapter 3. Qubit and Quantum States

Figure 3.4: The qubit state

0.60
0.45
0.30
0.15

[4]
[i K]
=
E
5]
|
o
o

0.00

What is the state of qubit that has a 25% chance of resulting in e and 75% of
resulting in1?

The solution is solving the following equation system.

Equation 3.3. This is the definition of a qubit in superposition. This qubit,
when observed, has the probability of a? to result in e and 2 to result in 1.

v) = alo)+ Bli) = | 3.9

Equation 3.4. This is the required normalization. It requires the sum of the
squared amplitudes (o and) to equal 1.

a*+ B2 =1 (3.4)

Let’s regard the probabilities 25% and 75% as fractions and equate them to «?
and 2, respectively.

2 1,21
o= e a=; (3.5)
and
pr= b=+ (3.6)

Now, we insert 3.5 and 3.6 into equation 3.3:

1 V3 1
ly) = §|0>+7|1> = [%@]

3.1 Exploring the Quantum States 71

|

In Python, the array [1/2, sqrt(3)/2]1representsthe vector [

N|$t\)l—

Now, let’s open our Jupyter notebook and test our calculation.
Listing 3.7: The qubit with a probability of 0.25 to result in O

from giskit import QuantumCircuit, execute, Aer
from giskit.visualization import plot_histogram
from math import sqrt

gc = QuantumCircuit(1)

initial_state = [1/2, sqrt(3)/2] # Here, we insert the state
gc.initialize(initial_state, 0)

backend = Aer.get_backend('statevector_simulator')

result = execute(qc,backend).result()

counts = result.get_counts()

plot_histogram(counts)

1
R
3
4
s
&
7
%
2

Figure 3.5: The qubit measurement probabilities

0.8
0.6
0.4
0.2

0.0

i
[i]
=
E
g
i |
o
[

Phew. In this chapter, we introduced quite a few terms and equations just to
scratch on the surface of quantum mechanics. But the actual source code is
pretty neat, isn’tit?

We introduced the notion of the quantum state. In particular, the state of a
binary quantum system. The quantum bit or qubit.

Until we observe a qubit, it isin superposition. Contrary to a classical bit that
can be either 0 or 1, a qubit is in a superposition of both states. But once you
observe it, there are distinct probabilities of measuring e or 1.

3.2

72 Chapter 3. Qubit and Quantum States

This meansthat multiple measurements made on multiple qubitsinidentical
states will not always give the same result. The equivalent representations of
a quantum bit that, when observed, has the probability of & to result in e and
B2 toresultin 1 are:

ly) = al0) + B|1) = {g] , with o? + B2 = 1. In Python, the array [alpha, beta]

denotes this state.

Visual Exploration 0f The Qubit
State

The qubit is a two-dimensional quantum system. Each dimension is denoted
by a standard basis vector:

0) = H in Python [1, eJand

) = m,in Python re, 11.

The state of the qubit is represented by the superposition of both dimensions.
This is the qubit state vector |y) (“psi”).

) = a0} + B1) = [l‘;‘] (3.7)

In Python, |y) is the array [alpha, betal.
But |y) must be normalized by:

Although normalizing the qubit state vector is not a difficult task, doing the
math over and over again is quite cumbersome.

But maybe, there’s another way, an easy way. Let’s first have a look at a graph-
ical representation of the qubit state |y) in the following figure 3.6.

In this representation, both dimensions reside at the vertical axis but in op-
posite directions. The top and the bottom of the system correspond to the
standard basis vectors |0) and |1), respectively.

3.2 Visual Exploration Of The Qubit State 73

Figure 3.6: 2-dimensional qubit system

+ . When there are two dimensions, the usual way is to put the two
L’ dimensions orthogonal to each other. While using one axis to
represent both dimensions is rather an unusual representation
foratwo-dimensional system, itis well suited for a quantum sys-
tem. But more on this later.

Let’s have alook at the arbitrary qubit state vector |y) in this figure 3.6.

Since qubit state vectors are normalized, |y) originates in the center and has
the magnitude (length) of % Due to this equal magnitude, all state vectors
end at the pointed circle. So does |y).

The angle between the state vector |0) and |y), named 6 (“theta”), controls
the proximities of the vector head to the top and the bottom of the system
(dashed lines).

These proximities represent the probabilities of

- a® of measuring |y) as o
- and B? of measuring itas 1.

The proximities « and 8 are at the opposite sides of the state’s
* probability (|y)) they describe. « is the proximity (or distance)
to |1) because with increasing distance to |1) the probability of

3.3

74 Chapter 3. Qubit and Quantum States

measuring O increases.

Thus, by controlling the proximities, the angle 6 also controls the probabili-
ties of measuring the qubit in either state e or 1.

Rather than specifying the relation between a and and then coping with
normalizing their values, we can specify the angle 6 and use the required nor-
malization to derive o and 8 from it.

Bypassing The Normalization

The angle 6 controls the probabilities of measuring the qubit in either state o
or 1. Therefore, 6 also determines o and .

Have a look at figure 3.6 again.
Any valid qubit state vector must be normalized:

This implies all qubit state vectors have the same magnitude (length). Since
they all originate in the center, they form a circle with a radius of their mag-
nitude (that is half of the circle diameter).

In such a situation, Thales’ theorem states, if

«+ A, B, and C are distinct points on a circle (condition 1)
- where the line AC is a diameter (condition 2)
- then the angle ZABC (the angle at point B) is a right angle.

In our case, the heads of |0), |1), and |y) represent the points A, B, and C, re-
spectively (satisfy condition 1). The line between |0) and |1) is the diameter
(satisfy condition 2). Therefore, the angle at the head of |y) is a right angle.

Now, the Pythagorean theorem states the area of the square whose side is
opposite the right angle (hypotenuse, c) is equal to the sum of the areas of the
squares on the other two sides (legs a, b).

=d®+ b (3.10)

When looking at figure 3.6, again, we can see that o and 8 are the two legs
of the rectangular triangle and the diameter of the circle is the hypotenuse.

3.3 Bypassing The Normalization 75

Therefore, we can insert the normalization equation 3.9

c=/a2+B2=V1=1 (3.11)

The diameter c is two times the radius, thus two times the magnitude of any
vector |y). The length of |y) is thus § = 1.

Since all qubit state vectors have the same length, including |0) and |1), there
are two isosceles triangles (AM|0)|y) and AM|y)|1)).

Have a look at the following figure 3.7.

Figure 37: Two inner isosceles briangles and an outber
rectangular triangle

You can see the two isosceles triangles. The anglesin isosceles trianglesat the
equal legs are equal, as denoted by yand 4.

Further, the sum of all three angles in a triangle is 180°. Therefore,

0 +2y=180° (3.12)
Let’s solve this after y
180° — 6 , 0
=—F = 90° — 5 (3.13)

In a rectangular triangle (the outer one), trigonometric identity says the sine
of an angle is the length of the opposite leg divided by the length of the hy-
potenuse. In our case, this means:

o

siny = 1= (3.14)

76 Chapter 3. Qubit and Quantum States

Now, we insert equation 3.13:
) 0
sin (90" — 5) =a (3.15)
With 5in(90° — x) = cosx, we can see:
O = COS —

2

This is the first variable we aimed to calculate.

The further derivation works accordingly and is straightforward. At the cen-
ter (M), the (unnamed) angle inside the dashed triangle is 180° — 6.

(1800—9)+25:1800<:>5:g (3.16)

Again, we use the trigonometric identity. This time it implies:

B

T= B (3.17)

sind =
Finally, we insert 3.16:

sing =p (3.18)

This is the second variable to calculate.

We calculated @ and . We can insert it into the definition of the qubit super-
position.

v) = alo)+ Bli) = | (3.19)
The resultis
6 0 . 0 1 — cosg (3.20)
|w) —cos§])+sm§\)= Lin%} .

In Python the two-field array [cos(theta/2), sin(theta/2)]denotes this state.
o and B describe the proximity to the top and the bottom of the system, re-
spectively. 0 is the angle between the standard basis vector: |0) = H and the

qubit state vector |y) it represents.

There’s one problem left. For 6 € R, what if 7 < 6 < 22? Or in plain English,
what if the 6 denotes a vector pointing to the left side of the vertical axis?

3.3 Bypassing The Normalization v

Figure 3.8 shows this situation.

Figure 3.%: 360° 2-dimensional qubit system

Mathematically, we don’t have a problem. Since we square « and f, their
signs (+ or —) are irrelevant for the resulting probabilities.

But what does it mean? How can either a” or 32 be negative, as the figure
indicates? The answer isi. i is a complex number whose square is negative:
2

i =-—1.

And if o and are complex numbers (a, § € C), their squares can be negative.

This entails a lot of consequences. And it raises a lot of questions. We will
unravel them one by one in this book. For now, we interpret all vectors on
the left-hand side of the vertical axis to have a negative value for ? (32 < 0).

While such a value lets us distinguish the qubit state vectors on both sides of
the vertical axis, it does not matter for the resulting probabilities.

For instance, the state |y) = >}|1

yields the same probability of measuring e

or 1. It resides on the horizontal axis. And so does |y) = [9) ﬁll)

Although these states share the same probabilities, they are different. And
the angle 0 differentiates between them.

= 7 specifies |y) = '0}“ that is also known as |+).

And 6 = 37 or 6 = —Z specifies |y) = ‘0>ﬂ|1 thatisalso known as |—).

78 Chapter 3. Qubit and Quantum States

One of the consequences mentioned above of a? or f? being negative is that
our normalization rule needs some adjustments.

We need to change the normalization equation 3.8 to:
la>+ (Bl =1 (3.21)
This section contained a lot of formulae. The important takeaway is we can

specify quantum states that yield certain probabilities of measuring e and 1
by an angle 6. It saves us from doing the normalization manually.

Let’s have a look.
Listing 3.8: Using theta to specify the quantum state vector

from math import pi, cos, sin
from giskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram

def get_state (theta):
"""returns a valid state vector
return [cos(theta/2), sin(theta/2)]

1
R
3
4
s
&
7
¥
9

play with the values for theta to get a feeling
theta = —pi/2 # affects the probabilities

create, initialize, and execute the quantum circuit
gc = QuantumCircuit(1)
gc.initialize(get_state(theta), 0)

backend = Aer.get_backend('statevector_simulator')
result = execute(qc,backend).result()

counts = result.get_counts()

Show the histogram
plot_histogram(counts)

3.4

3.4 Exploring The Observer Effect 79

Figure 39: Theta specifies the qubit state |->

0.60
0.45
0.30
0.15
0.00

N
[i §]
=
E
]
i |
o
™

In this piece of code, we introduced the function getstate (line5). It takes theta
as a parameter and returns the array [cos(theta/2), sin(theta/2)]. Thisisthe
vector we specified in the equation 3.20.

Exploring The Observer Effect

A qubit is a two-level quantum system that is in a superposition of the quan-
tum states |0) and |1) unless you observe it. Once you observe it, there are
distinct probabilities of measuring @ or 1. In physics, this is known as the
observer effect. It says the mere observation of a phenomenon inevitably
changes that phenomenon itself. For instance, if you measure the temper-
ature in your room, you're taking away a little bit of the energy to heat up
the mercury in the thermometer. This loss of energy cools down the rest of
your room. In the world we experience, the effects of observation are often
negligible.

But in the sub-atomic world of quantum mechanics, these effects matter.
They matter a lot. The mere observation of a quantum bit changes its state
from a superposition of the states |0) and |1) to either one value. Thus, even
the observation is a manipulation of the system we need to consider when
developing a quantum circuit.

Let’s revisit the quantum circuit from section 3.1. Here’s the code and the re-
sult if you run it:

80 Chapter 3. Qubit and Quantum States
Listing 3.9: A circuit without measurement

from qiskit import QuantumCircuit, execute, Aer
from giskit.visualization import plot_histogram
from math import sqrt

Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

Define state |Psi>
initial_state = [1/sqrt(2), 1/sqrt(2)]

1
R
3
4
s
&
7
¥
2

Apply initialization operation to the qubit at position 0
gc.initialize(initial_state, 0)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator')

Do the simulation, returning the result
d result = execute(qc,backend).result()

Get the data and display histogram
counts = result.get_counts()
plot_histogram(counts)

Figure 3.10; Probabilities of measuring a qubit

0.60
0.45
0.30
0.15
0.00

N
[i §]
=
E
]
i |
o
™

Our circuit consists of a single qubit (line 6). It has the initial state [1/sqrt(2),
1/sqrt(2)] (line 9) that we initialize our quantum circuit with (line 12).

3.4 Exploring The Observer Effect 81

Here are the Dirac and the vector notation of this state:

R R I ke
|w>—f2|0>+ﬂ|1> [%]

We add a simulation backend (line 15), execute the circuit, and obtain the re-
sult (line 18). The result object provides the get_counts function that provides
the probabilities for the resulting (observed) state of our qubit.

Let’s have a look at our circuit. The QuantumCircuit provides the draw function
that renders an image of the circuit diagram. Provide output=text as a named
parameter to get an ASCII art version of the image.

Listing &.10: Draw the circuit

gc.draw(output="text"')

Figure 3.11: The c\ubiE skate

':I — '"'l"l'lu;rf:?'lﬂ'l' —

This drawing shows the inputs on the left, outputs on the right, and opera-
tions in between.

What we see here is our single qubit (q) and its initialization values (\% =

0.707). These values are the input and the output of our circuit. When we ex-
ecute this circuit, our result function evaluates the quantum bit in the super-
position state of |0) and |1). Thus, we have a 50:50 chance to catch our qubit
in either one state.

Let’s see what happens if we observe our qubit as part of the circuit.

82 Chapter 3. Qubit and Quantum States
Listing 3.11: Circuit with measurement

W qc = QuantumCircuit(1)

Pd qc.initialize(initial_state, 0)
3

4 # observe the qubit
gc.measure_all()

s
&
¥d # Do the simulation, returning the result
4 result = execute(qc,backend).result()

¥l counts = result.get_counts()

(o]

i¥ed plot_histogram(counts)

Figure 3.12: Measuring the qubit inside the circuit

1.00
0.75
0.50
0.25
0.00

4]
[i]
=
E
5]
i |
o
(s

“Whoa?!”

We get a 100% probability of resulting state 1. That can’t be true. Let’s rerun
the code. I know, doing the same things and expecting different results is a
sign of insanity.

Listing 3.12: Another circuit with measurement

gc = QuantumCircuit(1)
gc.initialize(initial_state, 0)
gc.measure_all()

result = execute(qc,backend).result()
counts = result.get_counts()
plot_histogram(counts)

cndPupe

3.4 Exploring The Observer Effect 83

Figure 3.13: Measuring the qubit inside the circuit, again

1.00
0.75
0.50
0.25
0.00

Probabilities

Again. 100% probability of measuring ... wait ... it’s state o.

No matter how often you run this code, you’ll always get a 100% probability
of either o or 1. In fact, if you reran the code many, many times and counted
the results, you'd see a 50:50 distribution.

Sounds suspicious? Yes, you're right. Let’s have alook at our circuit.

Listing &.13: Draw a circuit with measurement

gc.draw(output="text"')

Figure 3.14: A circuit with measurement

meas

Our circuit now contains a measurement. Thatis an observation. It pullsour
qubit out of a superposition state and lets it collapse into either e or 1. When

3.6

84 Chapter 3. Qubit and Quantum States

we obtain the result afterward, there’s nothing quantumic anymore. Itisa
distinct value. And this is the output (to the right) of the circuit.

Whether we observe a 0 or a 1is now part of our quantum circuit.

¢ Thesmall number at the bottom measurement line does not de-
* pictaqubit’svalue. Itisthe measurement’sindex thatindicates
the classical bit that receives the measurement.

Sometimes, we refer to measurement as collapsing the state of the qubit.
This notion emphasizes the effect a measurement has. Unlike classical pro-
gramming, where you can inspect, print, and show values of your bits as of-
ten as you like, in quantum programming, measurement has an effect on
your results.

If we constantly measured our qubit to keep track of its value, we would keep
itin awell-defined state, either e or 1. Such a qubit wouldn’t be different from
a classical bit. Our computation could be easily replaced by a classical compu-
tation. In quantum computation, we must allow the qubits to explore more
complex states. Measurements are therefore only used when we need to ex-
tract an output. This means that we often place all measurements at the end
of our quantum circuit.

In this section, we had alook at the simplest quantum circuit. We initialize a
single qubit and observeit. But it effectively demonstrates the observer effect
in quantum computing. It is something we need to keep in mind when we
start manipulating our qubits.

Parameterized Quanbtum Circulk

In chapter 2, we created different hypocrite classifiers. These are classifiers
solely building upon chance when predicting the label of a thing. While such
a classifier can yield seemingly good performancein a single measure, such as
precision, it does not reach an average far beyond 0.5 four the four measures
that directly result from the confusion matrix (precision, recall, specificity,
and NPV).

In this section, we use a quantum circuit to solve our binary classification
task. This quantum circuit is a Parameterized Quantum Circuit (PQC). A
PQC is a quantum circuit that takes all data it needs as input parameters.
Therefore it has its name parameterized. It predicts the label of the thing

3.5 Parameterized Quantum Circuit 85

based on these parameters.

The following image 3.15 depicts the simple PQC we are about to build in this
section.

Figure 3.18: A PQC binary classifier

This PQC takes a single quantum state (y) as its input. It measures the state
and provides its prediction as output.

We created such a quantum circuit in the last section 3.4, already.

Here’s the source code.
Listing 3.14: A simple PQC binary classifier

W qc = QuantumCircuit(1)

pY initial_state = [1/sqrt(2), 1/sqrt(2)]
¥ qc.initialize(initial_state, 0)

¥4 qc.measure_all()

In fact, this circuit outputs either o or 1, each with a probability of 50%. It
sounds a lot like the random classifier we created in section 2.5.

Let’s wrap this circuit into a function we can use with the run and evaluate
functions we created in that section to see whether it behaves similarly.

86 Chapter 3. Qubit and Quantum States
Listing 3.15: The parameterized quantum circuit classifier

B from giskit import execute, Aer, QuantumCircuit

P4 from math import sqrt

from sklearn.metrics import recall_score, precision_score,
confusion_matrix

def pqc_classify(backend, passenger_state):
"""backend —— a qiskit backend to run the quantum circuit at
passenger_state —— a valid quantum state vector"""

Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

Define state |Psi> and initialize the circuit
gc.initialize(passenger_state, 0)

Measure the qubit
gc.measure_all()

run the quantum circuit
result=execute(qc,backend).result()

get the counts, these are either {'0': 1} or {'1': 1}
counts=result.get_counts(qc)

get the bit 0 or 1
return int(list(map(lambda item: item[@], counts.items()))[01)

The first difference to notice is the function takes two parameters instead of
one (line5). The first parameter is a Qiskit backend. Since the classifier will run
a lot of times in a row, it makes sense to reuse all we can. And we can reuse
the backend.

The second parameter differs from the classifiers thus far. It does not take
the passenger data but a quantum state vector (passenger_state) asinput. This
is not a problem right now since all the hypocrite classifiers we developed so
farignored the data anyway.

The function creates a quantum circuit with one qubit (line 12), initializes it
with the passenger_state (line 15), measures the qubit (line 18), executes the
quantum circuit (line 21), and retrieves the counts from the result (line 24).
All these steps did not change.

But how we return the counts is new (line 27). counts is a Python dictionary.

3.5 Parameterized Quantum Circuit 87

It contains the measurement result (either o or 1) as a key and the probability
as the associated value. Since our quantum circuit measures the qubit, it col-
lapsed to a finite value. Thus, the measurement probability is always 1. Con-
sequently, countsiseither{'e': 1}or{'1': 13}.

All we’re interested in here is the key. And this is what we return.

We start (from inner to outer) with the term counts. items(). It transforms the
Python dictionary into a list of tuples, like [('@', 1)1. Since we only have one
key in the dictionary, there is only one tuple in the list. The important point
istoget the tupleratherthan the dictionary’s key-value construct because we
can access a tuple’s elements through the index.

This is what we do in the function lambda: item: item[@]. It takes a tuple and
returns its first element. We do this for every item in the list (even though
thereisonly one item) by using list(map(...)). From thislist, we take the first
(and only) item (either 'e' or '1') and transform it into a number (int(...)).

Before we can run it, we need to load the prepared passenger data.

Listing 3.16: Load the data

] import numpy as np

2

3 with open('data/train.npy', 'rb') as f:
¥4 train_input = np.load(f)

1 train_labels = np.load(f)

&

yd with open('data/test.npy', 'rb') as f:
;4 test_input = np.load(f)

¥l test_labels = np.load(f)

The following code runs the pqc_classifier with the initial state with a proba-
bility of 0.5 to measure @ or 1, respectively (line 5).

Further, we create a backend (line 2) and provide it as a parameter to be
reused (line 8).

88 Chapter 3. Qubit and Quantum States
Listing 3.17: The scores of the random quantum classifier

B # Tell Qiskit how to simulate our circuit
P4 backend = Aer.get_backend('statevector_simulator')

] initial_state = [1/sqrt(2), 1/sqrt(2)]

classifier_report("Random PQC",
run,
lambda passenger: pqc_classify(backend, initial_state),
train_input,
train_labels)

The precision score of the Random PQC classifier is 0.39
The recall score of the Random PQC classifier is 0.49

The specificity score of the Random PQC classifier is 0.51
The npv score of the Random PQC classifier is 0.61

The information level is: 0.50

When we run the pgc_classify classifier with the initial state, we can see that
ityields identical scores as the random classifier did.

But how these two classifiers create the results is entirely different.

The classic “random” classifier uses the function random and initializes it, as
depicted by the following code snippet.

Listing 3.18: Initialization of classical (pseudo-)random

k8 import random
P4 random. seed(a=None, version=2)

We provide None as the randomness source (a). This implies that the function
takes a value from the operating system. Thus, it appears random, but it is
not. If we knew the value it gets from the operating system or specified a dis-
tinct value ourselves, we could reproduce the exact predictions.

That’s why Python’s random function generates pseudo-random (see Python-
docs) numbers.

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html

3.6

3.6 Variational Hybrid Quantum-Classical Algorithm 89

By contrast, the PQC generates truly random results (when running on a real
quantum computer). Thisis following one of the interpretations of the quan-
tum state of superposition that we discussed in section (3.1).

Nevertheless, we have not used anything quantumic yet, making us see the
difference between classical pseudo-random and quantumic genuinely ran-
dom.

Variakional Hjbrid
Quantum-Classical Algorithm

The PQC binary classifier we created in the previous section 3.5 is as good as
the random classifier or as poor because it does not increase the information
level.

This is going to change now. So far, we always feed the PQC with the same
1

initial state: |y) =

V2

\?] , with the corresponding array in Python: [1/sqrt(2),
1/sqrt(2)1].

Thisstatedoesnot take into account the passenger dataatall. Itisa hypocrite
classifier, such as the classifiers we build in section 2.7. Hypocrite classifiers
solely use chance when predicting the label of a thing. While such a classifier
can yield seemingly good performance in a single metric, such as precision,
it does not reach an average above 0.5 for the four metrics that directly result
from the confusion matrix (precision, recall, specificity, and NPV). Thus, it
does not provide any information gain.

To improve our classifier, we need to use the passenger data. However, even
though we prepared the passenger data into normalized numerical data, it
doesnot fit the quantum state vector we need to feed into our PQC. Therefore,
we need to pre-process our passenger data to be computable by a quantum
computer.

We implicitly post-processed the results as part of the return statement, as
shown in the following snippet.

90 Chapter 3. Qubit and Quantum States
Listing 3.19: Return statement of pqc-classify

Wl def pgc_classify(backend, passenger_state):
2 K
3

ey # get the bit 0 or 1
=] return int(list(map(lambda item: item[@], counts.items()))[0])

Since we have a binary classification task, our prediction is ¢ or 1. Thus, our
post-processing is limited to transforming the output format. But in any
othersetting, post-processing may involve translation from the output of the
quantum circuit into a useable prediction.

Altogether, we wrap the PQC into a process of classical pre-processing and
post-processing. This is an algorithm with an outer structure running at a
classical computerand aninner component running on a quantum computer.
It is a Variational Hybrid Quantum-Classical Algorithm, and it is a popular
approach for near-term quantum devices.

Figure 3.16 shows the overall architecture of our simple Variational Hybrid
Quantum-Classical Algorithm.

Running at
quah&u,m

compu&er

: : Post
Pre-Processing: : Processing:

data. —»p % _> - _> measurement

Prednchoh

Runining at
classiecal
compu&er

Figure 3.16: A Variational H-jbrid Quantum-Classical Algorithm

The datais pre-processed on a classical computer to determine a set of param-
eters for the PQC. In our simple case, this is the quantum state vector |y).

3.6 Variational Hybrid Quantum-Classical Algorithm o1

The quantum hardware uses the initial quantum state, works with it, and
performs measurements. Allits calculations are parameterized. So, they are
relatively small and short-lived. In our case, we only measure the quantum
state. We do not use any other parameters beyond |y).

Finally, the measurement outcomes are post-processed by the classical com-
puter to generate a prediction.

The overall algorithm consists of a closed-loop between the classical and
quantum components.

Let’s separate our code thus far into the three parts:

+ Pre-processing
- PQC
« Post-processing

Listing 3.20: Pre-processing template

W8 def pre_process(passenger):

> XK

23 passenger —— the normalized (array of numeric data) passenger data
4 returns a valid quantum state

s nnn

] quantum_state = [1/sqrt(2), 1/sqrt(2)]

yd return quantum_state

The function pre_process takes the passenger data as an array of numeric data.

It returns a valid quantum state vector. In this first version, it returns the
balanced state of measuring e or 1 with equal probabilities.

92 Chapter 3. Qubit and Quantum States
Listing 3.21: The parameterized quantum circuit

def pqc(backend, quantum_state):
backend —— a qiskit backend to run the quantum circuit at
quantum_state —— a valid quantum state vector

returns the counts of the measurement

Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

1
R
3
4
s
&
7
¥
K

Define state |Psi> and initialize the circuit
gc.initialize(quantum_state, 0)

Measure the qubit
gc.measure_all()

run the quantum circuit
result=execute(qc,backend).result()

get the counts, these are either {'0': 1} or {'1': 1}
counts=result.get_counts(qc)

return counts

The function pqc is the PQC. It takes a quantum backend and a valid
quantum_state as input parameters.

It prepares and runs the quantum circuit before it returns the counts of its
measurements.

Listing 3.22: Post-processing

Wl def post_process(counts):

> XK

k.l counts —— the result of the quantum circuit execution
4 returns the prediction
&
&

return int(list(map(lambda item: item[0], counts.items()))[0])

The function post_process takes the counts as input and returns the prediction
(see section 3.5 for the detailed explanation of how to transform the counts
dictionary into the prediction).

3.6 Variational Hybrid Quantum-Classical Algorithm 93

Let’s put it all together.
Listing 3.23: The scores of the random quantum classifier

B # Tell Qiskit how to simulate our circuit
Pd backend = Aer.get_backend('statevector_simulator')

classifier_report(
"Variational",
run,
lambda passenger: post_process(pgc(backend, pre_process(passenger))),
train_input,
train_labels)

OX o nPw

The precision score of the Variational classifier is 0.39
The recall score of the Variational classifier is 0.50

The specificity score of the Variational classifier is 0.53
The npv score of the Variational classifier is 0.63

The information level is: 0.51

We first create the statevector_simulator backend we can reuse for all our pre-
dictions (line 2).

We use the classifier_report wrapping function we developed in section 2.7.

Besides an arbitrary name it uses in the output (line 5), the primary input is
the classifier we provide (line 6).

We provide an anonymous (lambda) function (a function without a name) as
our classifier. It takes a single parameter passenger and runs (from inner to
outer) the pre_process function with the passenger as a parameter. Finally, we
put the result alongside the backend into the pqc function whose result we put
into the post_process function.

When we run the pqc classifier with the initial state, we can see that it yields
the identical scores as the random classifier.

Now, it’s finally time to build a real classifier. One that uses the actual passen-
ger data to predict whether the passenger survived the Titanic shipwreck or
not.

Let’s start at the end. The current post-processing already returns either e or
1. This fits our required output since @ represents a passenger who died and 1
means the passenger survived.

94 Chapter 3. Qubit and Quantum States

The current PQC measures the provided quantum state vector and returns
the counts. We could leave it unchanged if we provided input a vector whose
probability corresponds to the passenger’s actual likelihood to survive.

The passenger data consists of an array of seven features. We already trans-
formed all features into numbers between e and 1 (section 2.4).

Thus, the pre-processing task is to translate these seven numbersinto a quan-
tum state vector whose probability corresponds to the passenger’s actual like-
lihood to survive.

Finding such a probability is the innate objective of any machine learning al-
gorithm.

Our data consists of seven features. The central assumption is that these fea-
tures determine or at least affected whether a passenger survived or not. If
that weren’t the case, we wouldn’t be able to predict anything reliably. So
let’s assume the features determine survival.

The question then is, how do these seven features determine survival? Is
one feature more important than another? Is there a direct relationship be-
tween a feature and survival? Are there any interdependencies between the
features, such as if A then B indicates survival? But if not A, then B is irrele-
vant, but C is essential.

But before we use sophisticated tools (such as Bayesian networks) that can
discover complex structures of how the features determine the outcome, we
start simple.

We assume all features are independent of each other, and each feature con-
tributes more or less to the survival or death of the passenger.

Therefore, we say the overall probability of survival P(survival) is the sum of
each feature’s value F times the feature’s weight ur (“mu”).

P(survival) =Y (F - ur) (3.22)

Let’s have alook at what this means in Python.

3.6 Variational Hybrid Quantum-Classical Algorithm 95
Listing 3.24: weigh a passenger's feature

WY def weigh_feature(feature, weight):

> L

k] feature —— the single value of a passenger's feature
q weight —— the overall weight of this feature

1 returns the weighted feature

- K

¥d return featurexweight

The weigh_feature function calculates and returns the term F - ur. Thus, this
function calculates how much a passenger’s feature the age contributes to
this passenger’s overall probability of survival. The higher the weighted
value, the higher the chance.

Next, we need to add all the weighted features to calculate the overall proba-
bility.
Listing 3.25: Calculate the overall probability

from functools import reduce

def get_overall_probability(features, weights):
features —— list of the features of a passenger
weights —— list of all features' weights
return reduce(
lambda result, data: result + weigh_feature(*data),
zip(features, weights),
0
)

1
R
3
4
s
6
7
¥
2

The function get_overall_probability takes two parameters. First, it takes the
list of a passenger’s feature values. Thisisa passenger’sdata. Second, it takes
the list of the feature weights.

We construct a list of tuples for each feature (line 10) containing the feature
and its weight. Python’s zip function takes two separate lists and creates the
respective tuple for every two elements in the lists.

We reduce this list of (feature, weight) into a single number (line 8). Then, we
call the weight_feature-function for each of the tuples and add up the results
(line9), starting with the value o (line 11).

96 Chapter 3. Qubit and Quantum States

Now, we need to calculate the weights of the features. These are similar
across all passengers. We build the weights upon the correlation coefficients.

The correlation coefficient is a measure of the relationship between two vari-
ables. Each variable is a list of values. It denotes how much the value in one
list increases as the value of the other list increases. The correlation coeffi-
cient can take values between —1 and 1.

- Acorrelation coefficient of 1 meansthat thereisa proportional increase
in the other for every increase in one variable.

- A correlation coefficient of —1 means that there is a proportional de-
crease in the other for every increase in one variable.

- A correlation coefficient of 0 means that the two variables are not lin-
early related.

We calculate the correlation coefficient for each feature in our dataset in re-
lation to the list of 1abels. In the following code, we separate our dataset into
a list of the columns (line 4).

The term 1list(map(lambda passenger: passenger[i], train_input transforms
each passenger’s data into its value at the position i. And we do this for i in
range(0,7). It means we do this for each column.

Listing 3.26: Calculate the correlation coefficients

from scipy.stats import spearmanr

separate the training data into a list of the columns
columns = [list(map(lambda passenger: passenger[i], train_input)) for i
in range(0,7)]

S urpe

calculate the correlation coefficient for each column

correlations = list(map(lambda col: spearmanr(col, train_labels)[0],
columns))

b:d correlations

~N N

[-0.33282978445145533,
-0.539340557551996,
-0.029337576985579865,
0.10244706581397216,
0.15946021387370407,
0.3222967880289113,
-0.16443725432119416]

3.6 Variational Hybrid Quantum-Classical Algorithm o7

There are different types of correlation coefficients. The most frequently
used are the Pearson and Spearman correlation methods.

The Pearson correlation is best suited for linear continuous variables,
whereas the Spearman correlation also works for monotonic ordinal vari-
ables. Since we have some categorical data (Plass, Sex, and Embarked), we use
the Spearman method to calculate the correlation coefficient.

Scipy provides the function spearmanr for us. We call this function for each col-
umn and the train_labels (line 7). The function returns two values, the corre-
lation coefficient and the p-value. We’re only interested in the first (at index

0).
The correlation coefficients range from —0.58 to 0.32.

Let’s put this all together in the pre-processing.
Listing 3.27: The weighting pre-processing

8 from math import pi, sin, cos

] def get_state (theta):
"""returns a valid state vector from angle theta
return [cos(theta/2), sin(theta/2)]

def pre_process_weighted(passenger):

passenger —— the normalized (array of numeric data) passenger data
returns a valid quantum state

caluclate the overall probability
mu = get_overall_probability(passenger, correlations)

theta between 0 (]0>) and pi (|1>)
quantum_state = get_state((1—mu)*pi)

return quantum_state

We use the function get_state from section 3.2. It takes the angle theta and
returns a valid quantum state. An angle of 0 denotes the state |0) which is the
probability of 100% measuring . An angle of 7 denotes the state |1) thatis the
probability of 100% measuring 1.

Accordingly, we multiply the overall probability we calculate at line 14 with

o8 Chapter 3. Qubit and Quantum States

pi to specify an angle up to 7 (line 17). Since the correlation coefficients are be-
tween —1 and 1 and most of our coefficients are negative, a value of u towards
—1implies the passenger died. Thus, we reverse the angles by calculating (1—
mu)*pi.

Now, we’re ready to run the classifier. Let’s feed it into the classifier_report
wrapping function.

Listing 3.28: Run the PQC with the weighted pre-processing

il backend = Aer.get_backend('statevector_simulator')

1 classifier_report("Variational",

run,

lambda passenger: post_process(pgc(backend, pre_process_weighted(
passenger))),

train_input,

train_labels)

The precision score of the Variational classifier is 0.70
The recall score of the Variational classifier is 0.61

The specificity score of the Variational classifier is 0.84
The npv score of the Variational classifier is 0.78

The information level is: 0.73

We achieve an overall information level of about 0.73 to 0.77. Not too bad,
is it? But before we’re starting to party, we need to test our classifier. We
“trained” the classifier with the training data. So it had seen the data before.
Let’s run the classifier with the test dataset.

Listing 3.29: Test the PQC-based classifier on data it has not seen before

WY classifier_report("Variational—Test",

P4 run,

] lambda passenger: post_process(pqc(backend, pre_process_weighted(
passenger))),

4 test_input,
] test_labels)

3.6 Variational Hybrid Quantum-Classical Algorithm

99

The
The
The
The
The

precision score of the Variational-Test classifier is 0.67
recall score of the Variational-Test classifier is 0.68
specificity score of the Variational-Test classifier is 0.78
npv score of the Variational-Test classifier is 0.78
information level is: 0.73

The overall information level is somewhere between 0.71 and 0.76. This is
only slightly lower than the value we get when runningiton the training data.
The algorithm seems to generalize (to a certain extent).

Most importantly, in comparison to the hypocrite classifiers, we see a signifi-
cantincreasein the information level. Therefore, this classifier provides real
information.

It is our first working Variational Hybrid Quantum-Classical Classifier.

In our first simple Variational Hybrid Quantum-Classical Binary Classifica-
tion Algorithm, we developed in the previous section 3.6, we used a Param-
eterized Quantum Circuit (PQC) that did nothing but measuring a quantum
state. While quantum systems bring inherent randomness and allow us to
work with probabilities, we did not yet use this characteristic because we de-
termined the resulting probability of measuring either 0 or 1upfrontinaclas-
sical program.

In the following two chapters, we go one step further. We create a probabilis-
tic binary classifier that calculates the resulting likelihood inside the PQC.
We build a Variational Hybrid quantum-classical Naive Bayes Classifier. It
builds upon Bayes’ Theorem. Starting with an initial prior probability, we
update the resulting probability inside the PQC based on the evidence given
by the passenger data.

Don’t worry if you're not familiar with Bayes Theorem and the Naive Bayes
classifier. We’ll cover all the basics in this chapter.

We use the Titanic shipwreck data to discover Bayes’ Theorem and the Naive
Bayes classifier with actual data. We load the original data here because it is
easier to work with manually.

Listing 4.1: Load the raw data

k8 import pandas as pd
P4 train = pd.read_csv('./data/train.csv')

4.1

4.1 Towards Naive Bayes 101

The following table depicts the first five rows and the data in the train Pandas
dataframe. See section 2.3 for more details on the dataset.

Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/521171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2.3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 CI123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

Towards Naive Bayes

“Did a passenger survive the Titanic shipwreck?”

A probabilistic classifier predicts the label of a thing based on its probability.
So, toanswer the question above, we need to know what the chance to survive
is?

Let’s calculate it. In the following snippet, we create a list of all survivors
(line 2). First, we use the Pandas chaining operation (train.Survived) to access
a column. Then, we use Pandas’ eq() function and chain it to the column. It
selects the rows whose values match the provided value (1 for survival).

The probability of surviving is the number of survivors divided by the total
number of passengers (line 5).

Listing 4.2: Calculating the probability to survive the Titanic shipwreck

Wl # list of all survivors

P survivors = train[train.Survived.eq(1)]
3

‘4 # calculate the probability

) prob_survival = len(survivors)/len(train)

'Y print('P(Survival) is {:.2f}'.format(prob_survival))

P(Survival) is 0.38

Given our dataset, the probability of survival is 38%. Thus, I'd rather say the
passenger died than survived.

Thisis a probabilistic classifier already. It is the “predict_death” classifier we
created in section 2.5 and discussed in section 2.7. Even though it is a hyp-
ocrite classifier because it does not consider the individual passenger when
predicting survival, this classifier yields a higher precision than a purely ran-
dom classifier does.

102 Chapter 4. Probabilistic Binary Classifier

What if the passenger had a second-class ticket? What was this passenger’s
probability of surviving?

Let’s have a look. In the following snippet, we create a list of passengers with
a second-class ticket (train.Pclass.eq(2), line 2).

We divide the survivors of this subset (secondclass.Survived.eq(1)) by the total
number of passengers with a second-class ticket (line 4).

Listing 4.3: Calculating the probability to survive if the passenger had a
second-clags ticket

(B # list of all passengers with a second class ticket

Pl secondclass = train[train.Pclass.eq(2)]

3

¥"4 prob_survival_secondclass = len(secondclass[secondclass.Survived.eq(1)])/
len(secondclass)

Y print('P(Survived|SecondClass) is {:.2f}'.format(

prob_survival_secondclass))

P(Survived|SecondClass) is 0.47

Second-class passengers had a probability of surviving of 47%. Thus, those
passengers had a much better chance to survive than the average passen-
ger. Mathematically, the term P(Survived|SecondClass) describes a conditional
probability. In general, a conditional probability consists of a Hypothesis
whose probability it denotes, and some Evidence we observed.

P(Hypothesis|Evidence) (4.1)

This notion of a conditional probability is already an important part of a
Bayesian classifier. While a hypocrite classifier sticks with its prediction ig-
noring all evidence, the Bayesian classifier updates our belief about a hypoth-
esis given the evidence.

What if the passenger was female?

4.1 Towards Naive Bayes 103

Listing 4.4: Calculating the probability to survive if the passenger was female

#list of all females
females = train[train.Sex.eq("female")]

1
2
3
Y prob_survival_female = len(females[females.Survived.eq(1)])/len(females)
Y print('P(Survived|Female) is {:.2f}'.format(prob_survival_female))

P(Survived|Female) is 0.74

Females had an even better chance to survive. And what if we know that the
passenger was female and had a second-class ticket?

Listing 4.5: Calculating the probability to survive if the passenger was female and
had a second-class ticket

I #list of all females with a second class ticket

Pd secondclass_female = secondclass[secondclass.Sex.eq("female")]

k23 prob_survival_secondclass_female = len(secondclass_female[
secondclass_female.Survived.eq(1)])/1len(secondclass_female)

Y4 print('P(Survived|SecondClass,Female) is {:.2f}'.format(
prob_survival_secondclass_female))

P(Survived|SecondClass,Female) is 0.92

92% of the female passengers with a second-class ticket survived. So if I were
to predict the survival of such a passenger, I'd say she survived.

A probabilistic classifier can be a powerful tool. For example, based on only
two features, we got an almost precise result on the chances to survive for a
particular class of passengers.

The problem is, though, there are myriads of possible types of passengers—a
different type for each possible combination of all the features. For one thing,
calculating all of them upfront is cumbersome. The other and even worse,
when we consider all features, the number of passengers per class might be
only one. Thus, we would create an algorithm that memorizes the training
data rather than generalizing to yet unknown data.

104 Chapter 4. Probabilistic Binary Classifier

In the example above, we «calculated the probability of
P(Survived|SecondClass, Female) solely based on the knowledge we gathered
from female passengers with a second-class ticket. We excluded everything
we know about female passengers in other classes or male passengers.

Listing 4.6: Counting passengers

¥ print('There are {3} female passengers the dataset'.format(len(females)))

P print('There are {} passengers with a second—class ticket in the dataset'.
format(len(secondclass)))

3 print('There are {} female passengers with a second—class ticket in\nthe
dataset'.format(len(secondclass_female)))

There are 314 female passengers the dataset

There are 184 passengers with a second class ticket in the dataset
There are 76 female passengers with a second class ticket in

the dataset

The following image 4.1 illustrates these subsets of passengers.

P(Survived|Female) = 0.74
/

Females

1 (314) .7

{ + Female

! and 1
! SecomdClass /
:) %

7 5
- - -~ SecondClass .
(1%4)

P(Survived|SecondClass) = 0.47

P(Survived) = 0.38

Figure 4.1: Passenqgers

4.2

4.2 Bayes' Theorem 105

We see, we only consider 76 passengers (out of 891 in the dataset) when cal-
culating the probability to survive for female passengers with a second-class
ticket. Thus, the focus narrows down very quickly.

But maybe there’s an alternative. Maybe we can derive the probability of
P(Survived|SecondClass, Female) differently. Indeed, we can. This is where
Naive Bayes comes into play. In simple terms, Naive Bayes assumes that the
presence of a particular featurein a datasetis unrelated to the presence of any
other feature. In our case, it implies a passenger being female is unrelated to
the ticket class.

But how can we calculate P(Survived|SecondClass,Female) = 0.92 from
P(Survived|Female) = 0.74 and P(Survived|SecondClass) = 0.47?

This is where Bayes’ Theorem comes into play and helps us.

Bajes’ Theorem

Bayes’ Theorem describes a way of finding a conditional probability when
you know certain other probabilities. The following equation 4.2 denotes
Bayes’ Theorem mathematically:

P(Evidence|Hypothesis)

P (Hy pothesis|E vidence) = p (Hy p\ojhesis); P(Evidence) (4.2)
posterior prior N ~~
modifier

Bayes’ Theorem says we can calculate the “posterior” probability from a
“prior” probability and some evidence-related “modifier”.

The “posterior” denotes what we believe about Hypothesis after gathering the
new information about the Evidence. It is a conditional probability such as
we discussed above. The “prior” probability denotes what we believed about
Hypothesis before we gathered the new information. It is the overall probabil-
ity of our Hypothesis.

The modifier of the new information denotes the relative change of our belief
about Hypothesis caused by the Evidence.

This wmodifier is the quotient of the backward probability
(P(Evidence|Hypothesis)) and the probability of the new piece of informa-
tion (P(Evidence)). The backward probability (the numerator of the modifier)
answers the question, “what is the probability of observing this evidence in
a world where our hypothesis is true?” The denominator is the probability
of observing the evidence on its own.

106 Chapter 4. Probabilistic Binary Classifier

Thus, when you see the evidence often in a world where the hypothesis is
true, but rarely on its own, this evidence seems to support the hypothesis.
On the contrary, if you usually see the evidence everywhere but you don’t
see it in a world where the hypothesis is true, then the evidence opposes the
hypothesis.

The farther the modifier is away from 1, the more it changes the probability.
A modifier of precisely 1 would not change the probability at all. Let’s define
the value of the informativeness as the modifier’s distance to 1.

(Evidence|Hypothesis)
P(Evidence)

P
Informativeness = | —1|

If we have one hypothesis H and multiple pieces of evidence £y, E», ..., E,, then
we have n modifiers My, M,, ..., M,:

P(Ei|H) P(E>|H) P(E,|H)

P(H|E\,E,,...,E,) = = -P(H (4.3)
PH| -) P(E\) P(E) P(E,) \ﬁ)
posterior \T \T’ T prior
1 2 n

What does that mean in practice?

Our Hypothesis is a passenger survived the Titanic shipwreck. We have two
pieces of evidence Female and SecondClass.

- P(Survived) is the overall probability of a passenger to survive.

 P(Female) is the probability of a passenger to be female,

- and P(SecondClass) is the probability of a passenger holding a second-
class ticket.

* P(Female|Survived) denotes how likely a passenger who survived is fe-
male.

« And P(SecondClas|Survived) denotes how likely a passenger who survived
had a second-class ticket.

The following equation 4.4 depicts how to calculate the probability of a fe-
male passenger with a second class ticket to survive:

P(SecCl|Survived) P(Female|Survived
P(Survived|SecCl, Female) = (e;(Sl uglv)tve gl eIr)n(c;:e] ulrv)lve)~P(Survived)
ec emale

(4.4)
Let’s have alook at the Python code.

4.2 Bayes' Theorem 107
Listing 4.7: Calculating the posterior probability

calculate the backwards probability of a survivor having a
second—class ticket
p_surv_seccl = len(survivors[survivors.Pclass.eq(2)])/1len(survivors)

calculate the modifier and the informativeness of the second—class
ticket

m_seccl = p_surv_seccl / (len(secondclass)/len(train))

i_seccl = abs(m_seccl—1)

print('The modifier of the second—class ticket is {:.2f}.\nThe
informativeness is {:.2f}'.format(m_seccl, i_seccl))

calculate the backwards probability of a survivor being female
p_surv_female = len(survivors[survivors.Sex.eq("female")])/1len(survivors)

calculate the modifier and the informativeness of being female

m_female = p_surv_female / (len(females)/len(train))

i_female = abs(m_female—1)

print('The modifier of being female is {:.2f}.\nThe informativeness is
{:.2f}"' .format(m_female,i_female))

calculate the posterior probability
posterior = m_seccl * m_female * prob_survival
print('\nP(Survived|SecondClass,Female) is {:.2f}'.format(posterior))

The modifier of the second class ticket is 1.23.
The informativeness is 0.23

The modifier of being female is 1.93.

The informativeness is 0.93

P(Survived|SecondClass,Female) is 0.91

First, we calculate the modifier of the second class ticket (line 6) and of be-
ing female (line 14). As we can see, the modifier is a positive number that
scales our prior probability. Thus, we can see that both evidences increase
the chance a passenger survived because they are greater than 1. And we can
see the informativeness of being female is higher than the informativeness of
a second-class ticket because it has a bigger effect on the prior probability.

The Bayesian probability P(Survived|SecondClass,Female) = 0.91 does not ex-
actly match the forward probability (0.92) we calculated earlier. The reason

108 Chapter 4. Probabilistic Binary Classifier

is the assumed independence of conditions. However, the Bayesian probabil-
ity comes close enough.

The first question to arise usually is why P(Evidence|Hypothesis) is easier to esti-
mate than P(Hypothesis|Evidence)? If I don’t know what P(Hypothesis|Evidence)
is, how am I supposed to know what P(Evidence|Hypothesis) is?

The explanation usually involves the more constrained perspective of
P(Hypothesis|Evidence). In our case, the probabilities P(Female|Survived) and
P(SecondClas|Survived) are narrowed down to the survivors. We calculated
them from the respective survivors subset (lines 3 and 11).

In a real-world setting, we could retrieve these data by surveying the sur-
vivors. The forward probability of P(Survived|SecondClass, Female) requires a
representative list of all the passengers.

This explanation, however, does not explain why we use the formula in the
case where we have such a list. In our case, it has simple, practical reasons.
As mentioned, if we calculated the forward probabilities directly, we would
need to do it for every single class of passengers. This is a number that
grows exponentially with the number of features. For instance, if we have
seven (useful) features and each feature has only two values (some have many
more), thereare 2’ = 128 classes of passengers to consider. If only two of them
(ticket class and port of embarkation) have three possible values, we’re up to
288 classes (2° % 32).

By contrast, Bayes’ Theorem lets us add a feature by calculating its modifier.
This is a quotient of two probabilities. With seven features, we need to cal-
culate 2«2 x 7 = 28 probabilities. If two features have three rather than two
possible values,we need 2« (2« 5+3x2) = 32 probabilities. This number grows
linearly, only.

Do you object: “I have a computer capable of running this number of calcula-
tions”?

While you're certainly right about a problem with seven features, you might
be wrong about a problem with 20 or 100 features. But even for the problem
at hand, if we considered every single group of passengers, we still had the
problem of too small groups that result in memorization rather than gener-
alizable learning.

Finally, a Naive Bayes classifier works well with missing data. Because if you
don’t have certain evidence, it isno problem to leave it unconsidered. You up-
date your belief in the resulting probability based on the evidence you have.

4.3 Gaussian Naive Bayes 109

Craussian Nalve Boujes

So far, we have considered categorical data. There are two genders in our
dataset. There are three classes of tickets. These features have distinct val-
ues we can treat as such.

But how about features such as the age or the paid fare. One way is to trans-
form numerical features into their categorical counterparts. The question is
how and where to separate the categories from each other. For instance, a 29-
year old passenger has a different age than a 30-year old. But they are some-
what similar when compared to a 39-year old passenger. But when we split
by tens, we would put the 30-year old and the 39-year old passengers together
and separate them from the 29-year-old.

The other option we have is to treat numerical features as continuous distri-
butions. A continuous distribution cannot be expressed in tabular form. In-
stead, we use an equation to describe a continuous probability distribution.
A common practice is to assume normal (Gaussian) distributions for numer-
ical variables. The following equation 4.5 denotes the general form of the
Gaussian density function

1

P(x) = e
(x) ovV2rm

=

(5H)? (4.5)

The parameter p, is the mean of the evidence’s probability distribution. The
parameter o, is its standard deviation.

The following image depicts such a distribution.

Figure 4.2: Gaussian probability distribution

Before we use this formula and calculate how the age affects the chances to

110 Chapter 4. Probabilistic Binary Classifier

survive, let’s first have a look at the actual distribution of the passenger age.

Listing 4.8: The actual distribution of the passenger age

train["Age"].hist(bins=80)

0 10 20

Figure 4.3: The actual distribution of the passenger age

Pandas lets us quickly create a histogram of each series in the DataFrame. A his-
togram is a representation of the distribution of data. The named parameter
bins=80 tells Pandas the number of data points (on the x-axis) the histogram
should have.

While it is not perfectly normal distributed, we can see many passengers in
the center between 15 and 35. Next, we calculate the mean and the standard
deviation.

Listing 4.9: Calculating the mean and the standard deviation of the passenger age

W8 age_mean = train["Age"].mean()

Pl age_std = train["Age"].std()

] print('The average passenger age is {:.1f}. The standard deviation is
{:.1f}' .format(age_mean, age_std))

The average passenger age was 29.7. The standard deviation was 14.5

4.3 Gaussian Naive Bayes 111

Pandas also provides convenience functions to calculate the mean and the
standard deviation of a data series, such as a column in a DataFrame.

Now, we're ready to calculate the modifier of a certain age. We can use our
formula from above. Let’s calculate the informativeness of an age of 29 years.

P(Age = 29|Survived)

P(Age =29) (4.6)

Modifiersge—29 =

Again, we use the backward probability. To calculate P(Age = 29|Survived), we
need to use the age distribution among the survivors.

Listing 4.10: Calculating modifier and informativenesses of the age of 29

from math import exp, sqrt, pi

def density(mu,sigma,age):
return 1/(sigma*sqrt(2*pi))*exp(—0.5*x((age—mu)/sigma)**2)

survivor_age_mean = survivors["Age"].mean()

survivor_age_std = survivors["Age"].std()

print('The average survivor age is {:.1f}. The standard deviation is {:.1
f}'.format(survivor_age_mean, survivor_age_std))

1
R
3
4
s
&
7
¥

calculate the Informativeness of the age of 29

p_surv_age29 = density(survivor_age_mean, survivor_age_std, 29)
p_age29 = density(age_mean, age_std, 29)

m_age29 = p_surv_age29 / p_age29

i_age29 = abs(m_age29—1)

print('The modifier of the age of 29 is {:.2f}.'.format(m_age29))
print('Its informativeness is {:.2f}.'.format(i_age29))

The average survivor age is 28.3. The standard deviation is 15.0
The modifier of the age of 29 is 0.97.
Its informativeness is 0.03.

We create a convenience function density to calculate P(x) (lines 3-4). We use
this function to calculate P(Age = 29|Survived) (line 11) and P(Age = 29) (line 12).
We calculate the modifier as the quotient of both (line 13).

We see that the age of 29 does not have a great effect on the probability to sur-
vive. Itsmodifier is close to 1 and thus,its informativeness is pretty small (e.03).

112 Chapter 4. Probabilistic Binary Classifier

Let’s calculate the informativeness of 70-year-old and 5-year-old passengers
as a comparison.

Listing 4.11: Calculating informativenesses of other ages

calculate the Informativeness of the age of 70

p_surv_age70 = density(survivor_age_mean, survivor_age_std, 70)
p_age70 = density(age_mean, age_std, 70)

m_age70 = p_surv_age70 / p_age70

i_age70 = abs(m_age70—1)

print('The modifier of the age of 70 is {:.2f}.'.format(m_age70))
print('Its informativeness is {:.2f}.\n'.format(i_age70))

1
R
3
4
§
&
7
¥
2

calculate the Informativeness of the age of 5

p_surv_age5 = density(survivor_age_mean, survivor_age_std, 5)
p_age5 = density(age_mean, age_std, 5)

m_age5 = p_surv_age5 / p_age5

i_age5 = abs(m_age5—1)

print('The modifier of the age of 5 is {:.2f}.'.format(m_age5))
print('Its informativeness is {:.2f}.'.format(i_age5))

The modifier of the age of 70 is 0.94.
Its informativeness is 0.06.

The modifier of the age of 5 is 1.22.
Its informativeness is 0.22.

The modifier of the age 0of 70 is not much different from the modifier of the age
of 29. But an age of 5 years resulted in an increased probability of survival.

5.1

You Dont Need To Be A
Makhematician

Scientific papers and textbooks about quantum computing are full of mathe-
matical formulae. Even blog posts on quantum computing are loaded with
mathematical jargon. It starts with the first concept you encounter. The
guantum superposition:

ly) = a|0) + B[1) = {g],witha2+ﬁ2=1

Figure §.1: Hieroglyphs

As a non-mathematician, this formula might already be too much. If you're

114 Chapter 5. Working with Qubits

not familiar with the used Dirac-notation (|y)) or if you're not used to work-
ing with vectors, then such a formula is as good as Egyptian hieroglyphs:

Don’t get me wrong. Math isa great way to describe technical concepts. Math
is concise yet precise language. Our natural languages, such as English, by
contrast, are lengthy and imprecise. It takes a whole book full of natural lan-
guage to explain a small collection of mathematical formulae.

But most of us are far better at understanding natural language than math.
We learn our mother tongue as a young child, and we practice it every single
day. We even dream in our natural language. I couldn’t tell if some fellows
dream in math, though. For most of us, math is, at best, a foreign language.

When we’re about to learn something new, it is easier for us to use our mother
tongue. It is hard enough to grasp the meaning of the new concept. If we're
taught in a foreign language, it is even harder. If not impossible.

Of course, math is the native language of quantum mechanics and quantum
computing, if you will. But why should we teach quantum computing only in
its own language? Shouldn’t we try to explain it in a way more accessible to
the learner? I'd say “absolutely”!

Teaching something in the learner’s language doesn’t mean we should not
have a look at the math. We should! But, we use math when its precision
helps us to explain how things work.

Math is not the only precise language we have. We have languages that are
as precise as mathematical formulae. And nowadays, these languages come
almost natural to many. These languages are programming languages.

I do not mean the syntax of a specific programming language. Rather, I refer
to a way of thinking almost all programming languages share. From Python
to Java, from Javascript to Ruby, even from C to Cobol. All these languages
build upon boolean logic. Thus, regardless of programming language, a pro-
grammer works a lot with boolean logic.

Most prominently, boolean logic appears in conditional statements: if then
else.

Listing 5.1: If then else in Python

(B if x and y:# A statement to evaluate in boolean logic
PY doSomething () # if the statement evaluiates to True
k] else:

4 doSomethingElse () #otherwise

5.1 You Don't Need To Be A Mathematician 115

The if-part of a conditional statement is pure boolean logic. Often, it con-
tains the basic boolean operators not, and, and or.

If some statement is True, then its negation is False. Conversely, if a statement
is False, then its negation is True. For example, if a statement consists of two
partspand Q, then P and Qisonly True if P is True and Qis True. ButP or Qis True
if eitherpPorQis True.

Here are three examples of boolean logic in Python.

Listing 5.2: Boolean logic in Python

True
False

103
2 Y
3
¥ print('not P is {}'.format(not P))

] print('P and Q is {}'.format(P and Q))

'Y print('P or Q is {}'.format(P or Q))

VA print('P and not Q is {}'.format(P and not Q))

not P is False

P and Q is False

P or Q is True

P and not Q is True

While Python uses these exact keywords, in math, symbols represent these
operators:

* —Imeans not
« A means and
« VV meansor

If you're not a mathematician, these symbols and all the other symbols you
encounter on your quantum machine learning journey may appear cryptic.
But while the representation of a concept may differ when you describe it in
Python or math, the concept itselfis the same.

Youdon’t need to be a mathematician to understand boolean logic. Youdon’t
need to be a programmer, either, because we can even describe the boolean
logic by truth tables.

We have two variables, P and Q. Each variable is either true (T) or false (F). De-
pending on the combination of their values, we can deduce the value of any

116 Chapter 5. Working with Qubits

boolean statement. For instance, the following figure 5.2 depicts the truth
table forp, Q, not P, not Q, not P and not Q, not (not P and not Q),andP or Q.

Figure 5§2: Truth table

This truth table reveals thatP or Qisequivalenttonot (not P and not Q). This
logical equivalence tellsusthat we donot even need the operatoror. We could
replace it by not (not P and not Q).

ButP or Qisconcise and much easier to understand.
“What if there was no or operator in our programming language?”

The savvy programmer would write her custom operator.

Listing 5.3: A reimplementation of or

def my_or(p, q):
return not (not p and not q)

rint('"P | Q | P or Q')

T | {3'.format(my_or(True, True)))

F | {3'.format(my_or(True, False)))
T | {3'.format(my_or(False, True)))
F | {3'.format(my_or(False, False)))

T
F
T | True
F | False

5.1 You Don't Need To Be A Mathematician 117

This is what programming is all about. Programmers write functions that
produce a particular behavior. They use and combine these functions to cre-
ate even more functions that exhibit even complex behavior. The whole pro-
gram they write comes down to a set of functions savvily combined. Pro-
grammers have their compiler (or interpreter) to translate the higher-level
functions down to basic boolean logic. And this basic boolean logic can be
performed using electrical switches. The switchesand their combination are
called gates. When we connect gates, they form a circuit.

At a discrete interval, the computer sends a pulse of electricity through the
circuit. If we receive a pulse of electricity at the appropriate time, we inter-
pretitasi (true). If we don’t receive a pulse, we interpret it as o(false).

Despite the name, there is nothing circular about circuits. They are linear
and are read from left to right. Let’s look at an example that corresponds to
the boolean functions that we looked at earlier.

The following figure 5.3 depicts the circuit diagram of not (not P and not Q).
The circuit receives the input from the left and outputs it to the right.

Figure 8.3: Classical circuit

Such gatesand circuits are the building blocks of any modern computer. This
includes quantum computers. While the world of quantum mechanics is dif-
ferent, the world of quantum computing is surprisingly similar.

Don’t let yourself be dazzled by all the mathematical formulae. They are rep-
resentations of concepts. Not more, not less.

Let’s return to our introductory formula:
lv) = al0)+B1) = [g} ,witha? +p%>=1

It is the mathematical notation of the quantum state |y) (“psi”). While the
state of a classical bit is boolean (either e meaning false or 1 meaning true),

118 Chapter 5. Working with Qubits

the state of the quantum bit (qubit) is the superposition of the quantum states
|0) and |1) weighted by o and .

In this state of superposition, the quantum system is neither ¢ nor 1 unless
you measure it. Only when you measure the qubit, the state collapses to ei-
ther o or 1. The squares of the two weights («?) and (8?) denote the probabil-
ities of measuring either o or 1. The larger « is, the higher the probability of
measuring 0. Respectively, the larger f8 is, the higher the probability of mea-
suring 1.

The formula says something more. It says the quantum state is the vector of

the two weights [g} .

Avectorisageographical object that hasalength (magnitude) and adirection.
If drawn in a coordinate system, the vector startsin the centerand endsat the
point specified by the numbers in the vector.

Figure §.4: A vector

In Python, a vector is an array. Thus, the state of a qubit is the array [alpha,
betal. alpha and beta are numerical variables. The quantum state is an array
of two numbers.

But an array of two numbers isa much more complex datatype than a boolean
value is. A boolean is either True or False. You can transform boolean values
with simple operators, such asnot, and, and or. You can reason about the trans-
formation of boolean values in a truth table.

But how do you transform an array of two numbers? And how can you reason
about such transformations?

The apparent answer is math. But it is not the only possible answer. So, let’s
use Python for that.

5.1 You Don't Need To Be A Mathematician 119
Listing 5.4: Reversing the qubit states

from math import sqrt

define the initital states
psi = [0.5, sqrt(3)/2]
always_0 = [1, 0]

always_1 = [0, 1]

def transform(name, state, f):
print ('{3}: [{:.2f}, {:.2f}] result: [{:.2f}, {:.2f}]1'.format(name, *
state, *f(state)))

1
R
3
4
s
&
7
¥
2

def reverse_state(arr):
return list(reversed(arr))

print("——————————— Reversed states: —————————— ")
transform("psi", psi, reverse_state)

transform("|0>", always_0, reverse_state)

transform("|1>", always_1, reverse_state)

——————————— Reversed states: ----------
psi: [0.50, 0.87] result: [0.87, 0.50]
[0>: [1.00, 0.00] result: [0.00, 1.00]
[1>: [0.00, 1.00] result: [1.00, 0.00]

We start with the initialization of three states. Each state is an array of two
numbers. The state psi has the values } and \/75 (line 4). The probability of
measuring o in this state is (1)? = } = 0.25. The probability of measuring 1 is

()2 =2=075.

The state always_o has the values 1 and . The probability of measuring o in
this state is 12 = 1 (line 5). The probability of measuring 1is 0> = 0. When we
measure a qubit in this state, we always measure it as 0. The state always_1 is
the respective opposite. We consistently measure it as 1 (line 6).

Next, we create a convenience function transform(lines 8-9). Did I tell you that
writing functions to make things easier is what programming is all about?
This is an example. The function takes the name of the quantum state (an
arbitrary string to show), the state, and a function f. transform prints to the
console the original state and the state after having applied the function f on
it.

120 Chapter 5. Working with Qubits

Finally, we create a function reverse_state we can feed into transform (lines 11-
12). reverse_state calls Python’s default reversed function that returns an array
of the same length in the opposite order.

In the output, we can see that the numbers in the state arrays have switched
their positions. Thus, the probability of measuring e or 1 switched, respec-
tively. The reversed psi hasa .75 chance of measuring e and a .25 chance of
measuring 1. The reversed always_0 is similar to the original always_1.

These are only three possible states. Listing all possible states in a kind of
truth table is impossible. But I think the behavior of the reverse_state func-
tion is quite clear. It is the behavior of the X-gate in quantum computing. It
is one of the fundamental transformations of the quantum state.

Let’s have a look at this gate in practice. We use IBM’s quantum computing
SDK Qiskit.

Listing 5.5: The measured qubit

from giskit import execute, Aer, QuantumCircuit
from giskit.visualization import plot_histogram

Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

Define initial_state
gc.initialize(psi, 0)

1
R
3
4
s
6
7
¥
2

Apply the X—gate
gc.x(0)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator')

Do the simulation, returning the result
result = execute(qc,backend).result()
counts = result.get_counts()
plot_histogram(counts)

5.1 You Don't Need To Be A Mathematician 121

Figure §.8: The effect of the X-gate

0.8
0.6
0.4
0.2

0.0

i
[i]
=
E
g
i |
o
[

The fundamental unit of Qiskit is the quantum circuit. A quantum circuitisa
model for quantum computation. The program, if you will. Our circuit con-
sists of a single one qubit (line 5).

We initialize our qubit with the state psi (line 8), and we apply the X-gate on
it (line 11).

Qiskit provides the Aer package (that we import at line 1). In addition, it of-
fers different backends for simulating quantum circuits. The most common
backend is the statevector_simulator (line 14).

The execute function (that we import at line 1) runs our quantum circuit (qc)
at the specified backend. It returns a job object that has a useful method job.
result() (line 17). This returns the result object once our program completes
it.

Qiskit uses Matplotlib to provide insightful visualizations. A simple his-
togram will do. The result object provides the get_counts method to obtain
the histogram data of an executed circuit (line 18).

The method plot_histogram returns a Matplotlib figure that Jupyter draws au-
tomatically (line 19).

We see we have a 75% chance of observing the value ¢ and a 25% chance of
observing the value 1-The exact opposite of the initial state.

You can run the circuit with different initial states to get a better feeling for
this gate.

In general, quantum circuits are not different from classical circuits. We can
represent them in a diagram. Qiskit’s QuantumCircuit class provides the draw

122 Chapter 5. Working with Qubits

method that does the job for us.
Listing 5.6: The measured qubit

gc.draw('mpl')

Figure §.6: A circuil with an X-gate

We can see our only qubit (q), itsinitialization with thearray [0.5, 0.8661, and
the applied X-gate.

You’ve completed the first step towards quantum computing mastery with-
out being a mathematician. Getting a conceptual understanding of quan-
tum gates as the quantumic peers of classical circuit gates does not depend
on math. The combination of plain English and a little bit of Python is well-
suited. And for many, this combination is much more accessible.

But, math remains paramount to quantum computing. So, if you want to
gain a deep understanding of the concepts, you’ll cope with the mathemat-
ical formulae sooner or later. And as I said, math is a great way to describe
technical concepts.

Let’shavealook at the underlying math of the X-gate. Don’t worry. I don’t ex-
pectyou tobeamathematician. Alittle affinity toalgebra (thatis, the study of
mathematical symbols and the rules from manipulating them) doesn’t hurt,
though.

So far, we used Python’s built-in function reversed. While this is convenient,
we do not see how it works internally. So let’s use another function-a self-
made function.

5.1 You Don't Need To Be A Mathematician 123
Listing 5.7: Self-made reverse function

W8 def adjust_weight(state, weights):
Pd return state[0]*weights[0]+state[1]*weights[1]
3

¥ print ('reversed psi: [{:.2f}, {:.2f}]1'.format(
] adjust_weight(psi, [0,1]),

] adjust_weight(psi, [1,0]1)

d))

reversed psi: [0.87, 0.50]

We define a function adjust_weight(linel). It takes a quantum state and weights.
Both are arrays with two items. It multiplies the values at position o, and it
multiplies the values at position 1. It returns the sum of these two products
(line2).

We can use this function to reverse psi. For adjust_weight returnsa single num-
ber, we call it twice to get back an array of two items (lines 5 and 6). In this ex-
ample, we do not explicitly create an array, but we directly print these values
to the console (line 4).

In both calls, we provide the original psi as the state parameter. For the first
call, whose result is the first number of the reversed psi, we provide [0,1] as
weights. It means we get the sum of 0 times the first number of psi and 1 time
the second number of psi. This sum is the second number of psi.

For the second call, whose result is the second number of the reversed psi, we
provide [1,0] as weights. Thisis 1 time the first number of psi and e times the
second number of psi. This equals the first number of psi.

With these weights, we have effectively switched the places of the numbers
of psi.

In math, this is matrix multiplication. The general formula for multiplying
a matrix M and a vector v is:

_la b Vol _ a-vy+b-v;
M:Jv) = [c d] [vl} N L-vm—d-m}

a and b are the weights we used to calculate the first number of the resulting
vector. c and d are the weights for the second number, respectively.

5‘2

124 Chapter 5. Working with Qubits

Mathematically, the X-gate quantum operator is the matrix: X = [(1) (1)]

Let’s apply this operator to our three exemplary states:
Reversing the state |0) resultsin |1):

[0 1] [0-1+1-0]

.
X100 =11 o] "|o] = |1-1+0-0]

|’_‘o

Reversing the state |1) resultsin |0):

[0 1] [o] [o-0+1-1] 1
X-0=1y 0| |1 ~|1-04+0-1] |0 =10)

And, applying the matrix at |y) results in its reversal, too:
0 1] |3 0-141.3| |8

1-140. 42
In classical computing, we have a small set of boolean operators whose be-
havior we can easily represent in truth tables. But in quantum computing,
matrices denote the operators called gates. And there are myriads of possi-
ble matrices we can apply. Math is a concise yet precise way to describe these
operators. But you don’t need to be a mathematician to use these operations.

3]} >—‘l\)|

Of course, it is desirable to understand the underlying math of a gate when
you apply it. But more importantly, you need to have an understanding of
what the gate does. If you know what the X-gate does, you don’t need to cope
with the math all the time.

Quanktumic Makh - Are You Qeadj
For The Red Pill?

After this, the Matrixis no longer cryptic symbols falling from the top, but
you’'ll see the woman in the red dress...

... at least concerning the Hadamard gate.

“You take the blue pill — the story ends, you wake up in your bed
and believe whatever you want to believe. You take the red pill —
you stay in Wonderland, and I show you how deep the rabbit-hole
goes.” Morpheus, The Matrix

5.8 Quantumic Math - Are You Ready For The Red Pill? 125

Lo -"""""' "l"""'""‘"‘“_‘
106; dlulrl‘,’v, i 111)«01 01541
L1010 =01htﬂa

11210711
101010
X 10010
diﬂﬂll D‘l
1géaq1 vo; ;
1413
E“;ff 11 1?.00 01 d iU '_"l{]
19 1 Y L0
D 2010 00‘10(.1}3 }_IEL ﬁ, 1 01110
.ai 0 ?' i
11 l“d ‘1'1 00 1
q 0 1 nB%1, 04

Figure §7: Can you see the woman in the red dress?

11inJ

Lo

HQI:-'D‘-‘O

S A

PO wOQC DM EEMMD ity

ucmqnocﬂwﬂmvavwwo
e e G et D bt et D N D e G e WD bl G Rt R NP Y b N b O e BN e £

GPOMOFOMMQPQOMOHO

A qubit resembles the idea of the spin of an electron. Itisin a state of superpo-
sition. While the electron’s superposition consists of the states up and down,
the qubit’s superposition consists of the states |0) and |1).

A popular notion of superposition is that the system is in different states con-
currently unless you measure it. But, when you look at the electron, you find
it either up or down. When you look at the qubit, it is either 0 or 1. Another
notion is that the system is truly random and not just sensitive dependent on
initial conditions (see 3.1). But superposition does not mean and. And it does
not mean or. It is a combination of states that does not map onto classical
concepts.

“This is your last chance. After this, there is no turning back.”
Morpheus, The Matrix

The basic model of superposition is given by a vector space. A vector space
is a collection of all valid qubit state vectors along with the operations you
can perform on them. We got to know the qubit state vector by the following
equation:

ly) = a|0) + B|1) = {g} , with @? + B2 = 1. In Python, the array [alpha, beta]

denotes this vector.

126 Chapter 5. Working with Qubits

¢ o and p are the probability amplitudes. They are not probabili-
* ties. They can be positive or negative. But their squares «? and
B? denote the probabilities.

When we measure a qubit, it will collapse to either one of the possible mea-
surements. The number of possible measurements determines the dimen-
sion of this underlying vector space. There are two possible measurements
of a qubit, e or 1. Thus, the vector space is two-dimensional. All vectors in
this vector space consist of two numbers. These are the probability ampli-

tudes o and B asin the vector {g] .

When we measure a qubit, we observe it as either 0 or 1. We know the state
|0) says our qubit will result in the value @ when observed. And |1) says our
qubit will result in the value 1 when observed. In general, |y) = «|0) + B|1)
says our qubit will result in the value e with the probability of «* and 1 with
the probability of B2

The probability is a single number, called a scalar. How can we obtain this
scalar from a qubit state? There’s one way of vector multiplication that pro-
duces a scalar. Thisis called the inner product. And it results from multiply-

. 1
ing a column vector such as

0} with a row vector, suchas [1 0]

In section 3.1, we introduced the Dirac notation and its “ket”-construct that
1

0
“bra”-construct ((0]). The bra is a row vector, such as (0] = [1 0]

denotes a column vector. For instance, |0) = {] Now, we introduce the

The inner product is defined as:

bo
by

<a]b>:[a0 ap ... an]- . =ap-byg+ay-by+---a, b,
by

We can use the inner product to obtain the probability amplitude of measur-
ing a particular value from a qubit state. And its square denotes the probabil-
ity.

So, what’s the probability of measuring 1 from the state |0)? Let’s build the

5.2 Quantumic Math - Are You Ready For The Red Pill? 127

inner product to find out:

(1]0))? = ([o 1. H)z: (0-141-02=0%=0

And what’s the probability of measuring o?

(<0|0>)2:([1 o]-{(l)DZ:(l.Ho.O)z:lZ:l

This also works for an arbitrary state vector |y) = a|0) + 1) = [g} . The prob-

ability of measuring 1 is:

2= (o 10-[8]) = 0-arrp2=p

And what’s the probability of measuring |y) ase?

(o= (1 o}-[gD:(l.MO.ﬁ)z:az

Great! Even though this is quite mathematical, it illustrates how we can ob-
tain a value from our quantum state by multiplying our state vector with a
row vector. In layman’s terms, the “bra-ket” (¢|y) denotes the probability
amplitude of measuring |y) as e. Its square represents the probability.

In the previous section 5.1, we got to know the matrix multiplication. We
learned that when we multiply a matrix with a vector, the result is another
vector:

_la b Vo| |a-vo+b-v
M'|U>_|:C d} |:1)1:|_|:C~‘l)()—|—d'1)1:|

We saw that the X-gate quantum operator X = {(1) (1)} switchesthe amplitudes

of the quantum state.

The X-gate applied to |0) resultsin |1):
o 1] [1] _Jo-141-0] _[o] _
X-10)= [1 0] ' [o} - {1-1+0-0 - H =1
The X-gate applied to |1) resultsin |0

):
O N R e AR

128 Chapter 5. Working with Qubits

In the Dirac notation, a ket and a bra arranged like |a) (b| denotes the outer
product. Therefore, we can interpret the outer product as a matrix multipli-
cation:

agp ap-byg ap-by ... ag-b,
al al-bo al-bl al-b
ay(pl=|". | -[bo b1 ... by]= !
a, a,-by a, by ... a, b,

Therefore, the term |a) (b| denotes a matrix. And, we can write our matrices
in terms of vectors:

x=par+noi= o o +[7 o] =|1 o)

In layman’s terms (and only for specific base cases), the “ket-bra” |a) (b| turns
your |b) into |a).

Accordingly, the X-gate turns |1) into |0) (because of [0)(1|) and it turns |0) into
a|1) (because of |1)(0]).

We have talked a lot about the state of quantum superposition. But whenever
we worked with a qubit in such a state, we initialized the qubit with the cor-
responding probability amplitudes o and . But what if we wanted to put a
once measured qubit back into superposition?

Now, we have some means to do it. What do you think about this?
H = |+)(0[+[=){1

According to our notion, it means we turn the state |0) into |+) and we turn
the state |1) into |—).

Do you remember the states |+) and |—)? We introduced them in section 3.2.
They are defined as:

_lo+in]
|+>_ \/§ N _\/Lz_
oo l0-mn _[7]

2L

These states yield the same probability of measuring o or 1. This is because
they reside on the horizontal axis. But although these states share identical
probabilities, they are different because the amplitude of state |—) is negative.

5.2 Quantumic Math - Are You Ready For The Red Pill? 129

Let’s have a look at this operator.

H = [+)(0[+[=)(1]

gt o
SEROORE{RaD
2 V2
L 0 0 -L
=% ol *lo 4 (5.1)
2 Ve
M1 1
=2 v
V2 V2
_ L
=4 -

This operatoris known as the Hadamard gate, or H-gate. It allows us to move
away from the basis state vectors |0) and |1). It puts the qubit into a balanced
state of superposition.

In short, it has the matrix:
1|1 1
i=sl

3 Why do we need to distinguish these two states?

In section 1.5, we mentioned the high precision with which
quantum computers must work because quantum algorithms
build on precise manipulations of continuously varying param-
eters. Therefore, even the noise caused by heat can ruin the
computation.

Thisis problematic because the computers we can build thus far
are, essentially, expensive electric heaters that happen to per-
form a small amount of computation as a side effect.

Our computers operate in a way that depends on the intentional
loss of some information. When we look at the and operator, we
getan output of 1if both input valuesare 1. Inall other cases, we
get a 0. Given the output of 0, we have no way of knowing what
the input was.

130 Chapter 5. Working with Qubits

In the process of performing such an operator, the computer de-
structively overwritesitsinput. Then, it physically destroys the
old information by pushing it out into the computer’s thermal
environment. Thus, it becomes entropy that manifests as heat.

Quantum computers operate at shallow temperatures - below 1
kelvin or -273°C. As a result, quantum computers must be very
energy efficient. Not because energy is a valuable resource. But
because any loss of energy inevitably overheats the computer.

It is possible to carry out computations without losing informa-
tion and thus, without producing heat. This is known as re-
versible computation.

Enabling our H-operator to distinguish between the input states
|0y and |1), it becomes reversible and, thus, suited for a quantum

computer.
- —0)—|1) —0)+11) 9
3 Why are there no states e and o
Let’s say you have a qubit in state _|O\>[;|l> . What does this mean?

It means that a and f as in |y) = a|0) + 3|1) are both negative
1

T sqri2®

o and B are the probability amplitudes. Their squares are the
probabilities of measuring 0 or 1. Therefore, we get the same

probabilities for a = > and & = — _1; (B accordingly).

5q

Thus, there is no way to tell the difference between the states

% and %. And there is no way to tell the difference be-

—[0)+[1) |0)—|1)
tween 7 and v

5.2 Quantumic Math - Are You Ready For The Red Pill?

131

But how about |0>\}2‘1> and |0>}2‘1> ? Aren’t these indistinguishable,
too?

Our newly introduced operator H proves the difference. While
these two statesdo not differin termsof their probabilities, they
differ in computation. This is because they originate from two
different inputs.

Let’s see the Hadamard gate in action.

Listing 5.8: The Hadamard gate

from giskit import QuantumCircuit, Aer, execute
from giskit.visualization import plot_histogram
import matplotlib.pyplot as plt

Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

Define initial_state as |0>
initial_state = [1,0]
gc.initialize(initial_state, 0)

1
R
3
4
s
6
7
¥
2
lo
11
12

apply the Hadamard gate to the qubit
qc.h(@)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator"')

Do the simulation, returning the result
result = execute(qc,backend).result()

get the probability distribution
counts = result.get_counts()

Show the histogram
plot_histogram(counts)

132 Chapter 5. Working with Qubits

Figure §.%: The Hadamard gate

0.60
0.45
0.30
0.15
0.00

[7y]
[§]
=
E
o
i |
o
o

We have used and discussed most lines of this code listing before. However,
you should note, we initialize our qubit with the state |0), in Python [1, 1.
The only new thing is the Hadamard gate we apply to our qubit at position o
(line 13).

We can see that even though weinitialized the qubit with the state |0), we mea-
sure it with a 50% probability for e and 1, each.

We mentioned the reversibility of the Hadamard gate. The Hadamard gate
reverses itself.

In this code snippet, we initialize the qubit with state |1) (line 9). We apply the
Hadamard gate two times. It results in a100% chance of measuring 1. Exactly
what the state |1) denotes.

The Hadamard gate is a fundamental quantum gate. It shows up everywhere
in quantum computing. It turns a qubit from the state |0) into |+) and a qubit
from the state |1) into the state |-). And it reverses these transformations.

5.2

Quantumic Math - Are You Ready For The Red Pill?

133

Listing 5.9: The Hadamard gate reverses itself

OX P wre

from qiskit import QuantumCircuit, Aer, execute
from giskit.visualization import plot_histogram
import matplotlib.pyplot as plt

Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

Define initial_state as |1>
initial_state = [0, 1]

gc.initialize(initial_state, 0)

apply the Hadamard gate to the qubit

23 qc.h(0)

apply the Hadamard gate again to reverse it
qc.h(0)

g # Tell Qiskit how to simulate our circuit

backend = Aer.get_backend('statevector_simulator')

Do the simulation, returning the result
result = execute(qc,backend).result()

get the probability distribution
counts = result.get_counts()

Show the histogram
plot_histogram(counts)

Figure §9: The Hadamard qate reverses ikself

1.00
0.75
0.50
0.25
0.00

[y
(i}
=
E
5]
L
o
s

5.3

134 Chapter 5. Working with Qubits

I You Want To Gamble With
Quankum Compu&iug...

...ensure the probabilities to favor you

Are you into gambling? If yes, quantum computing is for you.

Figure §.10: Gambling without a quantum computer

Because when you measure a qubit, what you observe depends on chance. Un-
less you measure it, the qubit isin a state of superposition of the states |0) and
|1). But once you measure it, it will be either o or 1. If you measure a hun-
dred qubits in the same state, you don’t get the same result a hundred times.
Instead, you’ll get a list of es and 1s. The proportion of es and 1s you get corre-
sponds to the probability distribution the qubit state entails.

In the last section 5.2, we got to know the Hadamard gate. It allows us to put
a qubit into superposition. For instance, if you start with a qubit in the state

5.3 If You Want To Gamble With Quantum Computing... 135

|0), applying the Hadamard gate results in a qubit in the state |+).

VRS U I b
== = 2ro>+ﬁrl>—[£]

The resulting probability amplitudes for both states |0) and |1) are \L@ Their

squares denote the probabilities of measuring o, respectively 1. Both proba-
bilities are % So, we got a 50:50 chance.

If you were to bet on either one outcome, there would be no good advice. But,
if you played long enough, you'd end up with the same number of wins and
losses-a fair game.

But if you were a casino, offering such a fair game wouldn’t earn you any
money. Instead, you'd need to increase your chance of winning. This is what
casinos do. And this is the origin of the phrase “the bank always wins”. For
instance, the Wheel of Fortune and the popular slot machines disadvantage
the players the most. These games have a house edge of 10 percent or more.
But even in Blackjack, the fairest game if played optimal, there’sa house edge
of about 1 percent.

Listing 5.10: Weighted initial state

from math import sqrt

from qiskit import QuantumCircuit, Aer, execute
from giskit.visualization import plot_histogram
import matplotlib.pyplot as plt

Define state |psi>
initial_state = [sqrt(0.4), sqrt(0.6)]

1
R
3
4
s
6
7
¥
2

Redefine the quantum circuit
gc = QuantumCircuit(1)

Initialise the Oth qubit in the state "initial_state’
gc.initialize(initial_state, 0)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator')

execute the qc
results = execute(qc,backend).result().get_counts()

plot the results
plot_histogram(results)

136 Chapter 5. Working with Qubits

Figure 5.11: Probabilities of a weighted initial state

0.60
0.45
0.30
0.15
0.00

[4]
[i §]
=
E
i
i |
o
a

Let’s say the casino wins when we measure 1, and the player wins when we
measure 0. As the casino, we want to increase the chance of winning by 10%
to win in 60% of the cases.

We already know one way. We can specify the probability amplitudes of the
qubit during its initialization. For the probabilities are the squares of the
probability amplitudes, we need to provide the square roots of the probabili-
ties we want to specify (line 7).

But how can we change the probabilities of measuring e or 1 outside of the
initialization?

In section 3.2, rather than specifying the exact probabilities, we controlled
the probabilities by an angle 6 (theta). This is the angle between the basis
state vector |0) and the qubit state |y). 6 controls the proximities of the vector
head to the top and the bottom of the system (dashed lines). And these prox-
imities represent the probability amplitudes whose squares are the probabili-
ties of measuring e or 1 respectively. o? denotes the probability of measuring
ly) ase. B2 indicates the probability of measuring it as 1.

We can deduct the values of o and and thus the state |y):

0 .0, [cos?
ly) —c0s§|0) —l—sm§|1> = Lin%]

In the previous section 5.2, we learned how we could use matrices to trans-
form the state of a qubit. And we used the layman’s interpretation that the
“ket-bra” |a)(b| turns our qubit from the state |b) into the state |a).

So, why don’t we use this interpretation to rotate our qubit state? 6 is the an-

5.3 If You Want To Gamble With Quantum Computing... 137

Figure £.12: 2-dimensional qubit system

gle between the state |0) and the qubit state vector |y). Consequently, rotat-
ing |0) by 6 turns it into |y). The ket-bra |y) (0| denotes this part of our trans-
formation.

The qubit state we name |y’) in the following image 5.13 depicts the rotation
of the state |1) by 6. The ket-bra |y’)(1| denotes this second part of our trans-
formation.

= —sing

Figure £.13: Qubit rotation

138 Chapter 5. Working with Qubits

The following equation describes the rotation of our qubit:

0 .0 0 .0
R. — / 1| = COS~ 1o —Sin~ o 11 = COS~ —szn§
Y w2 O+ w1l Liné [} + cos% [} sin%2 cos%
This matrix is known as the rotation matrix. The only quantum-specific here
is that we take the sin and cos of g rather than 6. The reason for this is the
specific way we represent our qubit with the states |0) and |1) opposing each
other on the same axis.

Usually, the rotation matrix implies a counter-clockwise rota-
tion because in a standard representation, increasing angles
“open” counter-clockwise. But the qubit state vector “opens”
clockwise starting from the state |0). Therefore, the rotation
matrix implies a clockwise rotation.

e

Another question that arises is why there is a —sin% in the formula?

When you look at the figure 5.13, you can see that the qubit state |y’) ends
at the left-hand side. The probabilities of states on that side equal the prob-
abilities of states on the right-hand side (if mirrored on the vertical axis).
But in the previous section 5.2, we also learned the importance of reversible
transformations. So, we need to distinguish a clockwise rotation from a
counter-clockwise rotation. As we need to distinguish whether we applied
the Hadamard gate on the state |0) (resulting in |+)) or on the state |1) (result-
ingin |-)). Itis the same justification.

But why do we specify a negative value for ' and not for ’? In section 3.2, we
said we would interpret all vectors on the left-hand side of the vertical axis to
have a negative value for §. While this is true, there is, in fact, no way to tell
the difference between the states fa|0>\/;ﬁ D and “'0@[3 L And when we look at

a rotation matrix in a classical, two-dimensional vector space with orthogo-
nal axes, we can see that it is the value for o’ that is in the negative area, not
the value for ’.

As you can see, the vector |y’) ends in the negative area of X (it is left to the
y-axis). The distance to the y-axis is sinf. Therefore, the upper value (repre-
senting the x-coordinate) is negative.

Using the same rotation matrix for our quantum system, we use a formula
many mathematicians are familiar with.

5.3 If You Want To Gamble With Quantum Computing... 139

Figure §.14: Rotation makrix

Let’s have a look at our transformation in action.
Listing 5.11: Rotate the qubit state

from math import pi

Define state |0>
initial_state = [1, 0]

Redefine the quantum circuit
gc = QuantumCircuit(1)

NS RO, N VNS SR N PR

Initialise the 0th qubit in the state "initial_state’
gc.initialize(initial_state, 0)

Rotate the state by a quarter of a half circle.
gc.ry(pi/4,0)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator"')

g # execute the qc
results = execute(qc,backend).result().get_counts()

plot the results
plot_histogram(results)

140 Chapter 5. Working with Qubits

Figure 5.15: Probabilities of the rotated qubit state

1.00
0.75
0.50
0.25
0.00

[7y]
[§]
=
E
o
i |
o
o

The Qiskit QuantumCircuit object provides the ry function (line 13). ry is for R,
gate. Because it rotates the qubit around the y-axis of the quantum system,
this function takes the angle 6 (in Radians) as the first parameter. The value
of 2xpi denotes a full rotation of 360°. The second parameter of the function
is the position of the qubit to apply the gate to.

However, you need to be careful. The angle 6 does not stop when it “reaches”
the state |1). You can rotate your qubit state beyond it. Then, rather than
increasing the probability of measuring 1 you decrease it.

The R, gate is easily reversible. Apply another R, gate with —6 as the parame-
ter.

We started with the goal to increase the casino’s chance to win by 10%. What
is10% in terms of the angle 6?

0 denotes the angle between the basis state |0) and |y). From our quantum

0
state formula, |y) = cos%|0) +sind|1) = {Zf:é} , we can see that we have a proba-

2
bility amplitude for the state |1) of sin (). Thus, the probability of measuring

a qubitin the state |y) asa 1is the squared probability amplitude.

sin’ (g) =P (y) (5.2)

5.3 If You Want To Gamble With Quantum Computing... 141

Let’s solve this equation for the angle 6.
0
sin (E) =P (y)

o . _ 5.3
o = sin /P (y) (5-3)
0 =2-sin"'\/P ()
This formula shows the angle 6 that represents the probability of measuring
|ly)asai.

The following function prob_to_angle implements this equation in Python. It
takes a probability to measure the qubit asa 1 and returns the corresponding
angle 6.

Listing 5.12: Calculate the angle that represents a certain probability

¥ from math import asin

2

k23 def prob_to_angle(prob):

4_ nnn

] Converts a given P(psi) value into an equivalent theta value.
6 nnn

¥d return 2xasin(sqrt(prob))

Let’s use this function to set the probability of measuring our qubitasa 1 to
60%.

We initialize our qubit with the state |0) (line 4). Then, we apply the R, gate
on the qubit and pass as the first parameter the result of calling prob_to_angle
with the probability value of 0.6 (line 13). The rest of the code remains un-
changed.

As aresult, we see a 60% chance to measure the qubit as the value 1. We have
found an effective way to control the probabilities of measuring e and 1, re-
spectively.

Let’s see what happens if we apply the R, gate on a qubit in another state, for
instance, in
0)+[1)

+)="7""

142 Chapter 5. Working with Qubits
Listing 5.13: Rotate the qubit state by 0.8

from math import pi, sqrt

Define state |0>
initial_state = [1,0]

Redefine the quantum circuit
gc = QuantumCircuit(1)

1
R
3
4
s
&
7
¥
2

Initialise the 0th qubit in the state "initial_state’
gc.initialize(initial_state, 0)

Rotate the state by 60%
3 qc.ry(prob_to_angle(0.6), 0)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator"')

g # execute the qc
results = execute(qc,backend).result().get_counts()

plot the results
plot_histogram(results)

Figure §.16: Probabilities of the rotated qubit state

0.60
0.45
0.30
0.15
0.00

[4]
[i §]
=
E
i
i |
o
a

In the following example, we initialize the qubit in the state |+). It hasa prob-
ability of 50% measuring the qubit in either state e or 1 (line 4). And we rotate
it by the angle we calculate from the probability of 10% (line 13).

5.3 If You Want To Gamble With Quantum Computing... 143
Listing 5.14: Rotate the qubit state with initial state

from math import pi, sqrt

Define state |+>
initial_state = [1/sqrt(2), 1/sqrt(2)]

Redefine the quantum circuit
gc = QuantumCircuit(1)

1
R
3
4
s
&
7
¥
2

Initialise the 0th qubit in the state "initial_state’
gc.initialize(initial_state, 0)

Rotate the state by 10%
3 qc.ry(prob_to_angle(0.1), 0)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator"')

g # execute the qc
results = execute(qc,backend).result().get_counts()

plot the results
plot_histogram(results)

Figure £.17: Probabilities of the rotated qubit state

0.8
0.6
0.4
0.2
0.0

i
[i]
=
E
g
i |
o
[

Wait, this is not correct. We get an 80% chance of measuring the qubitasa.
But we would have expected only 60%.

The problem is how we calculated the angle 6 from the probability it repre-

144 Chapter 5. Working with Qubits

sents. 6 is the angle between the vector |y) and the basis state vector |0). But
the gradients of trigonometric functions (such as sine and arcsine) are not
constant. Thus, the probability an angle represents that starts at the top of
the circle (state |0)) isanother probability that the same angle represents that
starts at the horizontal axis such as the state |+).

We can fix this. We calculate the overall angle 6 that represents the sum
of the prior probability and the probability we want our qubit to change
(2 * asin\/prob+ prior). We subtract from it the angle that represents the
prior (—2 x asin/prior). The result is the angle that represents the probability
change at the current state of the qubit.

Listing 5.15: Rotate the qubit state correctly

from math import asin

def prob_to_angle_with_prior(prob, prior):

Converts a given P(psi) value into an equivalent theta value.

return 2xasin(sqrt(prob+prior))—2*asin(sqrt(prior))

1
R
3
4
-]
&
7
¥
2

Define state |+>
initial_state = [1/sqrt(2), 1/sqrt(2)]

Redefine the quantum circuit
gc = QuantumCircuit(1)

Initialise the Oth qubit in the state ‘initial_state’
gc.initialize(initial_state, 0)

Rotate the state by 10%
gc.ry(prob_to_angle_with_prior(0.1, 0.5), 0)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator')

execute the qc
results = execute(qc,backend).result().get_counts()

plot the results
plot_histogram(results)

5.3 If You Want To Gamble With Quantum Computing... 145

Figure 8.1%: Probabilities of the rotated qubit state

0.60
0.45
0.30
0.15
0.00

un
[1 K]
=
._E
5]
i |
Qo
a

We write a new function prob_to_angle_with_prior (lines 3-7). This function
takes the probability we want our qubit to change as the first parameter. And
it takes the prior probability of the qubit as the second parameter.

When we run the code, we see the result we expected.

Rotating the qubit around the y-axis allows you to control the probabilities of
measuring o0 and 1 by the angle 6. And you can represent 6 by the change of
probability of measuring the qubit as 1 (P;(y’)) and by the prior probability of
measuring 1 (P, (y))

0 =2-sin"'\/P(y)—2-cos '\/P(y)

But for once, this is not an all-around carefree way to push probabilities in
a certain direction. While you can rotate the angle 6 further and further,
the effect that it has on the resulting probabilities depend on the direction
of your qubit state vector |y). If the vector |y) points to the right-hand side of
the y-axis, rotating it by 6 increases the probability of measuring 1. But if the
vector |y) points to the left-hand side of the y-axis, rotating it by 6 decreases
the probability of measuring 1.

In quantum computing, where you go always depends on where you come
from.

To the second, even more importantly, from a practical perspective, if you
want to change the measurement probabilities by a certain percentage, you
need to know the prior probabilities. You need to know the state the qubit is
in. Remember, measuring the qubit collapses it to either e or 1. Measuring
destroys the qubit superposition. But, if you're not allowed to measure the
qubit, how could you specify the prior probability?

146 Chapter 5. Working with Qubits

In the trivial examples we used in this section, we can keep track of the qubit
states by hand. But for any meaningful quantum circuit, this becomes im-
possible. Thus, the advantage of a quantum circuit over a classical algorithm
builds upon the qubit’s ability to explore states we can’t trace classically.

To succeed beyond the traceable manipulation of qubit states, we need to
work with multiple qubits concurrently. When we combine qubits, more so-
phisticated transformations become possible. In the next chapter, we will
explore what it means to work with multiple qubits.

&1

Hands-0n Inkroduction To
Quantum Entanglement

Spook‘j—Ac&LoM—
Ab-A-Distance

(Spukhafte Fernwirkung)

Figure &6.1: Albert Einstein

Thus far, you may wonder what the big deal with quantum computing is.
Why does everyone seem to be freaking out about this?

Some emphasize the notion of the qubit being in the two states concurrently.
And that’s so different from anything we know. In the world we live in, the
world we experience, there is no such thing that is in two mutually exclusive
states at the same time.

Others counter this notion is wrong. The qubitisnote and 1 at the same time.

148 Chapter 6. Working With Multiple Qubits

Rather, it is a truly random system. And that’s so different from anything
we know. In the world we live in, the world we experience, there is no truly
random thing. Everything is sensitively dependent on initial conditions. If
you were able to measure everything with absolute precision, randomness
would disappear.

Again others object this notion is wrong, too. But the whole concept of quan-
tum superposition is so different from anything we know. In the world we
live in, the world we experience, there is nothing comparable. So any anal-
ogy to something we know is simply inadequate.

But thus far, the only aspect of the quantum superposition we covered is the
probabilities of measuring it as either o or 1. Yes, it is interesting. It may
even seem a little strange. But a system whose value depends on chance is
not unimaginable. Thus far, it doesn’t matter if the qubit is in both states
concurrently, purely random, or something completely different. Thus far,
itis a probabilistic system. Not more. Not less.

But, so far, we only considered a single qubit. It’s going to change if we start
to work with multiple qubits.

We already know some operations that work with multiple classical bits. For
instance, andandor. Alookat the truth tablesdiscloses they are inappropriate
for qubit transformation. They are irreversible.

Figure 6.2: Truth table of AND and OR

While there are two input values (P and Q), either and or or on its own has only
one output value. Itisimpossible to reconstruct the two input bits if you only
got one output bit as information. Thus, when we work with two qubits, any
operator (transformation gate) must have two inputs and two outputs.

Can we use and and or as the two outputs?

No, we can’t. These two operations don’t allow us to tell the difference be-
tween the states in which either one of P and Q is true and the other false.

Let’s try something different. We replace the and-operator with the plain and

6.1 Hands-On Introduction To Quantum Entanglement 149

unchanged value of P. We can now tell the difference between the two states

« Pistrue, and Q is false
« Pisfalse, and Qis true.

Figure 6.3: Truth table of AND and 7

But we can’t tell the difference between the state when P and Q are true and
the state when only P is true anymore.

The reason is, both operations and and or, are imbalanced. And is false in three
cases. Or is true in three cases. The other output bit of the transformation
would need to tell the difference between the three cases. That’s impossible
for a single bit of information.

So, we also need to replace or. We can use the “exclusive or” (XOR) operator
instead. In math, the symbol & represents the “exclusive or” operator. It is
true, for precisely one of its inputs is true. Otherwise, it is false. The follow-
ing truth table depicts the definition of “exclusive or.”

I~
T
T
I~

Figure 6.4: Truth table of exclusive or

The combination of P and P ¢ Q is reversible. It is not just reversible, but it
inverses itself. If we apply it twice, the output is P and Q again.

At first sight, there’s nothing special about this transformation. We can even
draw a classical circuit diagram.

150 Chapter 6. Working With Multiple Qubits

PoQ
Q

Figure 6.6: A classical circuit with 7, ¥ XOR @

The dot is the fan-out operation. In this classical circuit, where the lines are
wires, it copies the value of P. We interpret voltage at the wire as 1 and the
absence of voltage as 0. If we connect a wire with another wire, it receives
the same output at both ends. One wire coming from P connects to the XOR
gate. The other serves as the output. It is the unchanged value of P.

In quantum computing, the situation is different. First, it is impossible to
copy a qubit (we’ll cover this topic later in this chapter). Second, the trans-
formation does not provide an unchanged P as an output.

Therefore, we use a different representation of this transformation in quan-
tum computing.

P: «f0)+B|1)

CNOT(P,Q) :
0|00) + B11)

Q: 10)

Figure 6.7: The qu.avd:u.m CNOT gate

6.1 Hands-On Introduction To Quantum Entanglement 151

While there is a fan-out at the P qubit, it does not imply copying the qubit.
Instead, the fan-out indicates that the qubit P controls the transformation
of the target qubit Q. To understand what this means, let’s apply a different
perspective on the truth table. We split it into two blocks.

Figure 6.%: Truth table of the CNOT qate

In the first block, Pise, and P @ Q is equal to Q. So, nothing changes at all.

But in the second block, when P is 1, P® Q is equal to -Q (“not Q”). In other
words, if P is 1, we apply the quantum X-gate on Q.

The qubit P controls whether we apply an X-gate on the qubit Q. Therefore,
this gate is named the “controlled not” or CNOT-gate. In Qiskit, it is the cx-
gate.

The following code shows the CNOT-gate in action.

152 Chapter 6. Working With Multiple Qubits

Listing 6.1: Apply the CNOT-gate with | 0> as control qubit

from math import sqrt
from giskit import QuantumCircuit, Aer, execute
from giskit.visualization import plot_histogram

Redefine the quantum circuit
gc = QuantumCircuit(2)

Initialise the qubits
gc.initialize([1,01, 0)
gc.initialize([1,01, 1)

1
R
3
4
s
&
7
¥
2

Apply the CNOT—gate
3 qc.cx(0,1)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator"')

g # execute the qc
results = execute(qc,backend).result().get_counts()

plot the results
plot_histogram(results)

Figure 69: Result of the CNOT-gate with |0 as control qu.bi&

1.00
0.75
0.50
0.25
0.00

[4]
[i]
=
E
i
L
o
(a

When we initialize both qubits with |0) (lines 9-11) before we apply the CNOT-

gate (line 13), we always measure 00. Nothing happens.

6.1 Hands-On Introduction To Quantum Entanglement 153

When we initialize the control qubit with |1) and the target qubit with |0), we
always measure 11.

Listing 6.2: Apply the CNOT-gate with | 1> as control qubit

Redefine the quantum circuit
gc = QuantumCircuit(2)

Initialise the 0th qubit in the state "initial_state’
gc.initialize([0,1], 0)
gc.initialize([1,0], 1)

Apply the CNOT—gate
gc.cx(0,1)

1
R
3
4
§
6
7
5
2

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator')

execute the qc
results = execute(qc,backend).result().get_counts()

plot the results
plot_histogram(results)

Figure 6.10; Result of the CNOT-gate with [1> as control qubit

1.00
0.75
0.50
0.25
0.00

[4]
[i]
=
E
i
L
o
(a

When we only look at the basis states, there is still nothing special going on
here. The result equals the result that a classical circuit produces.

But it becomes interesting when the control qubit is in a state of superposi-

154 Chapter 6. Working With Multiple Qubits

tion. We initialize both qubits in the state |0), again. Then, the Hadamard
gate puts the qubit Q into the state |+). When measured, a qubit in this state
is either o or 1, with a probability of 50% each. The following figure depicts
the quantum circuit diagram.

Figure 6.11: A CNOT-gate with a control qubit in state |+>

Po —)

[1. 0]

irﬂ N ZQ??:

Listing 6.3: Apply the CNOT-gate with |+> as control qubit

Redefine the quantum circuit
gc = QuantumCircuit(2)

Initialise the 0th qubit in the state "initial_state’
gc.initialize([1,0], 0)
gc.initialize([1,01, 1)

Apply the Hadamard gate
qc.h(@)

OX NP W e

Apply the CNOT—gate
gc.cx(0,1)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator"')

execute the qc
results = execute(qc,backend).result().get_counts()

plot the results
plot_histogram(results)

6.1 Hands-On Introduction To Quantum Entanglement 155

Figure 6.12: Result of the CNOT-gate with [+> as control qubit

0.60
0.45
0.30
0.15

un
[i}
=
E
5]
o
o
o

0.00

We measure the control qubit P as either @ or 1 with a probability of 50% each.
This is exactly what we expect for a qubit in the state |+). And, we measure
the target qubit Q as either o or 1, too. Its value perfectly matches the first
qubit.

“Of course it does!” you may think. If the control qubit P is e, we leave the
target qubit Q untouched in its state |0). We measure it as 0. But if the control
qubit is 1, we apply the X-gate on the qubit 0. We turn it from |0) into |1) and
measureitasi.

“There is a true causal relationship,” you may think, "just like in a classical cir-
cuit.” If it was, what if we measured the target qubit Q first?

The control qubit Pisin a state of superposition unless you measure it. It con-
trols whether we apply an X-gate on the second qubit Q. If there were a cause
and an effect, how could we see the effect before the cause?

Let’s have a look.

156 Chapter 6. Working With Multiple Qubits

Listing 6.4: Measure the controlled qubit first

from giskit import ClassicalRegister, QuantumRegister

Prepare a register of two qubits
gr = QuantumRegister(2)

Prepare a register of two classical bits
cr = ClassicalRegister(2)

OX P wre

Redefine the quantum circuit
gc = QuantumCircuit(qr, cr)

Initialise the O0th qubit in the state ‘initial_state’
3 qc.initialize([1,0], 0)
qc.initialize([1,01, 1)

Apply the Hadamard gate
gc.h(0)

Apply the CNOT—gate
gc.cx(0,1)

Measure the qubits to the classical bits, start with the controlled
qubit

qc.measure(qrC1]1, cr[11)

gc.measure(qr[0], cr[0])

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('gasm_simulator')

execute the qc
results = execute(qc,backend,shots = 1000).result().get_counts(qc)

plot the results
plot_histogram(results)

6.1 Hands-On Introduction To Quantum Entanglement 157

Figure 6.13: Result of measuring the controlled qubit first

0.60
0.45
0.30
0.15

[4]
[i §]
=
E
i
i |
o
a

0.00

To specify the order of measurement, we need to edit our code a lit-
tle bit. First, we create two registers (lines 4 and 7) and initialize the
QuantumCircuit with them (line 10). A QuantumRegister isa collection of qubits. A
ClassicalRegister is a collection of regular bits. The registers allow us to com-
bine these two kinds of bits in a single circuit. The classical bits take the mea-
surement results of the qubits (lines 23-24).

This time, we choose another backend simulator. We use the gasm_simulator
(line 27) because it supports multiple executions of a quantum circuit. The
statevector_simulator we used thus far is ideal for the examination of qubits
in a state of superposition. But it only supports a single execution of the cir-
cuit. But this time, we include the measurement in our circuit that collapses
the state of superposition. As a result, we receive a single pair of regular bits
whose measurement probability is always 100%.

To investigate the probability of the underlying quantum system, we have
to execute the circuit several times, for which we use the gasm_simulator. The
parameter shots=1000 (line 30) specifies the number of executions we want to
run.

Since we do not calculate the real probabilities but retrieve them empirically,
the result is not entirely accurate. But it is close enough.

The measured values of both qubits stay perfectly aligned.

If we measured only the target qubit, it would appear to be random despite
its initialization with the state |0). But once we look at the control qubit, we
see that both values are equal. Always.

158 Chapter 6. Working With Multiple Qubits

It does not matter which qubit we measure first. It seems as if the other qubit
knows the outcome and chooses its state accordingly. The measurement of
one qubit affects the other qubit. But it only appears that way.

In a classical circuit, the first bit remains unchanged. Wires connect both
bits physically and there is a clear causal relationship. The input voltage (or
its absence) of the control bit determines the output voltage of both wires. It
directly determines the output of the directly connected wire, and it deter-
mines the output of the “exclusive or” wire (together with the other input
voltage).

But unlike its classical counterpart, the CNOT-quantum gate does not output
an unchanged qubit P alongside the qubit Q whose output is P& Q. It outputs
an entangled pair of qubits. They are in a state of superposition. Once you
measure any part of this entangled quantum system, the whole system col-
lapses.

This happens without any information exchange between the entangled
qubits. Because qubits are not physically connected. We could even separate
them by a large distance, and still, measuring one qubit would collapse them
both. Einstein did not believe this. He termed this phenomenon as “spooky
action at a distance.”

But this is the point. The CNOT-gate does not change the value of the target
qubit Q depending on the control qubit P. But it entangles the two qubits. It
puts them into a shared state-an entangled state.

While we can describe the quantum state of an entangled system as a whole,
we can’t describe it independently per single qubit anymore.

“But how is that useful at all?” you ask?

It is helpful because it enables us to construct a quantum system beyond a
single qubit. A qubit is a probabilistic system that collapses to either o or 1.
Entangled qubits can collapse to a broader range of values.

Even more importantly, a set of entangled qubits can represent the problem
at hand more accurately. A set of qubits can represent the structure of this
problem to be solved. Once the quantum circuit concerts all qubits in a way
that represents the problem, then a single measurement collapses the whole
system. And the measured values disclose the solution.

In classical computing, we think a lot about cause and effect. Given some in-
put, which transformations do we need to apply to produce a certain output?
The desired output.

6.2

6.2 The Equation Einstein Could Not Believe 159

In quantum computing, we think about the structure of the problem. Given
the specificitiesofthe problem, which transformations do we need to concert
the qubits so that, when measured, results in the solution?

Working with multiple qubits and entanglement are fundamental building
blocks of quantum computing. And they have many facets.

In the remainder of this chapter, we shed some light on the underlying math,
the theoretical consequences, and the proof that the quantum superposition
is, in fact, different from a classical system that appears random but is sensi-
tively dependent on initial conditions. While I try to explain all these topics
as practical and accessible, they remain pretty theoretical.

If you feel ready for this deep dive into entanglement, then just read on. How-
ever, if you prefer to continue with the practical consequences of entangle-
ment on quantum machine learning algorithms, then you may want to jump
to section 6.3. In that case, I recommend you come back to this chapter later.
While the theoretic background is not necessary to apply quantum gates on
multiple qubits, it undoubtedly fosters a deeper understanding and prepares
you for the upcoming challenges.

The Equ&&iov\ Einskein Could Not
Believe

Albert Einstein colorfully rejected the idea of quantum entanglement as
“spooky-action-at-a-distance.”

In layman’s terms, quantum entanglement is the ability of distributed parti-
cles to share a state—a state of quantum superposition, to be precise.

Doesn’t it sound spooky? Maybe we should refresh the notion of superposi-
tion.

Particles have a spin. Upordown. Thedirection of the spinisnotdetermined
until you measure it. But once you measure it, it will instantly collapse to
either one spin direction for you to observe. This is the superposition of a
single particle.

Quantum entanglement says two particles can share a state of superposition.
Their spins correlate. Once you measure one particle’s spin, the state of the
other particle changes immediately.

Doesn’t it sound spooky? Maybe we should talk about scales.

6‘2’11

160 Chapter 6. Working With Multiple Qubits

When we say the two particles are distributed, then they can be direct neigh-
bors within the same atom. They can be a few feet away from each other. But
they can also be light-years apart. It doesn’t matter!

When we say the state of the particle changes instantly, we mean instantly.
Not after a few seconds. Not after a tiny fraction of a second. But instantly.

The two particles can be light-years away from each other, yet when we mea-
sure one of them, the other changes its state simultaneously.

Sounds spooky, right?
“But how do we know?”

We have not tested such a setting with particles light-years away. But we
know the underlying math.

Long before the first experiment provided evidence, a group of geniuses de-
veloped formulae that predicted how an entangled pair of particles would be-
have. Einstein was one of them. And while he was able to understand the
language of math like no one else could (very few could, maybe), he didn’t
like what math told him this time.

Single Qubit Superposition

In quantum mechanics, we use vectors to describe the quantum state. A pop-
ular way of representing quantum state vectors is the Dirac notation’s “ket”-
construct that looks like |y).

In a quantum system with two values that we could measure, such as the par-
ticle spin that can be up ordown, or the quantum bit (qubit) that can be either
O or1, there are two basis vectors.

For the quantum bit, these are: |0) = H and |1) = m

The quantum superposition is a combination of these two basis states.

v) = alo)+ Bli) = |

The values a and [are the probability amplitudes. Their squares denote the
probabilities of measuring the qubit as a e (a?) or a 1 (82). The larger «, the
larger the probability is to measure the qubit ase. Thelarger 3, the larger the
probability is to measure the qubitas 1.

6«2‘2

6.2 The Equation Einstein Could Not Believe 161

Since the probabilities must add up to 1, we can say that their sum must be 1.

o +[BI* =1

Quantum Tramsformakion Makrices

In quantum mechanics, we also use vectors to transform qubit states. The
Dirac notation’s “bra”-construct ((0|) represents a row vector. When we mul-
tiply a column vector with a row vector, we build the outer product. It results
in a matrix, like this

ap ao-bo ao-b1 ao-bn
aj al-bo a1~b1 al-b
ay(pl=|". | -[bo b1 ... by]= , !
a, a, by a,-by ... a,- by

So, we can create matrices from vectors. For instance, we can make three
simple matrices.

« The Identity (/) matrix

1= o) 0l+ = |g;

p—
—_—
(e
o O
— =
|
—
[—
o O
—_ O
—_— =
1
I
—
O =
— O
| I

« The Not (X) matrix

x:mm+mw=koéﬂ+ﬁi?ﬂ:Bﬂ

« The Hadamard (H) matrix

H = |+)(0] +|—)(1]

1 1

- f]-[l o+ (4] o 1
L V2 V2
M1 1

_ | oL %]
L 9 o =L
L V2 V2
M1

— |2
b
1

\S) |’—‘| \S) |
—
% S

| =
[S—
—_

I
S

6R.3

ER.4

162 Chapter 6. Working With Multiple Qubits

Transforming Single Qubits

When we multiply a matrix with a column vector (our quantum state), the
result is another column vector, like this:

_la b| |vo| |a-vo+b-v
M-|v) = [c d} {vl] N L-V(H—d-\JJ

When we multiply the /-gate matrix with a vector, we get the unchanged vec-
tor as the output.

|1 0| ¢ [1-a+0-B| |o
rw=[o 35 - e 18] - 3
The X-gate matrix flips the probability amplitudes of the vector.
o 1] [a] _[o-a+1-B] [B
ewi= o] [5] - [atols) - [a
The H-gate puts a qubit from a basis state into superposition.
H~|O>:L Lo 1 _ bfr-1+1-00 _ 1 1] _
V2l —1]7o] T2 l-1-1-0] " 2l

Two-Qubit States

Now, let’s say we have two qubits. Let’s call them |a) and |b). Each of the

Sl

two qubits has its own probability amplitudes: |a) = ao|0) + a;|1) = BO] and
1

b) =by|0) +b;|1) = bo . When we look at these two qubits concurrently, there
b
1

are four different combinations of the basis states. Each of these combina-
tions hasits probability amplitude. These are the products of the probability
amplitudes of the two corresponding states.

* ap|0)bo|0)
* aol0)bi[1)
* ai|1)bo|0)
- ai|1)bi]1)
These four states form a quantum system on their own. Therefore, we can
represent them in a single equation. While we are free to choose an arbitrary

name for the state, we use |ab) because this state is the collective quantum
state of |a) and |b).

|ab) = |a) @ |b) = aoho|0)[0) + aob1[0)[1) +a1bo[1)|0) +a1bi[1)[1)

6.2 The Equation Einstein Could Not Believe 163

In this equation, |ab) is an arbitrary name. The last term is the four combi-
nations reordered to have the amplitudes at the beginning. But what does
la) ® |b) mean?

The term |a) ® |b) is the tensor product of the two vectors |a) and |b).

The tensor product (denoted by the symbol ®) is the mathematical way of cal-
culating the amplitudes. In general, the tensor product of two vectors v and
wis a vector of all combinations. Like this:

Mvowo]
Vow1

Vo wo VoWn
Viwo

. Vi w1
Withv = : andw = : thenvow= VWi

Vn Wn
ViWn

LVnWhn |

a0 [bo} aobo

For our system of two qubits, itis |a) @ |b) = o1l = ZOZI :
ar. [bol 1bo
I aib;

The tensor product |a) ® |b) is the explicit notation of |a)|b). Both terms mean
the same.

We can represent a qubit system in a column vector or as the sum of the states
and their amplitudes.

apbo
apb
aybg
ayby

|ab) = |a) @ |b) = aobo|0)[0) + aob1[0)[1) +a1bo[1)|0) +a1bi|1)[1) =

This representation of the qubit state is similar to the representation of the
single-qubit state |y). The only differenceisthelarger number of dimensions
the two-qubit system has. It has four basis state vectors instead of two.

All the rules that govern a single qubit apply to a system that consists of two
qubits. It works similarly. Accordingly, the sum of all probabilities (remem-

6R.6

164 Chapter 6. Working With Multiple Qubits

ber the probability of a state is the amplitude square) must be 1:
|a0b0|2 + |a0b1 |2 + |a1b0|2 + |a1b1 |2 =1

Unsurprisingly, working with a two-qubit system works similar to working
with a one-qubit system, too. The only differenceis, again, the larger number
of dimensions the vectors and matrices have.

Two-Qubit Transformations

Let’s say we want to apply the H-gate to the first qubit |¢) and the X-gate to the
second qubit |») as depicted in the following figure.

Figure 6.14: Two-qubit transformation circuit

As we mentioned above, we can express the application of a gate by prepend-
ing the transformation matrix to the vector, like M -v. In our specific example,
we prepend a matrix to each of the vectors, like H|a) ® X|b). Further, the ten-
sor product is associative. This means we can regroup the terms as follows:

H|a)@X|b) = (H®X)(la)®|b)) = (H®X)|ab)
So, let’s calculate the matrix denoted by H ® X.

We can see that the matrix of a two-qubit transformation gate has four times
four dimensions. It corresponds to the four dimensions the two-qubit state
vector has.

Except for the larger number of dimensions, there is nothing extraordinary

6.2 The Equation Einstein Could Not Believe 165

going on here. We can prepend this matrix to a two-qubit system.

mexs Gl Aol

1 [x x
V21X X
0 1 0 1
_Llll of 1o
V2 |, {o 1} _1_{0 1} (6.1)
10 10
o L L L
V2 V2 V2
L 0 L o0
_|v2 V2
“lo L o —L
V2 V2
0 L 90
V2 V2

Working with matrices of this size by hand is cumbersome. Fortunately, we
have a computer to calculate the matrices and the tensor products for us.

Listing 6.5: Calculate the transformation matrix

from qiskit import QuantumCircuit, Aer, execute

Create a quantum circuit with one qubit
gc = QuantumCircuit(2)

apply the Hadamard gate to the qubit
qc.i(0)
qc.h(1)

1
R
3
4
s
&
7
¥
K

backend = Aer.get_backend('unitary_simulator')
unitary = execute(qc,backend).result().get_unitary()

Display the results
unitary

First, we create the QuantumCircuit with two qubits (line 4). Then, we apply the
X-gate to the one qubit and the H-gate to the other (lines 7-8).

166 Chapter 6. Working With Multiple Qubits

¢ Qiskit orders the qubits from back to front with regard to the
* matrix calculation, so we need to switch the positions.

This time, we use a different Qiskit simulator as the backend, the
UnitarySimulator (line 10). This simulator executes the circuit once and
returns the final transformation matrix of the circuit itself. Note that this
simulator does not contain any measurements.

The result is the matrix our circuit represents.

What if we only wanted to apply the H-gate to one of the qubits and leave the
other unchanged? How would we calculate such a two-qubit transformation
matrix?

We can use the /-gate as a placeholder when we calculate the tensor product.
If we want to apply the H-gate to the first qubit and leave the second qubit
unchanged, we calculate the transformation matrix as follows:

1 0 1 0

I {1 I I 101 0 1
HW‘EL _1}—5 10 -1 0
01 0 -1

These two-qubit gates transform qubitsin a single step, but the qubits remain
independent from each other. As a result, we unintentionally introduced an-
other constraint.

When we look at the formula of the two-qubit state again, more specifically
at the amplitudes, we can see that the product of the outer states’ amplitudes
(|0Y|0) and |1)|1)) equals the product of the inner states’ amplitudes (|0)|1) and
11)|0)), as shown in the following equation.

apbg -a1by = apb - a1bg

This constraint results from how we create the two-qubit system as the com-
bination of two independent single qubits. We even worked with these two
qubits, yet only as independent qubits.

The term (H ® X)|ab) from our equation above explicitly shows the transfor-

6R.6

6.2 The Equation Einstein Could Not Believe 167

mation we apply to |ab). Thisis

0 55 0
L o L 0
(HeX)lab)= v | i |lab)
1 v2 1 v2
7 0 -7 0
Entanglement

What if we constructed the two-qubit system differently? When we discard
the factors, the four basis states consist of (ag, bo, ...) and replace them with
general variables. We can state the following equation for an arbitrary two-
qubit system.

a
v) = o0)0) + BIO)1) +1DI0) + 81} 1) = | &
0

We’re holding on to the normalization of the sum of all probabilities must be
1.

o+ B>+ [yl + 18 =1
But we do not insist that a6=L7.

In the last section, we got to know the CNOT-gate. It applies the X-gate to the
target qubit only if we measure the control qubitasa 1.

A: «al0)+ 1)

CNOT (A,B) :
|00) + B|11)

B: |0)

Figure 6.18: The qu.av\f:u.m CNOT gate

We can create the CNOT-gate from the two-qubit identity matrix by inter-

168 Chapter 6. Working With Multiple Qubits

changing the order of the last two elements, like this:

CNOT =

- o O O
o = O O

1 0
0 1
00
00

The CNOT-gate takes two inputs and gives two outputs. The first input is
called the control qubit. The second input is called the target qubit.

The result of the CNOT-gate is pretty forward if the control qubit is in a basis
state |0) or |1). If the control qubit is |0), then nothing happens. The output
equals the input. If the control qubit is |1), then the CNOT-gate applies the
X-gate (NOT-gate) on the target qubit. It flips the state of the target qubit.

The following figure depicts the truth table of the CNOT-gate.

Figure 6.16: Truth table of the CNOT qate

It gets interesting when the control qubit is in superposition. For instance,
when we apply the Hadamard gate to the first qubit before we apply the
CNOT-gate.

6.2 The Equation Einstein Could Not Believe 169

Figure 6.17: A CNOT-gate with a control qubit in state |+>

CNOT - (H ®1)|00)

(1 0 00 10 1 o0]]1
100100 L 01 O 1 0
10 0 01 211 0 =1 O 0

:0 010 01 0 -1 _0 6.2)

L 0 L o0 1]

V2 V2 1 V2

0 L 0 1 0 0
AR E

0 7 0 v 0 (1)

1 o _L 0 0 —

V2 V2 V2]

To calculate the subsequent application of multiple gates, we need to multiply
the matrices from back to front. Thus, we start with the CNOT-gate, followed
by the Hadamard gate. Unlike the multiplication of numbers, the order is
essential when multiplying matrices.

When we read the term CNOT - (H ®1)|00) from back to front, we start with
the initial state (|00)), apply the Hadamard gate to the first qubit, and apply
the CNOT-gate to the combined two-qubit system.

In the next step, we replace the gates with the respective matrices (we derived
them before in this section) and the initial state by the corresponding vector.
Then, we calculate the overall transformation matrix before we apply it to
the state vector in the last step.

Further, we can rewrite the vector as the sum of the weighted (by the ampli-
tudes) basis states. We omit the states |ao)|b;) and |a;)|by) for their amplitudes
are 0. For clarity, we named the different basis states |a() and |by) rather than

170 Chapter 6. Working With Multiple Qubits

simply |0).
\/LE
)= | 0| = Ljao) (1Bo)) + —=Jar) (b))
(1) \/5 0 0 \/E 1 1
7

Usually, we measure both qubits concurrently. The probability amplitudes
tell us what to expect in this case. We will either get 00 or 11, each with a prob-
ability of ;. But we can also measure a single qubit.

In the above equation, we disregard the terms within the parentheses for a
second. Thisrepresentsthe case when we only measure the first qubit |a). We
measure it with a probability of } ase and with the same probability as 1. Once
wemeasureit, theother qubit |b) jumpsinto the state given by the term inside
therespective parentheses. So, if we measure |a) ase, |b) jumpsto the state|b).
And if we measure |a) as 1, |b) jumps to the state |b;).

When we measure |a), then |b) changes its state. It is important to note that
|b) does not collapse once you measure |a). It does not collapse into @ or 1 but
jumps to another quantum state |0) or |1). Thus, measuring one of two entan-
gled qubits collapses a subsystem. The unmeasured rest jumps to an unen-
tangled quantum state.

The distinction between jumping to |0) or collapsing into @ seems to be some-
what technical because once you measure |0) you inevitably get . But the
state the unmeasured qubit jumps to can be any quantum state.

Let’s edit our example a little bit. Instead of leaving the controlled qubit un-
changed (applying the I-gate), we apply the Ry-gate to it. We introduced the
Ry-gate in the last section. The Ry-gate rotates the qubit state around the y-
axis by a given angle. The following equation shows its transformation ma-
trix.
0 -0 0 . 9
_ / _ C0S7 N —szn7) 1l = COSE —Sll’li
R)01 +1v)1 = [Coog |- [1 0]+ | |0 1] = [y]

Let’s rotate the controlled qubit by the angle by %, resulting in the circuit de-
picted in this figure.

6.2 The Equation Einstein Could Not Believe 171

Figure 6.1%: The CNOT-qate can result i any quantum state

As before, we calculate the transformation matrix by matrix multiplication.
The following equation shows the resulting vector.

Sl
|
5
OO O =

ST Tl s S5

We can easily see the resulting state is entangled. The outer probability am-
plitudes of the resulting vectors are both \/g . Their product is 3. The inner

amplitudes are both \/Lg Their product is . So, of course, 3 # 1.

Again, we write this quantum state as the sum of its basis state.

Ve + e+ lanib) D)

We want to pull out the common factor (\%) and the state of the qubit |a). So,

172 Chapter 6. Working With Multiple Qubits

let’s rewrite this equation.

5o} (%bw +§|b1>> +la) (§|bo>+§\m>)

Both states |ap) and |a;) have the same probability amplitude of % Thus, we
have a 50:50 chance of measuring the qubit |a) ase or 1. When we measure |a)
ase, then the qubit |b) jumpsto the state \/T§ 0)+3|1). Then, we have a probabil-

2
ity of (‘/7§> = 3 of measuring |b) as e and a probability of (%)2 = ; of measuring
itas1.

But when we measure |a) as 1, we have the exact opposite probabilities when
measuring |b). We get a probability of (3) g 1 of measuring |b) aseand a prob-

2
ability of (@) = 2 of measuring it as 1.

When we measure entangled qubits individually, we do not collapse both
qubits to finite values. But when we measure one qubit, the other jumps to
an unentangled quantum state. It is not restricted to result in a basis state. It
can jump to any valid quantum state.

When we measure the entangled qubits individually, what we measure
might appear random. Only when we look at both measurements, we see
their entangled state perfectly correlates them. Thisis because the entangled
information qubits hold does not reside in either of the qubits individually.
Instead, an entangled two-qubit system keeps its information non-locally in
the correlations between the two qubits.

If the condition aé # By holds, then two qubits - or particles - are entangled.
They share a state of quantum superposition. We can’t represent their state
by two individual states anymore. But their state is:

o
v) = 0)0) + B0 +7DI0) +8[1)11) = | §
0

Once we measure one of the particles, the other inevitably changes its state.
The two particles can be far apart. It doesn’t matter how far. The other par-
ticle changes its state instantly. And, instantly means instantly.

This contradicted Einstein’s notion of local realism. Therefore, he rejected
the idea of entangled particles as “spukhafte Fernwirkung oder Telepathie”.
Translated into English, it is “spooky-action-at-a-distance or telepathy.”

&3

6.3 Quantum Programming For Non-mathematicians 173

It was not until after Einstein’s death that the first experimental evidence
supported the theory of quantum entanglement.

Quantum Programming For
Nown-~makthematicians

Figure 6.19: The controlled RY

o

Inthe previous two chapters, welearned alot about quantum computing. We
learned how to work with a single qubit. We got to know different qubit gates.
The Hadamard-gate, the NOT-gate, and the rotation-gate (Ry).

We learned how to work with multiple qubits. We looked at entanglement
and how we can use the CNOT-gate to entangle two qubits.

Thus far, we have paid attention to the concepts and the underlying math.
But I meant it when I said you don’t need to be a mathematician to master
quantum machine learning. It is now time to look at quantum computing
from the programmer’s perspective and work with qubits practically. So we
leave aside all the theory and math. Ok, we still need alittle math to calculate
probabilities. But that’s it.

The only thing to understand is the different types of probabilities.

- The marginal probability is the absolute probability of an event

- The joint probability is the probability of two events occurring to-
gether

- The conditional probability is the probability of one event given the
knowledge that another event occurred

We will create and run quite a few circuits in this section. Therefore, here’s
a helper function that takes a configured QuantumCircuit instance, runs it and

174 Chapter 6. Working With Multiple Qubits

returns the histogram.

Listing 6.6: The run-circuit helper function

) from giskit import QuantumCircuit, Aer, execute
P from giskit.visualization import plot_histogram
k23 import matplotlib.pyplot as plt

) def run_circuit(qc,simulator="'statevector_simulator', shots=1, hist=True):

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend(simulator)

execute the qc
results = execute(qc,backend, shots=shots).result().get_counts()

plot the results
return plot_histogram(results, figsize=(18,4)) if hist else results

We specify a rather broad figure size (figsize=(18,4)) of the histogram (line
13) to get some space in it to display all the different states. Further, while
we work with the default statevector_simulator (line 5), we can also specify an-
other simulator to use as our backend (line 7). Finally, we take the number of
shots (how many times should the simulator run the circuit to obtain precise
results) as a parameter (line 5).

Before we start calculating Bayes’ posterior probability, let’s look at the struc-
ture of the histogram Qiskit creates for us. In the following example, we cre-
ate a QuantumCircuit with four qubits (line 1). Then, we apply the Hadamard-
gate to each qubit (by providing a list of the qubit positions) (line 2) before we
run the circuit (line 3).

Listing 6.7: Create an exemplary histogram

W qc = QuantumCircuit(4)
P4 qc.h([0,1,2,3])

-~

3 run_circuit(qc)

6.3 Quantum Programming For Non-mathematicians 175

Figure 6.20: A exemplary histogram

0.075
0.060

0.045

0
@
=
=
©
o
[
&

0.030

0.015

0.000

Each column in the histogram represents a state. A state is a combination
of the qubits’ values. In our case, a state is made up of four qubits. We can
measure each of these qubits as either o or 1. The bar and the number above
the bar indicate the measurement probability of this state.

In our case, there are 16 states, and they all have the same probability of 0.062,
respectively .

The numbers below the bar indicate the values of the four qubits in the given
state. They are read from the top (qubit at position 0) to the bottom (qubit
at position 3). If you rotated the numbers clockwise to read them better, you
would need to read them from the right (qubit 0) to the left (qubit 3).

Further, the states are ordered. As if the four qubits made up a binary digit,
qubit O is the lower bit at the right-hand side, and qubit 3 is the upper bit at
the left-hand side. As a result, all the states where qubit 3 is measured as 1
reside at the right half of the histogram. Thus, if you want states to be next
to each other, make sure their value for the highest qubit is the same.

For better readability, let’s consider a circuit with a single Hadamard gate.

Listing 6.8: A single Hadamard gate

W qc = QuantumCircuit(4)
P4 qc.h(0)
3 run_circuit(qc)

613‘1

176 Chapter 6. Working With Multiple Qubits

Figure 6.21: Result of a single Hadamard gate

0.45

o
w
=]

0
]
=
=
2
s
&

0.15

0.00

Qiskitinitializes qubitsin the state |0). When we apply the Hadamard-gate on
a qubit in this state, it cuts the total probability of 1.0 into two halves. Thus,
we get two states that differ in the value for qubit 0. Each of these states has
a probability of 0.5. Since the binary value of 0001 is greater than 0000, the
state 0001 is on the right-hand side.

Representing a marginal probability

We start with letting a qubit represent the marginal probability of one event.
A marginal probability is the absolute probability of the event irrespective of
any further information. If we have multiple states where the event occurs,
then the marginal probability is the sum of all the corresponding probabili-
ties.

In the figure with one Hadamard-gate, there is only one state where qubit
0 is 1. Therefore, the marginal probability is 0.5. In the figure with four
Hadamard gates, there are eight states where qubit Ois 1. The marginal prob-
ability of qubit 0 being 1 is the sum of all these states’ probabilities. It is 0.5,
too.

The Hadamard-gate splits the overall probability into equal halves. But a
marginal probability can be any value between 0.0 and 1.0.

In section 5.3, we introduced the Ry-gate. It takes a parameter we can use to
specify the exact probability. For the Ry-gate takes an angle 0 as its parame-
ter, not a probability, we need to convert the probability into an angle before
passing it to the gate. This is what the function prob_to_angle does for us.

6.3 Quantum Programming For Non-mathematicians 177

Listing 6.9: Calculate the angle that represents a certain probability

k8 from math import asin, sqrt

2

] def prob_to_angle(prob):

4 L

] Converts a given P(psi) value into an equivalent theta value.
- LK

¥d return 2*asin(sqrt(prob))

Now, we can create and run a circuit with an arbitrary marginal probability
between 0 and 1. Let’s start with a probability of 0.4 of measuring 1.

We apply the R, gate on the qubit and pass it as the first parameter to call
prob_to_angle with the probability value of 0.4 (line 2).

Listing 6.10: Specify the marginal probability

U8 # Specify the marginal probability
Pd event_a = 0.4

gc = QuantumCircuit(4)

o P w

18] # Set qubit to prior

¥d ac.ry(prob_to_angle(event_a), 0)
¥

¥] run_circuit(qc)

Figure 6.22: The marginal probability

0.60
0.45
0.30
0.15
0.00

un
[i}
=
E
5]
o
o
o

6.3.2

178 Chapter 6. Working With Multiple Qubits

Similar to the Hadamard-gate, the Ry-gate cuts the probability into two parts.
But it provides us with a tool to control the size of the two parts.

Calculate the joint probabité&v

In the next step, we want to calculate the joint probability of two events. Both
events have marginal probabilities between 0.0 and 1.0. Just like any other
probability.

The following figure depicts the joint probability of two variables.

Figure 6.23: The joint probability

Mathematically, we can calculate the joint probability by multiplying both
marginal probabilities. Let’s say event B has a probability of 0.8. We expect a
probability of 0.4 0.8 = 0.32.

Let’s try it with Qiskit.
Listing 6.11: Represent two marginal probabilities with a single qubit

Specify the marginal probabilities
event_a = 0.4
event_b = 0.8

qc = QuantumCircuit(4)

Set qubit to prior
gc.ry(prob_to_angle(event_a), 0)

OoX NP woe

Apply modifier
gc.ry(prob_to_angle(event_b), 0)

run_circuit(qc)

6.3 Quantum Programming For Non-mathematicians 179

Figure 6.24: Result of using a single qubé&

1.00
0.75
0.50
0.25
0.00

vilitie

Probal

This didn’t work. We're not even close to the target probability. Instead, we
get a probability of 0.952.

Figure 6.25: The function f(x)=arcsin(sqri(x))

Theproblemisthecalculation of the angle 6 inside the prob_to_angle-function.
We calculate the angle as the arcsine of the target probability’s square root.

180 Chapter 6. Working With Multiple Qubits

Let’s have a closer look at this function. The following figure depicts the
shape of f(x) = arcsin({/x)

The first thing to note is that the function is defined in the interval between
0 and 1. For negative values, the square root is not defined. For values above
1, the arcsine is not defined.

The second thing to note is the curve of the function. The prob_to_angle-
function assumes the qubit to be in the basis state |0). 6- that is the angle we
calculate-is the angle between the vector |y)-that is the target state-and the
basis state vector |0)-that is the state we start from. If we started from an-
other state, we would need to incorporate this state in the calculation of 6.
We would need to start at the respective point on the curve. It makes a dif-
ference if you calculate a step at the beginning of the curve (there is a high
gradient) and calculate a step in the middle of the curve.

But if we incorporated the current point (that represents the probability of
event A) on the curve into the calculation, we would do the whole calculation
of the joint probability outside of our quantum circuit. This is not what we
aim at.

Let’s give it another try. If the prob_to_angle-function assumes the qubit to
be in the basis state |0), why don’t we set the probability of event B on a new
qubit? The difference isinline 11, where we apply the rotation about the P(B)
on the qubit 1 instead of the qubit 0.

Listing 6.12: Each marginal probability uses a qubit

Specify the marginal probabilities
event_a = 0.4
event_b = 0.8

gc = QuantumCircuit(4)

Set qubit to event_a
gc.ry(prob_to_angle(event_a), 0)

1
R
3
4
5
&
7
¥
9

Set fresh qubit to event_b
gc.ry(prob_to_angle(event_b), 1)

run_circuit(qc)

6.3 Quantum Programming For Non-mathematicians 181

Figure 6.26: Result of using a fresh qubit
0.480

=7 |"
D. JLU

0.080

=
=
™
e
Qo
0o

0.00

We see that the state 0011 (qubit Ois 1 and qubit1is 1) denotes the correct prob-
ability of 0.32. The underlying rationale is quite simple.

All the states where qubit 0 is 1, (0001 and 0011) add up to 0.4-the marginal
probability representing event A. The states where qubit1is 1 (0010 and 0011)
add up to 0.8-the marginal probability representing event B. Since both rota-
tions are independent of each other, the state 0011 represents the overlap of
both probabilities, with 0.4 x0.8 = 0.32.

For completion, the probability of the other states are:

. state 0000: (1.0 —0.4) (1.0—0.8) = 0.6%0.2 = 0.12
- state 0001: 0.4 (1.0—0.8) = 0.4%0.2 = 0.08
- state 0010: (1.0 —0.4) 0.8 = 0.6+0.8 = 0.48

To get the joint probability, we need to measure both qubits and count the
portion where both qubits are 1.

We’'re interested in a single one probability. Wouldn’tit be good ifa single one
qubit represented it?

This is where entanglement comes in handy. Do you remember the CNOT-
gate? It is a two-qubit gate. The first qubit is the control qubit. If that is 1,
then the gate applies the X-gate (NOT-gate) on the second qubit. If the control
qubitis e, then the second qubit remains unchanged.

Let’s first look at the code.

182 Chapter 6. Working With Multiple Qubits
Listing 6.13: A controlled RY-gate

Specify the marginal probabilities
event_a = 0.4
event_b = 0.8

gc = QuantumCircuit(4)

Set qubit to prior
gc.ry(prob_to_angle(event_a), 0)

1
2
3
4
s
&
7
¥
2

Apply half of the modifier
gc.ry(prob_to_angle(event_b)/2, 1)

] # entangle qubits 0 and 1
gc.cx(0,1)

Apply the other half of the modifier
gc.ry(—prob_to_angle(event_b)/2, 1)

unentganle qubits 0 and 1
gc.cx(0,1)

run_circuit(qc)

Figure 6.27: The result of a countrolled rotation

0.60
0.45
0.30
0.15
0.00

un
[1 4]
=
E
[
L
o
(%

The result showsa probability of 0.32 for measuring qubit1las1. We only have
to measure a single qubit to get the joint probability we are looking for.

But how does it work?

6.3 Quantum Programming For Non-mathematicians 183

As before, we apply the marginal probability of event A (line 8). Next, we ap-
ply half of the marginal probability of event B. The following figure shows
the state the system would have if we stopped here.

Figure 6.2%: Applying half of the probability

0.45

ilities

0.30

0.15

Probal

0.00

The resulting probabilities are quite a mess. But what we can see is that we
split the states where qubit 0 is e into two parts: the states 0000 and 0010. And
we did the same for the states where qubit Ois 1.

Next, we apply the CNOT-gate (line 14). Let’s see what it does.

Figure 6.29: The CNOT-gate switches probabilities

0.45

ilities

0.30

0.15

o
o
=
&

0.00

The CNOT-gate does not change the probability values. But it switches the
states that have these probabilities.

184 Chapter 6. Working With Multiple Qubits

The states 0000 and 0010 keep their probabilities because the CNOT-gate does
not do anything if the control qubit (here qubit 0) is e. By contrast, the states
0001 and 0011 switch their probabilities—just like we said. If the control qubit
is 1the CNOT-gate acts like an X-gate on the target qubit (here qubit 1).

Essentially, what we did is we say the state where P(A) and @ overlap should
switch its probability with the state where the P(A) overlaps with 1 — @.

We apply the second half of P(B) but with a minus sign (line 17). Here’s the
effect.

Figure 6.30: Applying the other half of the probability

0.60
0.45
0.30
0.15
0.00

u
(1]
&=
E
m
=
o
=™

The correct value of the joint probability appears. Since we apply the nega-
tive half of P(B), we undo the split of the probabilities when qubit O is o that
we did with the first application of the RY-gate. The state of 0010 disappears.
It is now part of the state 0000 again.

When qubit 0 is 1, we move half of P(B) from state 0011 back to state 0001. But
remember, these two states switched their probabilities before. That means,
instead of undoing the effect of the first Ry-gate, we add the second half of
P(B).

In the last step, we apply the CNOT-gate again. This leaves the state 0000 un-
touched for the control qubit Oise. But when qubit Ois 1it switches the value
of qubit 1. Thus, the states 0001 and 0011 switch their probabilities again.

Asaresult, the state 0011 has the resulting joint probability of 0.32. Since this
state is the only state where qubit 1 is 1, we get the joint probability by mea-
suring a single qubit.

This partofthecircuitisalso known asthe controlled Ry-gate. Qiskit provides

6.3 Quantum Programming For Non-mathematicians 185

a function for this out of the box. Let’s have a look. It has the same effect.
Listing 6.14: The controlled RY-gate of Qiskit

Specify the marginal probabilities
event_a = 0.4
event_b = 0.8

gc = QuantumCircuit(4)

Set marginal probability
gc.ry(prob_to_angle(event_a), 0)

1
R
3
4
s
&
7
¥
2

Apply the controlled RY—gate
gc.cry(prob_to_angle(event_b), 0, 1)

run_circuit(qc)

Figure 6.31: Result of the CRY-qate

0.60
0.45
0.30
0.15
0.00

Ui
[1 4]
=
E
i
L
2
(o

In summary, the controlled Ry-gate works similarly to the CNOT-gate. But
it applies an Ry-gate on the target qubit if the control qubit is 1, rather than
using the X-gate. If the control qubit is o, nothing happens.

From the perspective of the resulting states, the controlled Ry-gate splits the
state(s) where the control qubit is 1 into two parts. But it leaves untouched
the state(s) where the control qubit is e. Thus, in contrast to applying the Ry-
gate on a new qubit that splits all states, the controlled Ry-gate provides fine
control over the states you want to work with. Consequently, you transform
the target qubit only in the cases that matter.

186 Chapter 6. Working With Multiple Qubits

6.3.3 Calculake the conditional probabiti&:j

Figure 6.32: Calculating the posterior

o —

The calculation of the joint probability of two events works pretty well. It an-
swers the question of how likely it is for two independent events to occur con-
currently. In the next step, we aim to calculate the conditional probability of
an event given that we know another event occurred. This is also known as
the posterior probability.

Graphically, the conditional probability is almost the same as the joint prob-
ability. The area representing the positive cases is the same. It is the overlap
of event A and event B. But the base set is different. While we consider all pos-
sible cases when calculating the joint probability, we only consider the cases
where one event occurred when calculating the conditional probability.

Bayes’ Theorem tells us how to calculate the conditional probability. We cov-
ered Bayes’ Theorem in-depth in section 4.2. Therefore, here’s only a very
brief recap so that you don’t need to flip too many pages all the time.

Bayes’ Theorem describes a way of finding a conditional probability. A con-
ditional probability is a probability of an event (our hypothesis) given the
knowledge that another event occurred (our evidence). Bayes tells us we can
calculate the conditional probability of P(Hypothesis|Evidence) as the product
of the marginal probability of the hypothesis (P(Hypothesis), called the prior
probability) and a modifier. This modifier is the quotient of the “backward”

6.3 Quantum Programming For Non-mathematicians 187

F»ossi.bte. when we
know A occurred

Ftossibi.e with no
prtor koweldge

Figure 6.33: Joint and Pos&erior Probabiti&ies

conditional probability (P(Evidence|Hypothesis)) and the marginal probability
of the new piece of information (P(Evidence)). The backward probability (the
numerator of the modifier) answers the question, “what is the probability of
observing this evidence in a world where our hypothesis is true?” The de-
nominator is the probability of observing the EvidenceEvidence on its own.

The following equation depicts Bayes’ Theorem mathematically:

. . .« P(Evidence|Hypothesis)
P(Hypothesis|Evid = P(Hypoth .
! (Hypo es‘lrs| Vi ence)l I (yp‘or eszs)/ P(Evidence)
posterior prior ~ ~~
modifier

Listing 6.15: Calculate the conditional probability for a modifier < 1

Specify the prior probability and the modifier
prior = 0.4
modifier = 0.9

qc = QuantumCircuit(4)

Set qubit to prior
gc.ry(prob_to_angle(prior), 0)

OoX NP woe

Apply the controlled RY—gate
gc.cry(prob_to_angle(modifier), 0, 1)

run_circuit(qc)

188 Chapter 6. Working With Multiple Qubits

Figure 6.34: The posterior probability

0.60
0.45
0.30
0.15
0.00

Probabilities

The modifier can be any positive number. But most likely, it isa number close
to 1. If the modifier was exactly 1, it would mean the prior is equal to the pos-
terior probability. Then, the Evidence would not have provided any informa-
tion.

Inthefirst case, let’s say the modifierisa number between 0.0 and 1.0. We can
use the quantum circuit we created to calculate a conditional probability.

Qubit 1 shows the resulting conditional probability of 0.36. Let’s have a look
at what happens for a modifier greater than 1.e.

Listing 6.16: A modifier greater than 1

Specify the prior probability and the modifier
prior = 0.4
modifier = 1.2

qc = QuantumCircuit(4)

Set qubit to prior
gc.ry(prob_to_angle(prior), 0)

oX P woe

Apply modifier
gc.cry(prob_to_angle(modifier), 0,1)

run_circuit(qc)

ValueError: math domain error

6.3 Quantum Programming For Non-mathematicians 189

We get a math domain error. Of course, we do because the function
prob_to_angle is only defined for values between O and 1. For values greater
than 1.0, thearcsineis not defined. The arcsineis the reverse of the sine func-
tion. Itsgradientate.eand 1.0 tend to infinity. Therefore, we can’t define the
function for values greater than 1.0 in a meaningful way.

Let’srethink our approach. If the modifierisgreaterthan 1.9, itincreasesthe
probability. The resulting probability must be bigger than the prior probabil-
ity. It must be greater by exactly (modifier — 1) - prior.

The transformation gates let us cut the overall probability of 1.0 into pieces.
Why don’t we separate the prior not once but twice? Then, we apply the re-
duced modifier (modifier — 1) on one of the two states representing the prior.
The sum of the untouched prior and the applied reduced modifier should be
the conditional probability.

In the following code, we apply the prior to qubit O (line 8) and to qubit1 (line
11). Then, we apply the reduced modifier to qubit 2 through an Ry-gate con-
trolled by qubit O.

Listing 6.17: Working with a reduced modifier

Specify the prior probability and the modifier
prior = 0.4
modifier = 1.2

qc = QuantumCircuit(4)

Apply prior to qubit 0
gc.ry(prob_to_angle(prior), 0)

1
R
3
4
s
&
7
¥
©

Apply prior to qubit 1
gc.ry(prob_to_angle(prior), 1)

Apply modifier to qubit 2
gc.cry(prob_to_angle(modifier—1), 0,2)

run_circuit(qc)

190 Chapter 6. Working With Multiple Qubits

Figure 6.35: Result of working with a reduced modifier

[360

0240

Probabilities

We get six different states. Our conditional probability should be the sum of
the states where qubit1is 1 plus the sum of the states where qubit2is 1. These
are the four states on the right-hand side. Let’s add them:

0.240+0.128 +0.048 +0.032 = 0.448
Thisdidn’t work. The expected resultis0.4+0.4x0.2 = 0.48. What happened?

The problem is the case where both qubits1and 2 are 1. This is the state 0111.
In order to get the correct conditional probability, we would need to count
this state twice: 0.448 +0.032 = 0.48.

Listing 6.18: The overlap when applying the prior twice

Specify the prior probability and the modifier
prior = 0.4
modifier = 1.2

gc = QuantumCircuit(4)

Apply prior to qubit 0
gc.ry(prob_to_angle(prior), 0)

OX P W e

Apply prior to qubit 1
gc.ry(prob_to_angle(prior), 1)

3 run_circuit(qc)

6.3 Quantum Programming For Non-mathematicians 191

Figure 6.36: The overlap when applying the prior twice

360

0.240 0.240

160

Probabilities

This problem originated when we applied the prior probability for the second
time. We aimed at two states, each representing the prior. When we look at
the result, we can see that, in fact, the probability of measuring qubit 0 as1is
0.4 (the prior), and the probability of measuring qubit1as1ise.4, too. But we
also see that these probabilities are not independent of each other. But they
overlap in the state 0011.

When we apply the prior to qubit 1, we need to leave the states where qubit O
is 1 untouched.

Have a look.
Listing 6.19: Applying the prior to qubit 1 from the remainder

Specify the prior probability and the modifier
prior = 0.4
modifier = 1.2

gc = QuantumCircuit(4)

Apply prior to qubit 0
gc.ry(prob_to_angle(prior), 0)

OX P wre

Apply prior to qubit 1

gc.x(0)
gc.cry(prob_to_angle(prior/(1—prior)), 0, 1)
gc.x(0)

run_circuit(qc)

192 Chapter 6. Working With Multiple Qubits

Figure 6.37: Applying the prior to qubit 1 from the remainder

0200

Probabilities

Three lines do the trick:
Listing 6.20

il qc.x(0)
¥l qc.cry(prob_to_angle(prior/(1—prior)), 0, 1)
3 qc.x(0)

Let’s go through these lines step by step. In the first step, we apply the NOT-
gate to qubit 0. It switches the probabilities of the states where qubit O is e

with those where qubit O is 1.

Figure 6.3%: Probabilities after the first X-qate

0.60
0.45
0.30
0.15
0.00

ilities

[
o
o
&

6.3 Quantum Programming For Non-mathematicians 193

The figure depicts the state after the first NOT-gate.

We set the prior (0.4) as the probability of measuring qubit O as 1. The NOT-
gate reverses this. Now, we have the probability of 0.4 of measuring qubit 0
ase.

Thisalso meanswe measure the remainder (e.6) when qubit Ois 1. Simply put,
the NOT-gateis our way of saying: “Let’s proceed to work with the remainder,
not the prior”.

This is the preparation for our next step. The controlled Ry-gate.

Listing 6.21

qc.cry(prob_to_angle(prior/(1—prior)), 0, 1)

We only apply a rotation of qubit 1 when qubit O is 1. This is the case only for
the remainder. Therestisnot 1.0, butitis1.e—prior. We modify the probabil-
ity we use in the controlled Ry-gate. By specifying the size of the remainder
as the denominator, we account for the smaller size.

The figure below depicts the state after the controlled Ry-gate.

Figure 6.39: Probabilities after the CRY-qate

0.4
0.3
0.2
0.1
0.0

un
[1§]
=
E
[y
L
=
&

The controlled Ry-gate splits the remainder into two parts. The one part
(state 0011) represents the prior. So does the state 0000 we separated in the
very first step. There is no more overlap between these two states. To keep
things ordered, we apply the NOT-gate on qubit O again. The state 0000 be-
comes 0001 and vice versa, and the state 0011 becomes 0010. It leaves us with
the qubits 0 and 1, each representing the prior probability without overlap.

194 Chapter 6. Working With Multiple Qubits

Figure 6.40: Probabilities after the second X-gate

0.4
0.3
0.2
0.1
0.0

Probabilities

We’re now prepared to apply the reduced modifier to one of the priors.

We can now cut the part of the modifier out of one of the priors. Again, we
choose the lower qubit so that we have the resulting ones at the right-hand
side.

Listing 6.22: Apply the modifier on a separated prior

Specify the prior probability and the modifier
prior = 0.4
modifier = 1.2

gc = QuantumCircuit(4)

Apply prior to qubit 0
gc.ry(prob_to_angle(prior), 0)

OX P wre

Apply prior to qubit 1

gc.x(0)
gc.cry(prob_to_angle(prior/(1—prior)), 0, 1)
gc.x(0)

Apply the modifier to qubit 2
gc.cry(prob_to_angle(modifier—1), 0,2)

run_circuit(qc)

6.3 Quantum Programming For Non-mathematicians 195

Figure 6.41: Result of applying the modifier on a separated
prior

0.4
0.3
0.2
0.1
0.0

un
(il
=

0200

Probal

Now, the states 0010 and 0101 add up to the posterior probability. Let’s clean
this up a little more. Wouldn’t it be nice to have a single one qubit represent-
ing the conditional?

First, we apply the CNOT-gate on qubits 1 and 3 with qubit 1 as the control
qubit (gc.cx(1,3)). If qubit 1is 1it applies the NOT-gate on qubit 3.

The following figure depicts the state after this gate.

Figure 6.42: State after gc.ex(1,3)

vilities

L
ALH)

o
o
o
&

As usual, the CNOT-gate does not change the probabilities we see. It only
changesthe statesrepresenting them. In this case, the state 0010 was the only

196 Chapter 6. Working With Multiple Qubits

state where qubit 1is 1. This state has now changed to 1010. The only differ-
ence is that qubit 3 is 1 in the given case now, too.

Listing 6.23: Qubit 3 represents the posterior

Specify the prior probability and the modifier
prior = 0.4
modifier = 1.2

qc = QuantumCircuit(4)

Apply prior to qubit 0
gc.ry(prob_to_angle(prior), 0)

1
R
3
4
s
&
7
¥
2

Apply prior to qubit 1

gc.x(0)
gc.cry(prob_to_angle(prior/(1—prior)), 0, 1)
3 qc.x(0)

Apply the modifier to qubit 2
gc.cry(prob_to_angle(modifier—1), 0,2)

g # Make qubit 3 represent the posterior
gc.cx(1,3)
gc.cx(2,3)

run_circuit(qc)

Figure 6.43: Qubit 3 represents the posterior

0. 400

i
0320

0,200

ul
(i}
=
E
i*
=
e
™

Next, we want to do the same for state 0101. Since this state is the only state

6.3 Quantum Programming For Non-mathematicians 197

where qubit 2 is 1 we can use the CNOT-gate again to set qubit 3 to 1 if qubit 2
is 1. The following code contains all the steps.

We apply two CNOT-gates (lines 19-20). The size of the bars did not change.
But the states representing them did. Then, we measure qubit 3 as 1 with the
conditional probability.

So far, so good. There’s but one problem. This approach does not work for a
prior greater than .5 because we only have a total probability of 1.0 to work
with. Butif the prior is greater .5, we can’t have two independent states rep-
resenting it.

Have a look at what happens.

Listing 6.24: A prior greater than 0.5 and a modifier greater than 1

Specify the prior probability and the modifier
prior = 0.6
modifier = 1.2

qc = QuantumCircuit(4)

Apply prior to qubit 0
gc.ry(prob_to_angle(prior), 0)

1
R
3
4
s
&
7
¥
K/

Apply prior to qubit 1

gc.x(0)
gc.cry(prob_to_angle(prior/(1—prior)), 0, 1)
gc.x(0)

Apply the modifier to qubit 2
gc.cry(prob_to_angle(modifier—1), 0,2)

Make qubit 3 represent the posterior
gc.cx(1,3)
gc.cx(2,3)

run_circuit(qc)

ValueError: math domain error

Again, we get amath domain error. Mathematically, it fails when calculating (
prior/(1—prior) because the term would be greater than 1, and thus, itisnota

198 Chapter 6. Working With Multiple Qubits

valid input for the prob_to_angle-function. For instance:
0.6/(1.0—0.6) =0.6/0.4 = 1.5
Solving this situation is a little tricky. I'd argue it is even a hack.

If you're a mathematician, I'm quite sure you won’t like it. If you're a pro-
grammer, you might acceptit. Let’s have a look, first. Then, it’s open for crit-
icism.

When the prior is greater than .5, and the modifier is greater than 1.0, the
trick with using the prior twice does not work because our overall probability
must not exceed 1.0.

Of course, we could use the prior to adjusting the remaining probability so
that we can precisely apply the modifier afterward. But in this case, we would
need to know the prior when we apply the modifier. This would not be differ-
ent than initializing the qubit with the product of prior x modifier in the first
place.

But we aim for a qubit system that represents a given prior, and that lets us
apply a modifier without knowing the prior. So, we need to prepare the re-
mainder (1 — prior) in a way that lets us work with it (that means we apply the
reduced modifier) without knowing the prior.

Rather than using the prior when we apply the modifier to the remainder, we
pre-apply the prior to the remainder with some auxiliary steps. For instance,
we set aside a part that ise.3 of the prior.

We can do this in the same way we set aside the entire prior earlier.

Listing 6.25: Setting aside a part of the prior

(8 # Specify the prior probability
P4 prior = 0.6

gc = QuantumCircuit(4)

Apply prior to qubit 0
gc.ry(prob_to_angle(prior), 0)

Apply 0.3*prior to qubit 1
gc.x(0)
gc.cry(prob_to_angle(0.3*prior/(1—prior)), 0, 1)

run_circuit(qc)

6.3 Quantum Programming For Non-mathematicians 199

Figure 6.44: Result of setting aside a part of the prior

0600

0.60
0.45
0.30
0.15
0.00

0.180

Probabilities

As a result, state 0000 represents the prior probability (e.6) and the state 0011
represents 0.3 x prior = 0.18. We can now apply the reduced modifier to this
state without knowing the prior. Let’s have a look.

Listing 6.26: Calculating the posterior for prior > 0.5

Specify the prior probability and the modifier
prior = 0.6
modifier = 1.2

qc = QuantumCircuit(4)

Apply prior to qubit 0
gc.ry(prob_to_angle(prior), 0)

OoX NP woe

Apply 0.3*prior to qubit 1
gc.x(0)
gc.cry(prob_to_angle(0.3*prior/(1—prior)), 0, 1)

Apply the modifier to qubit 2
gc.cry(prob_to_angle((modifier—1)/0.3), 1,2)

Make qubit 3 represent the posterior
gc.x(0)

gc.cx(0,3)

gc.cx(2,3)

run_circuit(qc)

200 Chapter 6. Working With Multiple Qubits

Figure 6.45: Resulting posterior
0.600
0.60
0.45
0.30
0.15 G0ED 0.120
0.00

u
[i}]
=
E
[
o
=
(o

Up until line 12, there’s nothing new. The important part is line 15.

Listing 6.27

gc.cry(prob_to_angle((modifier—1)/0.3), 1,2)

We apply a controlled Ry-gate. Thus, we only change states where qubit 1 is
1. This is the case for the state 0010 that represents 0.3 of the prior. The im-
portant part is that we adjust our reduced modifier to e.3 by dividing by it. If
the portionisonlye.3ofthe prior, we need to separate an accordingly greater
part.

The remaining code (lines 18-20) changes the states to get the resulting condi-
tional probability by measuring qubit 3.

There’s a caveat, though. Of course, there is. You may have wondered how I
cameupwith0.3. Thefraction we choose mustbe smaller than theremaining
probability (1 — prior). If it weren’t, we would exceed the overall probability
of 1.0 again. But it must be greater than the effect the modifier has, too. Ifitis
too small, we can’t separate a part of it that accounts for the modifier’s effect
on the prior.

So, when settling for the best value, we need to know both prior and modi-
fier. Thisis where the solution becomes a hack. While we don’t want to work
with the prior and the modifier simultaneously, we do not set aside one spe-
cific fraction of the prior. But we set aside many of them. We set aside all the
portions from e.1to 1.0. This way, we are prepared for any modifier up to 2.e.

6.3 Quantum Programming For Non-mathematicians 201
Listing 6.28

)8 for i in range(1,10):
P4 qc.cry(prob_to_angle(min(1, (i*0.1)*prior/(1—prior))), 0,i)

To not feed the prob_to_angle-function with a value greater than 1.0, we limit
the input with the min function. So, whenever the part we want to set aside is
bigger than the remainder, we only set aside the remainder. However, this
means that this part is useless. It does not represent the corresponding por-
tion of the prior anymore.

When we apply the modifier, we need to select the correct part. This is the
smallest possible one that is big enough to contain the modifier’s effect.

We calculate the maximum of the reduced modifier by multiplying it by 10 (the
reverse of the step size we chose above). The ceil function rounds that up. So,
we have the next greater position.

Listing 6.29

Wl pos = ceil((modifier—1)*10)
Pd gc.cry(prob_to_angle((modifier—1)/(pos*0.1)), pos,11)

But what if we chose a part that does not correctly represent the correspond-
ing portion of the prior? Technically, we get the wrong result. However, this
is only the case when the actual result (prior modifier) exceeds 1.e. Such a
result would not make any sense in the first place. It would imply that ob-
serving a certain event would cause another event to occur with a probability
greater than 1. In that case, we would need to question our input data.

¢ Depending on the step size we choose, there is a little area close
* to1where the resulting probability is not calculated correctly.

So, let’s have a look at the final code. Due to the number of qubits we’'re using
for the prepared parts, we exceed the limits of what can be represented in the
histogram. Rather than showing all the states, we include a measurement
into the circuit. We measure qubit 3 that holds the result (line 31).

A measured qubit is either @ or 1. We receive only a single number as output,
not the probability. But we can run the circuit several times (here 1000 shots,

202 Chapter 6. Working With Multiple Qubits

line 33) to calculate the resulting probability. Due to the empiric reconstruc-
tion of the probability, it is not perfectly accurate, though.

Listing 6.30: Calculating the posterior with a prior greater than 0.5

from math import ceil
from giskit import ClassicalRegister, QuantumRegister

Specify the prior probability and the modifier
prior = 0.6
modifier = 1.2

1
R
3
4
s
&
7
¥

Prepare the circuit with qubits and a classical bit to hold the
measurement

QuantumRegister(12)

ClassicalRegister(1)

QuantumCircuit(qr, cr)

qr
cr

qc

Apply prior to qubit 0
gc.ry(prob_to_angle(prior), 0)

Separate parts of the prior
gc.x(0)
for i in range(1,10):
gc.cry(prob_to_angle(min(1, (i*@.1)*prior/(1—prior))), 0,i)

Apply the modifier
pos = ceil((modifier—1)*10)
gc.cry(prob_to_angle((modifier—1)/(pos*0.1)), pos,11)

Make qubit 11 represent the posterior
gc.x(0)
gc.cx(0,11)

measure the qubit
gc.measure(qr[11], cr[0])

run_circuit(qc, simulator='qasm_simulator', shots=1000)

6.3 Quantum Programming For Non-mathematicians 203

Figure 6.46: Posterior with a prior greater than 0.5

0.8
0.6
0.4
0.2

0.0

un
(1]
=
._E
[
L
=
™

The circuit correctly calculates the conditional probability given a prior and
amodifier. We have seen that it gets quite tricky to calculate the conditional
for a prior greater than 0.5 and a modifier greater 1.o.

In this example, we prepare for a modifier up to 2.0. While this is enough
to consider all cases for a prior greater than e.5, the modifier could be even
greater if the prior is accordingly smaller. Therefore, to completely separate
applying the prior from using the modifier, we need to consider these cases.

If we considered all possible cases, we would end up with lots of required
qubits. Alternatively, we could sacrifice some precision for edge cases when
we’re close to a probability of 1.e.

Naive Bayes is a probabilistic machine learning algorithm based on Bayes’
Theorem. Even though it is pretty simple, it has been successfully used in
a wide variety of classification tasks.

We tap the theoretical and practical knowledge we gathered in the last few
chapters and use it to build a Quantum Naive Bayes classifier. Similar to
our previous quantum classifier we introduced in section 3.6, the Quantum
Naive Bayesisa Variational Hybrid Quantum-Classical Algorithm. It consists
of three parts:

« We pre-process the data on a classical computer to determine the modi-
fiers for a set of features.

- We apply the modifiers in a quantum circuit and measure the qubit that
represents the posterior probability.

- We post-process the measurement and transform it into a prediction
that we evaluate with the labels from our training data set.

In section 3.6, we used the pre-processing to create the final quantum state,
and we only used the quantum circuit to measure it. This time, we go beyond
creating a simple quantum state to be measured. This time, we make a quan-
tum circuit that includes the calculation of the probabilities.

Figure 7.1 shows the overall architecture of our simple Variational Hybrid
Quantum-Classical Algorithm.

If you read this book from the beginning, I suppose you know Bayes’ Theo-

205

Running at
qu.ah&u.m

Post
Processing:

Pre-Processing: : :
o U\ &/ — ‘W) _> - _> measurement

'

Predx.chon

Runining akt
classical
compu&er

Figure 7.1: A Variational Hybrid Quantum-Classical Algorithm

rem by heart already. If not, here’s the formula one more time.

P(Evidence|Hypothesis)

P(Hypothesis|Evidence) = P(Hypothesis) -

-~ 2N -~ ~ P(Evidence)
posterior prior N ~~
modifier

If we have one hypothesis H and multiple evidencesEy, E,, . .., E,, then we have
nwmodifiers My, M,, ... ,M,:

P(E\|H) P(Ea|H) — P(En|H)

P(H|E1,Es,....E,) = ikl LP U P(H
P -) P(E;) P(Ep) P(E,) \i)
posterior —— —— prior

M, M, M,

This formula tells us we can represent each characteristic of a passenger by a
modifier that changes her probability to survive the Titanic shipwreck.

In the pre-processing, we calculate these modifiers for two features, the
ticket class and the gender of the passenger. We limit our Quantum Naive
Bayes classifier to these two features to keep our quantum circuit as simple
as possible so that we can concentrate on the underlying structure of the al-
gorithm.

7.1

206 Chapter 7. Quantum Naive Bayes
Listing 7.1: Calculate the prior-probability

import pandas as pd
train = pd.read_csv('./data/train.csv')

total
cnt_all = len(train)

list of all survivors
survivors = train[train.Survived.eq(1)]
cnt_survivors = len(survivors)

1
R
3
4
s
&
7
¥
2

calculate the prior probability
prob_survival = len(survivors)/cnt_all

print("The prior probability to survive is: ", round(prob_survival, 2))

The prior probability to survive is: 0.38

We start easy. We import Pandas (line 1) and load the training data from the
raw CSV file (line 2). We use the raw data because we only cope with categor-
ical data (Pclass and Sex) and these two data do not miss for any of the passen-
gers (see section 2.3).

We calculate the prior (marginal) probability of surviving the Titanic ship-
wreck (line 12) as the ratio between the number of survivors (line 9) and the
total number of passengers (line 5) in our dataset.

We see a prior probability of roughly 0.38.

Pre-processing

The pre-processing covers the calculation of the modifiers. We start with the
ticket class.

7.1 Pre-processing 207
Listing 7.2: Calculating the ticket class modifier

get the modifier given the passenger's pclass
def get_modifier_pclass(pclass):
number of passengers with the same pclass
cnt_surv_pclass = len(survivors[survivors.Pclass.eq(pclass)])

backward probability
p_cl_surv = cnt_surv_pclass/cnt_survivors

1
R
3
4
s
&
7
¥
K

probability of the evidence
p_cl = len(train[train.Pclass.eq(pclass)])/cnt_all

return p_cl_surv/p_cl

We define a function that takes the passenger’s pclass as input. The Pclass col-
umn in our dataset is the ticket class (1 = 1st, 2 = 2nd, 3 = 3rd).

We calculate the backward probability P(Pclass|Survived) by dividing the pas-
sengers who survived having the given ticket class (cnt_surv_pclass, line 4) by
all survivors (cnt_survivors, line 7). Then, we calculate the probability of a pas-
senger owning the given ticket class. It is the number of passengers with the
given ticket class divided by the total number of passengers (line 10).

The modifier is the evidence’s backward probability divided by the likeli-

hood to see the evidence. For the given ticket class, the modifier is mp.;,5 =

P(Pclass|Survived :
Hbciued) (line 12).

Listing 7.3: Calculating the gender modifier

get the modifier given the passenger's pclass

def get_modifier_sex(sex):
number of passengers with the same pclass
cnt_surv_sex = len(survivors[survivors.Sex.eq(sex)])

backward probability
p_sex_surv = cnt_surv_sex/cnt_survivors

OoX P wre

probability of the evidence
p_sex = len(train[train.Sex.eq(sex)])/cnt_all

return p_sex_surv/p_sex

208 Chapter 7. Quantum Naive Bayes

The calculation of the modifier for a passenger’s gender works accordingly.

We calculate the backward probability p_sex_surv as the number of survivors
of the given gender divided by the total number of survivors (line 7).

The probability of a passenger having the given gender is the number of pas-
sengers with the given gender divided by the total number of passengers (line
10). The function returns the modifier mg,, = W (line 12).

These two functions serve as helper functions in our pre_process-function.

Listing 7.4: Pre-processing

get_modifier_pclass(passenger["Pclass"]),
get_modifier_sex(passenger["Sex"]),

Wl def pre_process(passenger):

> I

k24 passenger —— the Pandas dataframe—row of the passenger

4 returns a list of modifiers, like this [modifier_a, modifier_b, ...]
q

1Y return [

”

¥

2

]

The actual pre-processing is quite simple. The function pre_process takes the
passenger data as a row of a Pandas Dataframe. It takes the actual passenger’s
values for Pclass and Sex and calls the respective helper functions (lines 7-8).
It returns the modifiers it gets back from these functions in a list.

Let’s have a look at the modifiers of two exemplary passengers—a female pas-
senger with a first-class ticket and a male passenger with a third-class ticket.

Listing 7.5: Two exemplary passengers

¥} # a female passenger with 1st class ticket
P print (pre_process(train.iloc[52]))

3

8 # a male passenger with 3rd class ticket
] print (pre_process(train.iloc[261]))

[1.6403508771929822, 1.9332048273550118]
[0.6314181584306999, 0.49215543190732464]

7.2

7.2 PQC 209

The modifiers vary between 0.49 and 1.93. The modifiers of the male passen-
ger are below 1.0. No modifier exceeds 2.0. The female passenger with a first-
class ticket has two high modifiers above 1.6. When we apply these two mod-
ifiers on the prior probability, we get a posterior probability of 0.38 x 1.64
1.93 = 1.20. This value exceeds the maximum probability of 1.0.

In our PQC, we need to consider these things.

PQC

In the previous section 6.3.3, we learned how to calculate a posterior (condi-
tional) probability given a prior probability and a modifier. We build upon
this approach.

Thus, in general, we:

- apply the prior to a qubit,

- set aside an auxiliary qubit to hold a fraction of the prior,

- and apply the modifier. If the modifier is above 1.0, we use the auxiliary
to add to the prior.

The implementation of this approach in our Quantum Naive Bayes classifier
has some challenges, though. While the posterior probability calculation is
easy when the modifier is below 1.0, it becomes tricky when it is above 1.0.
And, it becomes tough when the prior probability is above 0.5 at the same
time.

Now, we could sigh of relief our prior is 0.38 - below 0.5. However, we apply
two modifiersin arow. Once we applied the first modifier, the result becomes
the new prior when we apply the second modifier. For instance, if the mod-
ifier represents the first-class ticket (modifier of 1.64) or a female passenger
(modifier of 1.93), then the new prior is above 0.5 (0.62 or 0.73). Moreover,
there are passengers whose modifiers are both above 1.0, as in the case of a
female passenger with a first-class ticket. In this case, we need two auxiliary
qubits to add to prior.

So, here’s our refined approach.

- We apply the prior to a qubit,
- set aside two auxiliary qubits to hold a fraction of the prior each,
- order the modifiers starting with the lower one,
- and apply the first modifier. If the modifier is above 1.0:
- We use the first auxiliary to add to the prior.
- We use the second auxiliary to “refill” and adjust the first auxiliary
to reflect the size of the new prior.

210 Chapter 7. Quantum Naive Bayes

We start with the basic structure of our PQC. This pqc function takes a
reusable Qiskit backend, a prior probability, and the modifiers representing
a passenger as mandatory parameters. Further, we let the pqc function take
optional parameters we can use during the development.

Listing 7.6: The basic pgc-function

[y

from functools import reduce

from giskit import QuantumCircuit, Aer, execute, ClassicalRegister,
QuantumRegister

from math import asin, sqrt, ceil

from giskit.visualization import plot_histogram

import matplotlib.pyplot as plt

n

def prob_to_angle(prob):

Converts a given P(psi) value into an equivalent theta value.

3
4
s
6
”
¥
2
lo

return 2xasin(sqrt(prob))

def pqc(backend, prior, modifiers, shots=1, hist=False, measure=False):
Prepare the circuit with qubits and a classical bit to hold the
measurement
gr = QuantumRegister(7)
cr = ClassicalRegister(1)
gc = QuantumCircuit(qr, cr) if measure else QuantumCircuit(qr)

INSERT QUANTUM CIRCUIT HERE

measure the qubit only if we want the measurement to be included
if measure:

gc.measure(qr[0], cr[0])
results = execute(qc,backend, shots=shots).result().get_counts()
return plot_histogram(results, figsize=(12,4)) if hist else results

The shots parameter allows the caller to specify the number of times to
run the quantum circuit. Note, this works only in combination with the
gasm_simulator as the backend.

The hist parameter lets us specify whether we want to return a histogram
(hist=True) or the raw data (hist=False).

The measure parameter allows us to easily switch between including the mea-
surement of a qubit (measure=True) into the circuit or not. It is usually helpful
not to include the measurement during development because it allows us to

7.2 PQC 211

use the statevector_simulator backend. This computes all the states of the in-
dividual qubits. But once you have too many qubits in your circuit, things
become hard to follow. Then, it may be helpful to use the gasm_simulator back-
end and measure a single one qubit you're interested in. Since youwould only
get a single number and not a probability distribution anymore, you can use
the shots parameter to run the circuit multiple times. This way, you get back
the approximate probability. Of course, itis only approximate becauseitisan
empiric reconstruction of the probability and not a precise calculation. But
it is pretty accurate most of the time.

In this code listing, we also added the prob_to_angle function we already used
before, and we will use it here, too.

In the pqc function, we start with the definition of the QuantumCircuit. We will
use seven qubits in total in this circuit (line 15). Depending on the measure pa-
rameter, we add a ClassicalRegister (line 16) to receive the measurement of a
qubit (lines 22-23).

Once the quantum circuit is wholly specified (with or without a measure-
ment), we execute it with the given backend and specify how many times (shots)
we want the circuit to run (line 24).

Depending on the hist parameter, the function returns the plot of a his-
togram or the raw results (line 25)

Unlessindicated otherwise, the following code listings become part of the pqc
function. To keep them small, we skip the repetition of the code we already
discussed.

Whenever we apply transformation gates in Qiskit, we need to specify the
qubit index we want to apply the gate on. For once, numbers are not that easy
toremember aswords. Second, we might want to change the position a qubit
with a specific purpose has. Therefore, we define and use constant values to
keep the indexes of our qubits. Let’s start with the target qubit.

Listing 7.7: Set the target qubit to represent the prior probability

WY # target qubit has position 6

Pl target = 6

3

8 # Apply prior to qubit to the target qubit

4 qc.ry(prob_to_angle(prior), target)

The effect of this step is simple. First, we measure the target qubit as 1 with
the prior probability. The following figure depicts the state.

212 Chapter 7. Quantum Naive Bayes

Figure 7.2: The state after applying th eprior to the target

0.60
0.45
0.30
0.15
0.00

[7y]
[i §]
=
E
i
i |
o
a

In the next step, we apply the prior to an auxiliary qubit we call aux_full be-
cause it represents the whole prior.

Listing 7.8: Apply prior to aux-full-qubit

¥ # auxiliary qubit has position 5

P4 aux_full = 5

3

8 # Work with the remainder

1 qc. x(target)

&

¥d # Apply prior to full auxiliary qubit

-4 qc.cry(prob_to_angle(prior/(1—prior)), target, aux_full)

We apply the NOT-gate to change the qubit 0 so that it is 1 for the remaining
0.62 ratherthan the0.38 of the prior (line 5). Thisallows us to apply the follow-
ing controlled Ry-gate only on the part that does not overlap with the target
qubit (line 8). Since the remainder is smaller than 1.0, we need to adjust the
rotation to the smaller part that is now 1 — prior.

The resulting state shows that two states match the prior probability.

7.2 PQC 213

Figure 7.3: The state after applying the prior to the aux-full
qubit

0.4
0.3
0.2
0.1
0.0

un
(i}
=
E
i+
L2
e
™

With two states representing the prior of0.38, we have enough space left to let
another qubit represent half of the prior. This qubit has the name aux_half.

Listing 7.9: Apply half the prior to aux-half-qubit

second auxiliary qubit has position 4
aux_half = 4

Work with the remainder
gc.cx(aux_full, target)

Apply 0.5*prior to qubit 1
gc.cry(prob_to_angle(0.5*prior/(1—(2*prior))), target,aux_half)

OX P wre

Rearrange states to separated qubits
gc.x(target)
gc.cx(aux_full, target)

We need to work with the remainder again. Thus, we need to set aux_full
qubit to o for the state where it represents the prior. This time, however, we
can’t use a normal NOT-gate. While it would have the desired effect for the
aux_full qubit, it would mix up the state where the target-qubit represents the
prior.

Instead, we use a controlled NOT-gate (line 5). This separates the remainder

214 Chapter 7. Quantum Naive Bayes

of the remainder. Finally, we rearrange the states so that each qubit repre-
sents the prior (or half the prior) without overlap (lines 11-12).

The result shows that it works. We see two states with the entire prior prob-
ability and one state with half of the prior probability, each represented by a
single qubit measured as 1.

Figure 7.4: The state after applying half the prior to the
aux-half qubit

0.190

()]
(4 F]
=
E
i
=
2
=™

0050

We’re now prepared to work with the modifiers. Since the highest modifier
we expectis 1.93 fora passenger’sticket classand 1.64 for a passenger’s gender,
the aux_full-qubit is sufficient to apply any modifier (because prior+aux_full
= 2xprior).

But the aux_half-qubit may not suffice. Both modifiers are above 1.5, and thus,
they exceed the resulting probability we could represent with the help of
aux_half (because prior+aux_half= 1.5%prior).

Unless both modifiersare above 1.5, we can use the aux_full-qubit to represent
the larger one and the aux_half-qubit to represent the lower one. Therefore,
we sort the modifiers, beginning with the larger. If both modifiers are above
1.5, we have a problem. However, the resulting probability would exceed 1.0.
In this case, we would need to limit the modifiers to the maximum possible
values, anyway.

In any case, starting with the larger modifier is a good idea.
Listing 7.10: Sort the modifiers

k8l ## sort the modifiers
Pl sorted_modifiers = sorted(modifiers)

7.2 PQC 218

In the next step, we iterate through the sorted modifiers. Depending on
whether the modifier is above or below 1.0, we need to do different things.
Let’s start with the easy case, a modifier below 1.0.

In this case, we use the controlled Ry-gate to calculate the posterior probabil-
ity.
Listing 7.11: Calculate the posterior probability for a modifier smaller than 1.0

apply modifier to the target qubit
gc.cry(prob_to_angle(1—sorted_modifiers[step]), target, step*2)
gc.cx(stepx2, target)

iy for step in range(0, len(modifiers)):
Pl if sorted_modifiers[step] > 1:

3 # TO BE IMPLEMENTED

4 pass

s

1y else:

7

%

9

If the modifier is below 1.0 (block after line 6), we need to reduce the target
probability by a portion of 1 — modifier (line 8). The target-qubit acts as the
control qubit. Thus, in states when the target qubit is 1, we separate a part
of 1 —modifier and set the controlled qubit to 1. The controlled qubit has the
index step*2. For step is 0, the index of this qubit is 0, too. This qubit actsasa
trunk. We do not work with it anymore.

The controlled rotation does not change the value of the control qubit. Thus,
the target-qubit is 1 in both parts. The following CNOT-gate (line 9) changes
this. If our trunk-qubit is 1 (which is only the case we just separated), we re-
verse the value of the target-qubit from 1 to e.

Figure 7.5: Result of a modifier of o.%

0.190

D076

()]
(4 F]
=
E
i
=
o
o

0.050

216 Chapter 7. Quantum Naive Bayes

The figure depicts the state if the first modifier is 0.8. The state at the right-
hand side is the only state where the target-qubit is 1 with a probability of
0.38x0.8 =0.304.

We also see that the aux_full-qubit still represents the prior probability of 0.38.
Technically, we might want to apply the modifier on the aux_full-qubit be-
cause we could need it in the second step. However, since we sorted the mod-
ifiers and the greater one is below 1.0, we can be sure the second modifier is
below 1.0, too.

In this case, the same step works. We apply a controlled rotation with the
target qubit as a control qubit and a new trunk-qubit as the target qubit.

Let’s move to the more exciting part. The modifier is above 1.0.

Listing 7.12: Calculate the posterior probability for a modifier greater than 1.0

8 if sorted_modifiers[step] > 1:

P4 qc.cry(prob_to_angle(min(1, sorted_modifiers[step]l—1)), aux_full,
target)

3

8 # separate the aux_full and the target qubit

&) qc.ccx(target, aux_full, o)

] qc.ccx(target, 0, aux_full)

If the modifier is above 1.0, we apply a controlled rotation with our target-
gubit as the controlled qubit. Thus, we “add” to it. The aux_full-qubit serves
as a control qubit (line 2).

The two CCNOT-gates (lines 5-6) separate states where the aux_full and the
target qubits are 1. As a result, the sum of all states where the target qubit
is 1 represents the posterior probability after applying the first modifier.

The figure depicts the state after applying a modifier of 1.4.

Essentially, we “moved” some probability from the aux_full-qubit to the
target-qubit. But since the first modifier was above 1.0, the second might be
too. In this case, the aux_full-qubit would not be appropriate anymore. It has
a smaller probability, now.

7.2 PQC 217

Figure 7.6: Result of a modifier of 1.4

0.190

u
il
=
=
m
0
o
&=

0.050

But we have another auxiliary qubit left. So, we use this qubit to “refill” our
aux_full-qubit.

Listing 7.13: refill the aux-full-qubit

Q if step == 0:

Pl # equalize what we transferred to the target (*2) and increase the
aux_full to reflect the modifier (*2)

¥ qc.cry(prob_to_angle(min(1, (sorted_modifiers[step]—1)*2%2)), aux_half,
aux_full)

After we applied the first modifier (line 1), we use another controlled Ry-gate
to “move” probability from the aux_half-qubit to the aux_full-qubit. The in-
teresting question here is: how much?

The answer is the angle that represents four times the modifier. We reduced
the probability of measuring the aux_full-qubit as 1 when we used the mod-
ifier to move the probability to the target-qubit. We want the aux_full-qubit
to represent the posterior probability after applying the first modifier as the
new prior probability before applying the second modifier. Thus, we must
not only “refill” the aux_full-qubit, but we must apply the modifier on it, too.
This makes two.

We need to remember the aux_half-qubit represents only half the probability
of the aux_full. Thus, we need to apply twice the rotation we want to “move.”
This makes four.

The following figure shows the target-qubit and the aux_full-qubit after we
applied the first modifier.

218 Chapter 7. Quantum Naive Bayes

Figure 7.7: Result after preparing the aux—full-qubit

0.190

i
Vi)
=
©
s
2
[

If the second modifier is below 1.0, we don’t need the aux_full. But when it is
greater 1.0, we have our auxiliary qubit well-prepared.

The following figure depicts the state after we applied the second modifier of
1.3.

Figure 7.%: Result of two modifiers of 1.4 and 1.3

Probabilities

0050

Altogether, there are seven different states. The posterior probability is the
sum of all states where the target-qubit is 1.

We prepared the pgc-function to include measurement. Let’s use this ability
to look at the resulting probability of measuring the target-qubit as 1.

7.2 PQC 219
Listing 7.14: Include the measurement into the circuit

(8 plot_histogram(pgc(Aer.get_backend('gasm_simulator') , 0.38, [1.4, 1.3],
shots=1000, hist=False, measure=True))

Figure 79: Result of two modifiers of 1.4 and 1.3, including
measurement

un
[]
=
._E
5]
i |
Qo
s

We can see a posterior probability that is very close to the exact probability
of 0.38 x 1.4 x 1.3 = 0.69. However, the empirical nature of the gasm_simulator
causes the fuzziness of the measurement.

This leaves the question of what happens if both modifiers result in a poste-
rior probability that exceeds 1.0.

In this case, we would “move” the complete probability of the aux_half-qubit
to the aux_full-qubit after the first step. And, we would move most of it to
the target-qubit in the second step. As a result, we would see a very high
probability of measuring our target-qubit as 1. But it wouldn’t be accurate.

However, I'd argue that there is no accurate result in this case at all.

Here’s the result after applying the modifiers of a female passenger with a
first-class ticket (modifiers: [1.6403508771929822, 1.9332048273550118]).

This time, let’s use the qasm_simulator to see the result of the measured qubit
only.

220 Chapter 7. Quantum Naive Bayes

Listing 7.15: Calculate the posterior of a female passenger with a first-class-ticket

I8 plot_histogram(pgc(Aer.get_backend('qasm_simulator') , 0.38,
[1.6403508771929822, 1.9332048273550118], shots=1000, hist=False,

measure=True))

Figure 7.10: Result of a female passenger with a
first-class-ticket

1.00
0.75
0.50
0.25
0.00

[4]
[i §]
=
E
i
i |
o
™

The following listing depicts the complete code of the pgc-function.

7.2 PQC 221

Listing 7.16: The parameterized quantum circuit - part 1

Wl def pgc(backend, prior, modifiers, shots=1, hist=False, measure=False):

Prepare the circuit with qubits and a classical bit to hold the
measurement

gr = QuantumRegister(7)

cr = ClassicalRegister(1)

gc = QuantumCircuit(qr, cr) if measure else QuantumCircuit(qr)

n

the qubit positions
trunks = 3

aux = trunks+1
aux_half = trunks+1
aux_full = trunks+2
target = trunks+3

OX oD w

Apply prior to qubit to the target qubit
gc.ry(prob_to_angle(prior), target)

Work with the remainder
gc.x(target)

Apply prior to full auxiliary qubit
gc.cry(prob_to_angle(prior/(1—prior)), target, aux_full)

Work with the remainder
gc.cx(aux_full,target)

Apply 0.5*prior to qubit 1
gc.cry(prob_to_angle(@.5%prior/(1—(2*prior))), target,aux_half)

Rearrange states to separated qubits
gc.x(target)
gc.cx(aux_full, target)

sorted_modifiers = sorted(modifiers)

CONTINUED. ..

222 Chapter 7. Quantum Naive Bayes

Listing 7.17: The parameterized quantumn circuit - part 2

CONTINUE
for step in range(@, len(modifiers)):
if sorted_modifiers[step] > 1:
gc.cry(prob_to_angle(min(1, sorted_modifiers[step]—1)), aux_full,
target)

e

separate the aux_full and the target qubit
gc.ccx(target, aux_full, @)
gc.ccx(target, 0, aux_full)

s
&
7
¥
2

if step == 0:
equalize what we transferred to the target (*#2) and increase
the aux_full to reflect the modifier (*2)
gc.cry(prob_to_angle(min(1, (sorted_modifiers[step]—1)%2%2)),
aux_half, aux_full)

else:
apply modifier to the target qubit
gc.cry(prob_to_angle(1—sorted_modifiers[step]), target, step*2)
gc.cx(step*2, target)

if step == 0:
apply modifier to full auxiliary qubit
gc.cry(prob_to_angle(1—sorted_modifiers[step]), aux_full, step
*2+1)

unentangle the full auxiliary from trunk
gc.cx(step*2+1,aux_full)

measure the qubit only if we want the measurement to be included
if measure:

gc.measure(qgr[target], cr[0])
results = execute(qc,backend, shots=shots).result().get_counts()
return plot_histogram(results, figsize=(12,4)) if hist else results

Post-Processing

We need to post-process the results we receive from the pqc. If we set the hist-
parameter toFalse, the pgc function returns the counts. These arein the form
ofaPythondictionary with twokeys 'e' and '1'. The valuesassigned to these
keys are the number of measurements that yielded the respective key as a

7.3 Post-Processing 223

result. For instance, if we have 1,000 shots and 691 returned 1, our result is
{'0':209, '1':6913}.

If we have a single one-shot, we will get either {'e': 13 or{'1': 1} as counts.
When we run our classifier, we want to get a distinct prediction for each pas-
senger. Thus, a single shot is sufficient.

Listing 7.18: Post-processing

Wl def post_process(counts):

y

1 counts —— the result of the quantum circuit execution
4 returns the prediction
-]
&

return int(list(map(lambda item: item[@], counts.items()))[0])

The post_process-function takes the counts the pgc-function returns. It looks
for the keys (counts. items()) and returns the first. The underlying assumption
is we have only one measurement and thus, we have only one key represent-
ing the prediction.

Finally, we can put it all together.

Listing 7.19: Run the Quantum Naive Bayes Classifier

redefine the run—function
def run(f_classify, data):
return [f_classify(data.iloc[i]) for i in range(0,len(data))]

specify a reusable backend
backend = Aer.get_backend('gasm_simulator')

evaluate the Quantum Naive Bayes classifier
classifier_report("QuantumNaiveBayes",
run,
lambda passenger: post_process(pgc(backend, prob_survival, pre_process(
passenger), measure=True, hist=False)),
train,
train['Survived'])

1
R
3
4
§
&
7
¥
2

224 Chapter 7. Quantum Naive Bayes

The precision score of the QuantumNaiveBayes classifier is 0.63
The recall score of the QuantumNaiveBayes classifier is 0.62

The specificity score of the QuantumNaiveBayes classifier is 0.78
The npv score of the QuantumNaiveBayes classifier is 0.77

The information level is: 0.70

First, we define the run function (line 2). It takes the f_classify-function and
the data (that is, the train-dataset). It classifies each row in the data and re-
turns the prediction (line 3).

We create the qasm_simulator-backend we can reuse for all our predictions (line
6).

We reuse the classifier_report-function we introduced in section 2.7 (line 9).
Besides an arbitrary name it uses in the output (line 9), it takes as arguments

« the run-function (line 10),

- the classifier (line 11),

« the dataset (line 12),

- and the actual results (line 13).

The classifier we provide (line 11) is an anonymous function (a function with-
out a name) that takes the passenger as the parameter. From inside to out-
side, we first pre-process the passenger. Then, alongside the reusable back-
end (line 6) and the prior probability of survival (prob_survival), we call the
pgc with the modifiers we get from the pre_process-function. Finally, we call
the post_process-function that returns the overall prediction.

The overall information level of the Quantum Naive Bayes classifier is about
0.70. This is almost the same level we achieved before with the first Varia-
tional Hybrid Quantum-Classical Classifier we developed in section 3.6.

This Quantum Naive Bayes classifier has quite a few problems. Foremost, we
can compute two modifiers above 1.0 at most. The approach we applied does
not scale well. While we use a quantum circuit, we do not exploit the possible
advantage quantum computing may provide. We need to think differently.

¥.1l The No-Clowning Theorem

Quantum computing is fundamentally different from classical computing.
To master quantum computing, you must unlearn what you have learned.

You must unlearn

whal you have learned

Figure %.1: Quantum Computing is different

It starts with the quantum superposition. Unlike a classical bit, a quantum
bit (qubit) isnot O or 1. Unless you measure it, the qubit isin a complex linear
combination of 0 and 1. But when you measureit, the quantum superposition
collapses, and the qubit is either O or1, as a classical bit.

226 Chapter 8. Quantum Computing Is Different

It continues with quantum entanglement. Two qubits can share a state of
superposition. Once you measure one qubit, its entangled fellow instantly
jumps to a different state of superposition. Even if it is light-years away, it
seems to know a measurement has taken place, and it takes on a state that
acknowledges the measured value.

When starting with quantum computing, we’re tempted to focus on the pos-
sibilities that arise from superposition and entanglement. But quantum com-
puting does not simply add new features we can use. Instead, it is a funda-
mentally different way of computing. And it requires a different kind of pro-
grams.

Classically, we think about input, transformational boolean logic, and out-
put. But this thinking will not let us succeed in quantum computing. Classi-
cal control structures are a dead-end.

Let’s take one of the simplest operators in classical computing, the assign-
ment.

Listing 8.1: Copying a variable

k8 my_var = 1
P4 copy_of_my_var = my_var
] print (my_var, copy_of_my_var)

We can use the assignment operator to create a copy of a variable. The value
of the variable doesn’t matter. We can create a copy of it.

In a classical program, we rely on this ability to copy data-a lot. In a classi-
cal circuit, this is the fan-out operation. In electrical engineering, we have
wires. If there is a voltage at a particular time, we interpret it as 1. If there
is no voltage, it is 0. We can connect another wire to it. We will receive the
same output at both ends.

Figure %.2: Classical fan-out

Copying data is helpful in manifold ways. First, we can use copies as inputs
to different operators. For instance, in the half-adder, we copy the input to
use it in two other operators.

8.1 The No-Cloning Theorem 227

Figure %.3: The half-adder

Secondly, we can use the copies to evaluate the state at different parts of the
program at other times. This would be particularly useful in quantum com-
puting.

In section 5.3, we learned how to change a qubit’s measurement probabilities
by rotating it around the y-axis. We got to know the angle 6, which controls
the probability of measuring the qubit as @ or 1. But we struggled with the
problem that 6 is the angle between the vector |y) and the basis state vector
|0). But if the qubit is not in the basis state |0), then the same value of 6 rep-
resents a different probability change. The gradients of trigonometric func-
tions (such as sine and arcsine) are not constant. Thus, the probability an
angle represents at the top of the circle (state |0)) is another probability that
the same angle represents at the horizontal axis such as the state |+). To cal-
culate the correct angle, we need to consider the state the qubit is currently
in.

But measuring the qubit state collapses it to either 0 or 1. So, measuring de-
stroys the qubit superposition. But, if you're not allowed to measure the
qubit, how could you specify the prior probability?

Wouldn’t it be good to create a copy of the qubit before we measure it? Then,
we would measure one copy of the qubit while continuing to work with the
other copy.

228 Chapter 8. Quantum Computing Is Different

Flgure .4: An army of clones

So, let’s have a look at the respective operator, the fan-out. In a classical cir-
cuit, one input wire connects to two output wires. It copies a bit. In quantum
computing, we use transformation gates, and we use the word cloning for the
analogous idea of copying a qubit.

The following figure depicts the diagram of a cloning transformation gate.

Figure %.5: The cloning gate

The gate (let’s call it G) takes an arbitrary qubit |y) and a fixed |0) (an ancilla
bit) as input. It outputs two copies of |). Here are three examples of cloning
transformations.

1. Itclonesa qubitin the state |0).
G(10)[0)) = 10)/0)

8.1 The No-Cloning Theorem 229

2. Itclonesaqubitin the state |1).

G(11)[0)) = [1H[1)
3. Itclonesan arbitrary qubit |y).

G(ly)[0) = lw)|w)

The superposition state of a single-qubit consists of two basis states (|0)
and |1)) and two corresponding probability amplitudes « and f3.

v) = ai0) Bl = |

The squares of the amplitudes represent the probabilities of measuring the
qubit as either O (given by o?) or 1 (given by B2). The sum of all probabilities
is1:

o+ |BP =1

The cloning transformation gate works with two qubits. Let’s call them |a)
and |b). Each of the two qubits hasits own probability amplitudes: |a) = ay|0) +

a b
ay|l) = m and |b) = bo|0) + by[1) = {bﬂ
If we look at these two qubits concurrently, there are four different combi-
nations of the basis states (|0)|0), |0)|1), |1)|0), and |1)|1)). And each of these
combinations has its probability amplitude that is the product of the prob-
ability amplitudes of the two qubits’ corresponding probability amplitudes.

The following equation depicts our qubit system (|a)|»)) that has four possible
states and corresponding probability amplitudes.

|a)|b) = aobp|0)|0) +apb1|0)|1) +aibg|1)|0) +a1by|1)|1) (8.1)

This equation lets us represent and reason about a system that consists of two
qubits. Let’s use them to clone the state |y) = a|0) + B]1).

We start with applying the cloning transformation gate to the arbitrary
qubit.

G(lv)10)) = [w)lw)
It results in two qubits in the same state |y).

We use the equation 8.1 to rewrite the state of our two qubits. Since both
qubits are equal, we can say thatay = by = o and a; =b; = B

We represent the qubit state as the sum of each state we could measure with

230 Chapter 8. Quantum Computing Is Different

its respective probability amplitude. This is the result of cloning a qubit.

W)|y) = a?|0)|0) + aB[0)|1) + Bar|1)|0) + B2[1)|1)
Next, let’s first expand our arbitrary qubit |y).

G([w)]0)) = G ((a]0) + B[1))[0))
We multiply out the inner term.
G ((@]0) +B]1))[0)) = G(]0)|0) + B[1)]0))

Since the application of G is matrix multiplication, we can apply the distribu-
tive law of matrix algebra.

G(|0)[0) +B[1)|0)) = G(]0)[0)) + G(B]1)[0))

Finally, we apply the initial specifications of how G transforms the basis
states |0) and |1)

G(a]0)|0)) +G(B|1)[0)) = |0)[0) + B[1)[1)

We get another result of cloning a qubit in an arbitrary state. However, these
two results of the cloning transformation gate are not equal.

a?(0)(0) +aB0)|1) + Bar|1)]0) + B[1)[1) # |0)[0) + B[1)]1)

If the cloning transformation gate G exists, then two terms that are not equal
must be equal. This is a contradiction. The only logical conclusion is that G
can’t exist. Therefore, it is impossible to clone a qubit of an arbitrary state.

This is known as the no-cloning theorem. It has important consequences.

In classical computing, we rely heavily on the ability to copy. Even the sim-
plest classical operation, the addition, relies on copying bits. Butin quantum
computing, it is impossible.

In quantum computing, we can’t use the information stored in a qubit as
many times as we want to. The idea of cloning a qubit in an arbitrary state
would contradict the underlying concept of superposition. Measuring a
qubit collapses its state of superposition. But when we could clone a qubit,
we could measure its state indirectly. We could measure the clones without
collapsing the original qubit.

This might look like a severe problem. But, it is only problematic if we con-
tinue to think classically. We need to unlearn how to solve a certain type of
problem programmatically. When we want to use the unique characteristics
of quantum computing, such as superposition, entanglement, and interfer-

¥R

8.2 How To Solve A Problem With Quantum Computing 231

ence, we need to learn a new way of solving problems.

How To Solve A Problem Wikh
Quankum Compu&iug

This is what they mean with quantum computing can evaluate different
states concurrently.

Figure ¥.6: Ask the oracle

Quantum computing comes with quite a few caveats.

« When transforming qubits, you have to ensure reversibility.

- You can’t copy a qubit in an arbitrary state.

- And foremost, you can’t even measure a qubit without collapsing its
state of superposition.

But a qubit can do things a classical bit can’t. A qubitisnot restricted toe or1.
It can be a combination of both states. Further, you can entangle two qubits
so that they share a state of superposition.

With these characteristics, qubits are a powerful tool if used properly. Of
course, you can treat qubits like ordinary bits and solve a problem the same
way you solve other computational problems. But you would not benefit
from the advantage a quantum computer promises. When solving a problem
classically, you won’t see any quantum speedup. The algorithm will be much
slower because a quantum computer is extremely slow (in terms of clock fre-
quency) and extremely small (in terms of the number of qubits).

In this section, we learn how to solve a problem through an algorithm that
could be faster than a classical one. By that, we mean the quantum algorithm

232 Chapter 8. Quantum Computing Is Different

will solve a problem in fewer steps than a classical algorithm requires. If both
computers were equal in speed and size, the quantum computer would solve
the problem faster. However, a classical computer might compensate for the
larger number of steps by its sheer speed and size. But with the increasing
complexity of the problem to solve, speed and size will not suffice anymore.
There are problems on earth, such as the factorization problem, that are too
complex fora classical computer, regardless of its speed and size. But they are
not too complex for a quantum computer-theoretically.

The problem we use as our example is not one of these problems. A classical
computersolvesitinasplit second. But the example allows ustodemonstrate
how to solve a problem the quantumic way.

Let’s assume we have a function f. It takes a single bit as input—either o or 1.
And it provides a single bit as its output, too. Again, eitheroeor1.

There are four different possible functions.

« Function fj always returns e.
« Function f; returns o if the input is e and it returns 1 if the input is 1.
- Function f; returns 1if the input is e and it returns e if the input is 1.
- Function f; always returns 1.

The functions fyand f; provide constant outputs. No matter what their input
is, they always return the same result. f; returnsoe. f; returns 1. Always.

The functions f; and f> provide balanced outputs because for half of the in-
puts, they return e (f; if theinputise and £ ifthe inputis 1), and for the other
half, they return 1 (f; if the input is 1 and £, if the input is 0).

If you're given one of these functions at random, how can you determine
whether the function is constant (f;, or f3) orbalanced (f; or f>)? Wedon’t care
about the specific function we got. We only care about whether it is constant
or balanced.

Classically, you have to run the function twice. You run it with the input e.
If you get 0 as a result, the function at hand could be the constant function f
that always returns e. And it could be the balanced function f; that returns e
iftheinputise. You have to rerun the function with input 1 to decide whether
the function is constant or balanced. The constant function f; still returns e.
But the balanced function f; returns 1 for input 1.

The same situation applies if you get 1 as a result of running the function for
the input e. You would need to distinguish between the balanced function f,
and the constant function f;.

8.2 How To Solve A Problem With Quantum Computing 233

It does not help to run the function with input 1 first, either. With either re-
sult, e and 1, the function at hand could be constant or balanced. You need to
rerun the function with input e.

In quantum computing, we only need to run the function once.

We start with a new quantum gate-the gate O,. Thisgate should represent our
four functions f;. Mathematically, this would be

Oi(x) = 1/i(x))

It transforms an arbitrary quantum state |x) into the quantum state |f;(x)) -
the output of the function f; given the input x.

For O; is a quantum transformation gate, it must be reversible. Therefore,
it must have the same size of input and output. And each output must be
uniquely identity the input it originates from.

But that’s a problem. The constant functions always return the same value
regardless of their inputs. Given their output, you can’t tell what the input
was.

We can deal with this problem with a little trick. We add a second qubit |y),
and we use the exclusive or (XOR, @) operator to keep track of the result of
the function f;.

Mathematically, the refined gate O; is:

Oi(lx) ®y)) =) ® |y @ fi(x))

The following figure depicts the transformation gate O,.

)

)

Figure %.7: The 0-qate

Let’s say, i = 0. Thus, we apply the function fj. Per definition, f;(x) = 0. When
we insert this into the above equation, we can see the output of O; is equal to
its input:

Oo(lx) ®@1y)) =) @[y @ |fo(x)) = [x) @[y ®|0) = [x) ©y)

234 Chapter 8. Quantum Computing Is Different

We can safely state that not changing a state is reversible.

When i = 1, we apply the function f; that returns e for x = 0 and 1 for x = 1.
Thus, fi(x) =x.

O1(Ix) ®1y)) = Ix) @[y & f1(x)) = |x) @ [y x)

The truth table of the term |x) ® |y ® x) shows that it is reversible.

(o]

1
1
o

Figure %.%: Truth table of x | y XOR x

When we apply /> that returns 1 forx=0and e forx= 1, wecansay f>(x) =x® 1.

Ox(lx) @) =) @[y& Lo(x) =) @y@xd1)
The truth table discloses that the term |x) ® [y ®x @ 1) is reversible, too.

Figure %9: Truth table of x | y XOR x XOR 1

Finally, f; always returns 1.
03(lx) ®[y)) =) @[y D |f3(x)) = [x) @[y 1))
The output is like the input but with a reversed y.
Our refined gate O, is a valid transformation gate for all our functions f;.

But, we’re not too interested in how the functions f; work. Rather, we regard
O; as ablack box. The two important things are

8.2 How To Solve A Problem With Quantum Computing 235

Figure ¥.10: Truth table of x | y XOR 1

+ 0;isavalid two-qubit gate for all i
« The output of O;

The following truth table shows how the O;-gate transforms pairs of qubits
in the basis states.

Figure %.11: Truth table of the 0-qate

Asusual, when we only look at qubits in the basis states, there is nothing spe-
cial with a quantum circuit. However, things get interesting when the qubits
are in a state of superposition.

Let’s input the states |+) (for x) and |—) (for y). We can construct these states
if we apply the Hadamard gate to the basis states |0), respectively |1).

1

H(|0)) = —=(10) +[1)) = [+)

S

2

1

H(|1)) = —=(0) = 1)) = =)

S

2

236 Chapter 8. Quantum Computing Is Different

Collectively, the two qubits are in the state

H(|0)) +H([1)) = —=(10) +[1)) + —=(]0) = [1))

1
2 V2 (8.2)
(/00) —[01) +[10) —[11))

5l

| —

2

Now, we apply the gate O0;. Thus, we replace the four basis states with the
terms we calculated in the truth table above.

O (H(]0)) +H(]1)))

(10) @1£(0)) = [0) @ [£i(0) & 1) + 1) @ |£i(1)) — [@ |fi(1) & 1))
(8.3)

1
2

We can rearrange this term by putting the basis states of the first qubit out-
side the brackets.

= %(I()) ®(1/:(0)) = 1fi(0)@ 1)) + 1) @ (I£:(1)) - |fi() & 1)))
Let’s have a closer look at the term |f£;(0)) — | f;(0) © 1).

- For f;(0) =0, the term is |0) — [1).
- For f;(0) = 1, the term is —|0) + |1).

We can rewrite it as (—1)4(0)(|0) — |1)).

The term (—1)/(0 takes care of the signs. For f;(0) =0, it is 0 because anything
with exponent Ois 1. For f;(0) = 1, itis —1, yielding —|0) +|1).

Therefore:
1£(0) = 1/(0) @ 1) = (1) (j0) - 1))

The same logic applies to the term | f;(1)) — |fi(1) @ 1).
A = Ifi(D@1) = (=)D (j0) —[1))

We insert these terms into our qubit state equation

= % (\O} @ (=)o) = 1)) + 1) @ (=1 (j0) — m))

And we rearrange it, by putting the terms (—1)/(? and (—1)%(!) outside the
brackets.

1

=3 (=110} 2 (10) = 1)) + (=11} & (0) - |1)))

8.2 How To Solve A Problem With Quantum Computing 37

Then, we move anything except the term |0) — |1) outside the brackets, too.

= 2 (D 010) + (15O @ (0) - 1))

Finally, we apply the common factor } to each of the resulting terms (note
1_ 11
2=)
1 1
= — (=1} 910y 4+ (=1} D1}) @ —
75 (D0 + (1A) o o

The result is a two-qubit state in the form of |x) ® [y). |x) and |y) are the two
output qubits with the qubit |x) is the top one.

(10) =[1))

Let’s have a closer look at the state of qubit |x).

1
— — ((=1)i©® _1)fi)
) =5 (D50} + (-1)F0))
Inside the brackets, we see the usual sum of our two basis states, |0) + |1). Yet,
the output of the function f; determines the signs of the basis states. f;(0) con-
trols the sign of |0). It is + for f;(0) = 0 because (—1)° = 1 and itis — for £;(0) = 1
because (—1)! = —1. Accordingly, f;(1) controls the sign of |1).

The following table depicts the possible values of the qubit |x) in dependence
of f;.

Figure #.12: The resulting state of qubit |x>

Do you remember the section 3.2? The graphical representation of the qubit
state lets us distinguish between the states |+) and |—). While we usually use

238 Chapter 8. Quantum Computing Is Different

%(|O) +|1)) when we write |+) in terms of the basis states, we could as well
use = (~[0) - [1).
1

1
+) ﬁ(!0>+\1>)=ﬁ(—|0>—|1>)
The same accounts for the state |—), respectively
1 1
=)= ﬁ(!@— 1) = EHOHM)

The upfront constant amplitude of \L@ applies to both basis states. Its square

(%)2 = 7 isthe probability of measuring either one state. So, half of the time,

we measure the qubit as . And half of the time, we measure the qubit as 1
. This applies to both states |+) and |—). The measurement probabilities are
the same for all four functions f;.

Unless we apply another transformation gate to this qubit. If we apply the
Hadamard gate to the first qubit, it transforms the state |+) into |0). And it
transforms |—) into |1).

Thus, we measure the qubit as @ with certainty, if the output of our gate 0; is
|+). This is the case for fy because f,(0) =0and fy(1) = 0. And it is the case for
f3 because f3(0) = 1and f3(1) = 1. These are the two constant functions.

Accordingly, we always measure 1if O; outputs |—). This is the case for f; and
f>. These are the balanced functions.

So, no matter what function f; we plug into our circuit, we can tell whether it
is constant or balanced by running it only once-something we can’t achieve
classically.

The following figure depicts the complete quantum circuit.

Figure #.13: The full quantum circuit

David Deutsch developed this algorithm. He was the first to prove quantum
algorithms can reduce the query complexity of solving a particular problem.

8.2 How To Solve A Problem With Quantum Computing 239

The query complexity is the number of times we have to evaluate a function
to get an answer.

The underlying idea of this algorithm is to treat solving a problem as the
search for a function. We don’t know how the function works internally. It
is a black box. We don’t have to worry about it.

But we know all the possible outcomes of the function. And this knowledge
allows us to represent the function by a quantum gate. This gate is called
a quantum oracle. Therefore, we named it O-gate. Rather than repeatedly
calling the function to analyze how it works, we savvily craft a quantum al-
gorithm around the oracle to separate the outcomes that solve the problem
from those that don’t. In other words, we ask the oracle for an answer.

At this point, it is of utmost importance to understand what we are asking
for. The oracle will answer precisely the question we ask. Literally, it does
not care about what you intended to ask for.

In our example, we asked the oracle whether the function is constant or bal-
anced. And this is what we get as an answer. Not more, not less.

The following code shows a function that embeds a discrete oracle in a quan-
tum circuit.

This circuit includes a measurement of the first qubit. Therefore, our
QuantumCircuit contains a QuantumRegister with two qubits (line 11) and a
ClassicalRegister with one bit (line 12) to hold the measurement.

By default, both qubits are initialized in the state |0). We put the second
qubit into the state |1) by applying the X-gate (line 18). Then, we apply the
Hadamard gate to both qubits (lines 20-21). We send the two qubits through
the oracle (line 24) that we take as a parameter of this function (line 5).

We apply another Hadamard gate on the first qubit we receive as an output of
the oracle (line 27). We measure it and storeitin theClassicalRegister (line 30).
We use the gasm_simulator (line 33) because it supports multiple executions (in
this case1,000, line 36) of a quantum circuit that includes a measurement (see
section 6.1).

Even though our algorithm around the oracle treats it as a black box, when
we want to run the oracle for a specific function, we need a corresponding
implementation.

240 Chapter 8. Quantum Computing Is Different
Listing 8.2: Deutsch's algorithm

k8 from math import sqrt

PA from qiskit import QuantumCircuit, QuantumRegister,ClassicalRegister, Aer,
execute

from giskit.visualization import plot_histogram

def solve(oracle):
A reusable function that identifies whether the oracle represents
a constant or a balanced function.

OX oD w

QuantumRegister(2)
ClassicalRegister(1)

qu
cl

initialize the circuit
gc = QuantumCircuit(qu,cl)

Prepare the input state of the oracle
gc.x(1)

qc.h(0)
gc.h(1)

Apply the Oracle
oracle(qc)

Prepare the output state
qc.h(0)

measure qubit—0
qc.measure(qul[0], cl[0]1)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('qgasm_simulator')

execute the qc
results = execute(qc,backend, shots = 1000).result().get_counts()

plot the results
#return plot_histogram(results)
return plot_histogram(results, figsize=(3,2), color=['white'])

Let’simplement the oracles. It is a different one for each possible function f;.

8.2 How To Solve A Problem With Quantum Computing 241

Westart withi=0and apply the function f, thatalwaysreturnse. Asthetruth
table for the oracle Oj from above shows, the output is the unchanged input

Oo(lx) @) = [x) @[y ®|fo(x)) = [x) @y |0) = [x) @ y)
Thus, Op does nothing. Quite easy to implement.

Listing 8.3: Apply the gate 0-0

il def o0_0(qc):
P4 pass
3

‘8 solve(o_0)

Figure %.14: Result of the oracle representing the constant
function fo

1.00
0.75
0.50
0.25
0.00

[y
(i}
=
E
5]
L
o
s

The result of the circuit with Oy is always . The result of our calculations
predicted for a constant function.

When i = 1, we apply the function f; that returns e for x = 0 and 1 for x = 1.
Thus, fi(x) = x.

O1(lx) ®1y)) = [x) @[y & f1(x)) = |x) @ [y x)

The gate O; returns an unchanged first qubit and |y & x) as the second qubit.
This is the behavior of the CNOT gate we got to know in section 6.1.

242 Chapter 8. Quantum Computing Is Different
Listing 8.4: Apply the gate o-1

Wl def o_1(qc):
P4 gc.cx(0,1)
3

¥4 solve(o_1)

Figure ¥.15: Result of the oracle representing the balanced
function f1

1.00
0.75
0.50
0.25
0.00

[y
(i}
=
E
5]
L
o
s

We measure 1 with certainty. This is the expected result of a balanced func-
tion.

The other balanced function f, returns 1 for x = 0 and o for x = 1. Thus, it
behaves like the CNOT-gate but with |y) switching the value if |x) = 0. We can
construct this gate by first applying the X-gate to |x). If it was in state |0), it is
now in state |1). The following CNOT-gate switches the state of |y). Finally,
we apply the X-gate on |x) again to put it back into its original state.

Listing 8.5: Apply the gate 0-2

(Y def o_2(qc):
Pl qc.x(0)

3 qc.cx(0,1)
5d ac.x(e)

s

%] solve(o_2)

8.2 How To Solve A Problem With Quantum Computing 243

Figure ¥.16: Result of the oracle representing the balanced
function §2

1.00
0.75
0.50
0.25
0.00

[Ty]
[il]
=
E
5]
L
o
s

Again, we measure 1 with certainty. This result is correct for f; is a balanced
function.

Finally, we implement the oracle representing the other constant function f;.
f3 always returns 1.

O3(lx) @1y)) =l @[y@|f3(x) =) @yol))

Its output is like the input but with a reversed y. Thus, we apply the X-gate on
the second qubit |y).

Listing 8.6: Apply the gate 0-3

Wl def o_3(qc):
Pl qc.x(1)
3

‘8 solve(o_3)

%3

244 Chapter 8. Quantum Computing Is Different

Figure ¥.17: Result of the oracle representing the balanced
function £3

1.00
0.75
0.50
0.25
0.00

[Ty]
[il]
=
E
5]
L
o
s

f3 isa constant function, and we get the expected result of e accordingly.

The Quantum Oracle Demystified

When I first started learning quantum computing, it took me quite a while
to understand how it could be faster than classical computing. Something
mysterious must be going on.

Of course, the quantum superposition a qubit can be in is astonishing. The
qubitisnoteor1. Itisin a relationship between statese and 1.

Notwithstanding, the ability to entangle two qubits is mind-blowing. You
measure one qubit, and another one instantly changes its state, no matter
how far away it is. It is hard to believe that anyone would not think of tele-
portation asin Star Trek.

But once I started working with (simulated) qubits, the state of superposition
came down as a probability. Entanglement emerged as a way to manipulate
these probabilities. All thisis pretty cool. Butitisn’t mysteriousatall. Icould
not see how this kind of computing could be so much faster.

Then, I came across the quantum oracle. The name itself speaks of mystery.
Finally, I must have found the magic ingredient I was searching for. Once I
understood how it works, it I would be able to solve the problems intractable
for a classical computer.

8.3 The Quantum Oracle Demystified 245

Figure ¥.1¥%: Quantum teleportation

In the previous section, we already got to know the quantum oracle. As part
of David Deutsch’s algorithm, it allowed us to solve a problem in fewer steps
than a classical algorithm would need. It identifies the type of a functionin a
single shot. This is less than the two shots a classical algorithm needs.

Sounds magical. Doesn’t it?
So, how does it work? You ask.

It’s like a magic trick. It baffles you when you see it for the first time. You
want to know how it works. But once someone tells you the secret, it becomes
mundane. It loses its mystery. While you join the community of magicians,
a selected group who knows the trick, you can’t look at it anymore and think,

[13 b

WOW.

246 Chapter 8. Quantum Computing Is Different

Figure %.19: The secret of a magician

You still want to know? Good. Read on.

The magician presents a coin. While the coin is in the air, the magician pre-
dicts the coin to show heads. She catches the coin. Guess what you see. The
coin is heads up.

How could she know? You’d bet the coin is manipulated. But she presents it
to you. Itlooks like a regular coin. One side heads. The other side tails.

Shetossesitagain. Sheasksyouto predict the result. Thistime, you say tails-
the coin lands. Guess what you see? The coin is tails up.

You examine the coin again. It still looks like a normal coin. Butitisnota
normal coin. It is a quantum coin. When you look at the coin, it is either
heads or tails, but once you toss it, it isin a state of superposition. It is unlike
aregular coin.

8.3 The Quantum Oracle Demystified 247

A regular coin is sensitively dependent on the initial conditions. If you knew
everything in complete detail, if you knew the applied force when tossing the
coin, the rotational force, the air pressure, and even slight air movements,
then you could calculate how a normal coin would land. If you knew every-
thing in detail, randomness would disappear.

A quantum coin, by contrast, is truly random. So why then should the quan-
tum coin be the one that allows the magician to predict the outcome?

While a quantum superposition contains randomness, it does not behave ar-
bitrarily. The quantum system abides by strict rules. And these rules can be
specified. One of these rules involves a quantum oracle.

Our magician created a quantum system that seems to let her know the out-
come of tossing the coin. It sounds like an oracle, doesn’t it?

But this is not what she did. Instead, she created a quantum system that
would listen to her prediction and behave accordingly.

This doesn’t seem plausible?

Then, why don’t we create this quantum system programmatically with
Python and Qiskit?

A qubit denotes our quantum coin. Once you toss it, it is in a state of superpo-
sition of the states |0) and |1). If.you look at it, it is either e representing the
coin lands heads up or 1 representing tails up. Each with a probability of 0.5.

Mathematically, the state of the qubit that we also know as |+) is
Bl
y=+)=L510)+ 1) = [f]
V2
We have seen this state before. We can create it by applying the Hadamard-
gate on a qubit in the state |0).

The magician’s prediction is a quantum transformation gate, too.

She crafted two gates and connected them with her prediction. She con-
nected the /-gate with the prediction “heads up.” And she connected the
Ry(m)-gate with the prediction “tails up.”

The I-gate is the Identity-gate. Its output is equal to its input. It does not
change anything.

1
Yieads = 1(Y) = W =|+) = 5[0)+ 5[1) = [@]

248 Chapter 8. Quantum Computing Is Different

The Ry-gate rotates the qubit state vector around the Y-axis. This is the axis
that affects the measurement probabilities. It takes as a parameter the angle
by which to rotate the state. The angle 7 denotes precisely half of a complete
circuit.

The following image depicts the rotation of the qubit state vector graphically.

1)

Figure %.20: 360° 2-dimensional qubit system

When a state vector ends on the left-hand side of the Y-axis, then one of the
two amplitudes becomes negative.

When we start in the state |+) a rotation by 7 results in the state |—) because
cos§ =0and sinf = 1.

cosy —sin% % 0 —1 % _\/LE
Viaits = Ry () (y) = snf cosZ T[T ol || =] A= |—-)
2 2 V2 V2 V2

Turning the state |+) into |—) did not change the probabilities of measuring
0 or 1 because the probability is the square of the amplitude. And this is posi-

2
. oy s 1 1

tive. In our case, it is (—%) =5.

In the end, neither one of the two gates changed the measurement probabil-

ity of the qubit. But the two states differ.

When she prepares the magic trick, the magician does not limit her trick to
either one prediction. She wants the flexibility to use a different prediction
any time she performs the trick. So, during her preparation, she adds a place-
holder into her quantum circuit. She calls it the O-gate. The oracle.

8.3 The Quantum Oracle Demystified 249

She only knows the oracle can be either the /-gate or the Ry (7)-gate.

The I-gate represents her “heads up” prediction and leaves the qubit in the
state |+). The Ry (m)-gate represents her “tailsup” prediction and changes the
qubit state to |—).

The savvy magician sees the differences between these two states. Thisis her
chancetomake herprediction cometrue. All sheneedstodoistransformthe
oracle’s output into the state that corresponds to her prediction. She needs
to turn the state |+) into |0) and the state |-) into |1). She applies another
Hadamard gate on her quantum coin, ehm qubit. It has the desired effect for
both possible outputs of the oracle. Have a look:

Y Y

__Lll_Ll_ll—l_O_

H{] >)_ﬁ{1 v] T T) =W

Sometimes, it may be harder to transform the differences into a meaningful
output. But the principle is the same. Identify the differences between the

possible outcomes of the oracle and make sure these outcomes result in dif-
ferent measurement results.

1
1

=

Our magician is well prepared now. She hasa quantum circuit with an oracle.
Thisisaplaceholder. When she runsthe circuit, she must fill this placeholder
with a valid qubit transformation gate by speaking out loud her prediction.

The magician created a reusable function. It takes as a parameter a callback
function - the oracle (line 5). First, we create the QuantumCircuit with a single
qubit (line 8). Tossing the coin setsitinto superposition. Thisiswhat the first
Hadamard gate does (line 11). Then, we apply the oracle (line 14). Whatever
itis. The magician uses the second Hadamard gate to transform the result of
the oracle into the desired state (line 17). Finally, we run the circuit (line 23)
and return the results (line 26).

Here’s the code the magician created.

250 Chapter 8. Quantum Computing Is Different

Listing 8.7: The code the magician created

B from giskit import QuantumCircuit, Aer, execute
PA from qiskit.visualization import plot_histogram
k2] import matplotlib.pyplot as plt

] def run_with_oracle(oracle):

Create a quantum circuit with one qubit
gc = QuantumCircuit(1)

toss the coin
qc.h(0)

apply the oracle
oracle(qc)

catch the coin
qc.h(0)

Tell Qiskit how to simulate our circuit
backend = Aer.get_backend('statevector_simulator')

Do the simulation, returning the result
result = execute(qc,backend).result()

get the probability distribution
return result.get_counts()

Let’s run the circuit with the heads-up prediction.

Listing 8.8: Run the heads up prediction

plot_histogram(run_with_oracle(lambda qc: qc.i(0)))

8.3 The Quantum Oracle Demystified 251

Figure ¥.21: Resull of the heads up prediction

1.00
0.75
0.50
0.25
0.00

Probabilities

When the magician predicts heads up, we always measure the qubit as e, rep-
resenting heads up. So let’s do the same for the “tails up” prediction.

Listing 8.9: Run the tails up prediction

8 from math import pi
Pd plot_histogram(run_with_oracle(lambda qc: qc.ry(pi, 0)))

Figure %.22: Result of the tails up prediction

1.00
0.75
0.50
0.25
0.00

[Ty]
[il]
=
E
5]
L
o
[

The “tails up” prediction always results in a qubit that we measure as 1 - the
representation of “tails up.”

The audienceisbaffled by her ability to see into the future. But, asusual, with

252 Chapter 8. Quantum Computing Is Different

magic tricks, thisisanillusion. Anintended illusion is thoroughly crafted by
arranging the stage—or in this case-the circuit.

The quantum oracle is nothing but a placeholder for a transformation gate.
While it changes the system’s state, it does not tell the future or answer any
question. It is up to you to identify how the different gates may affect the
quantum state differently. And, it is up to you to craft a quantum circuit
around the oracle to transform these differences into an answer to your ques-
tion.

A quantum oracle is a tool. It allows you to distinguish different states of the
world. During the construction of your circuit, you specify how these differ-
ent states should affect the outcome. When you run your circuit in a certain
state, it produces the outcome you prepared it to result in.

The oracle is like the switch-case control structure you may know from clas-
sical programming. You have a variable, the oracle. When you write your
program, the circuit, you don’t know the specific value the variable will have
during runtime. So, you specify the behavior for each possible value it may
have. Once you run your program, the variable will have a specific value and
your circuit will act the way you specified it to and result in the outcome you
wanted it to result in.

The quantum oracle is not a magical ingredient. It is a control structure used
in quantum computing.

Bayes’ Theorem helps us building a classifier capable of predicting the sur-
vival of a passenger on board the Titanic. However, the Quantum Naive
Bayes classifier we created in section 7 includes only two features. Yet, we
are already moving on the edge of the possible. While handling modifiers be-
low 1.0 that reduce the prior probability is easy, the modifiers above 1.0 are
difficult to handle.

Altogether, our Quantum Naive Bayes classifier has quite a few shortcom-
ings.

1. Most of the work remains at the classical part. We need to consult
the data for each passenger to get the backward probability and the
marginal probability of the evidence. For each passenger, we calculate
the corresponding modifiers.

2. We calculate the same modifiers over and over again. We do not reuse
the results.

3. We construct a completely new quantum circuit for each unique com-
bination of passenger attributes. For example, the circuit of a female
passenger with a first-class ticket looks quite different from a male pas-
senger’s circuit with a third-class ticket. This is error-prone and hard
to debug. We programmed quite a lot of logic in Python.

The first figure depicts the quantum circuit of a male passenger with a third-
class ticket. The second figure depicts the circuit of a female passenger with
a first-class ticket.

How we specify the prior probability is similar in both circuits. But, we apply

254 Chapter 9. Quantum Bayesian Networks

the modifiers in entirely different ways.

Figure 9.1: The circuit of a male passenger with a third-class
ticket

Figure 92.2:
kickeek

2.1

9.1 Bayesian Networks 255

The modifiers used in a Naive Bayes classifier are simple yet powerful tools.
But they are not well-suited to be replicated in a quantum algorithm.

In this chapter, we address these shortcomings by using quantum oracles.
We create a Quantum Bayesian Network.

Bavesiav\ Nebworles

Bayesian networks are probabilistic models that model knowledge about an
uncertain domain. Such as the survival of a passenger aboard the Titanic.

Bayesian networks build on the same intuitions as the Naive Bayes classifier.
But in contrast to Naive Bayes, Bayesian networks are not restricted to repre-
sent solely independent features. They allow us to include as many interde-
pendences that appear reasonable in the current setting.

A Bayesian network is represented as a directed acyclic graph with nodes and
edges.

Ethical
Norm

Node -~ g Edge 4

Filqure 9.3: Example of a Bayesian Nebwork
9 P Y

The nodes represent random variables, such as the gender of a passenger or
whether s/he was a child.

The edges correspond to the direct influence of one variable on another. In
other words, the edges define the relationship between two variables. The
directions of the arrows are important, too. The node connected to the tail
of the arrow is the parent node. The node connected to the head is the child
node. The child node depends on the parent node.

We quantify this dependence using conditional probability tables (CPT) for

256 Chapter 9. Quantum Bayesian Networks

discrete variables and conditional probability distributions (CPD) for contin-
uous variables.

The following table depicts the posterior probabilities of survival given a pas-
senger’s gender (Sex).
Female Male

P(Survival=True, Sex) 0.74 0.19
P(Survival=False, Sex) 0.26 0.81

Table 9.1: Probabilities to survive given the gender

Female passengers had a much better chance to survive than male passen-
gers.

While there are only two genders (in our dataset), there are many different
ages of passengers. Technically, being still a discrete variable, it rather seems
appropriate to model age as a continuous variable. The following graph de-
picts the CPD of the posterior probability of survival given a passenger’s Age.

Figure 9.4: CPD of survival given a passenger's age

At first sight, it seems as if the age of a passenger does not have an apparent
effectonthechancesto survive. Even worse, the chance to survive variesalot

9.1 Bayesian Networks 57

between subsequent ages. For instance, a 47-year old passenger had a chance
to survive of 0.1, whereas a 48-year old had a chance of 0.6.

Listing 9.1: The chances of survival

def chance_to_survive(age):
pop = train[train.Age.eq(age)]
surv = pop[pop.Survived.eq(1)]
prob = len(surv)/(len(pop)+1)
return "A {}—year old passenger had a chance to survive of {}".format(
age, prob)

print(chance_to_survive(47))
print(chance_to_survive(48))

A 47-year old passenger had a chance to survive of 0.1
A 48-year old passenger had a chance to survive of 0.6

Such variations do not seem reasonable.

Instead, if we consider the characteristic of being a child (ischild) instead of
the Age of a passenger. Children of the age of 8 or below had a significantly
higher chance to survive than adults.

Listing 9.2: Survival of children

U8 # max age of a child
max_child_age = 8

probability to survive of children

pop_child = train[train.Age.le(max_child_age)]
surv_child = pop_child[pop_child.Survived.eq(1)]
p_child = len(surv_child)/len(pop_child)

oX P wo

probability to survive of adults

pop_adult = train[train.Age.gt(max_child_age)]
surv_adult = pop_adult[pop_adult.Survived.eq(1)]
p_adult = len(surv_adult)/len(pop_adult)

print("{} children had a chance to survive of {}".format(len(pop_child),
round(p_child, 2)))

print("{} adults had a chance to survive of {}".format(len(pop_adult),
round(p_adult, 2)))

258 Chapter 9. Quantum Bayesian Networks

54 children had a chance to survive of 0.67
660 adults had a chance to survive of 0.38

Let’s consider the Bayesian network with three nodes. The variables Sex and
being a child denote the parent nodes. These nodes don’t have parents them-
selves. They are the root nodes. Their CPTs are conditioned on an empty
set of variables. Thus, they are equal to the marginal (or prior) probabilities.
Note, these are not the probabilities of surviving but the probabilities of the
appearance of the respective characteristic.

Survival of the Titanic shipwreck is the child node. This CPT is conditioned
on the values of the parent nodes as depicted in the following figure.

female [female [male | male

child | adult | child| adulk
P(Survived = True|Sex,isChild) 0.18
P(Survived = False|Sex,isChild) 0.82

Figure 9.5: Bayesian network of surviving the Titanic
shipwreck

Given such a set of CPTs, we can calculate the marginal probability of sur-
vival.

Due to the independence between nodes Sex and ischild (their values are in-
dependent because we have not modeled any dependence, but their effect on

2.2

9.2 Composing Quantum Computing Controls 259

Survival is not independent), the joint probability of a passenger having a cer-
tain Sex and isChild can be calculated as P(Sex, isChild) = P(Sex) - P(isChild).

Therefore, the conditional probability to survive given a certain Sex and
isChild is P(Survival) = P(Survival|Sex,isChild) - P(Sex) - P(isChild).

Foremost, a Bayesian network is a data structure. First, it represents the set
of conditional independence assumptions. Any two nodes that are not con-
nected through an edge are assumed independent of each other. Second, a
Bayesian network contains probability tables and distributions in a compact
and factorized way.

This data structure enables us to deduce the properties of a population. A
Bayesian network supports forward and backward inference. For instance,
we can calculate the overall chance to survive by integrating over the distri-
bution of the child node (forward inference). And, given knowledge about
the survival of a passenger, we can deduce how much certain characteristics
contributed to his or her survival. For instance, if we look at the graphs of
the child node, we can see the passenger’s gender mattered a lot unless the
passenger was a child. According to the norm of women and children first,
they did not favor girls over boys a lot. This interdependency between Sex
and isChild could not be included in a Naive Bayes classifier.

This data structure, the Bayesian network graph, can be created in two differ-
ent ways. Given sufficient knowledge of the dependencies, it can be designed
a priori by the developer. Alternatively, it can be learned by the machine it-
self.

On our path to quantum machine learning, we will do both. We start with a
small quantum Bayesian network (QBN) that we model ourselves. Then, we
let the machine actually learn from the data.

Compasiv\g Quankum Compu&ing
Conkrols

The QBN we are about to build will consist of some advanced transformation
gates. Let’s have a brief look at how we can create such gates

Quantum transformation gates allow us to work with qubits. The Ry-gate en-
ables us to specify the qubit state vector angle 6 that controls the probability
of measuring the qubit as either e or 1. We used it to let a qubit represent the
marginal probability of surviving the Titanic shipwreck.

260 Chapter 9. Quantum Bayesian Networks
Listing 9.3: Specify the marginal probability

from qiskit import QuantumCircuit, Aer, execute
from giskit.visualization import plot_histogram
import matplotlib.pyplot as plt

from math import asin, sqrt

def prob_to_angle(prob):

Converts a given P(psi) value into an equivalent theta value.

1
R
3
4
s
&
7
¥
2

return 2xasin(sqrt(prob))
gc = QuantumCircuit(1)

Set qubit to prior
gc.ry(prob_to_angle(0.4), 0)

execute the qc

g results = execute(qc,Aer.get_backend('statevector_simulator')).result().
get_counts()

plot_histogram(results)

Figure 9.6: The marginal probability

0.60
0.45
0.30
0.15
0.00

[7y]
[§]
=
E
o
i |
o
o

The X-gate (NOT-gate) switches the probability amplitudes of a qubit. We
used it to set a qubit value to 1 in a specific state. For instance, to work with
the remainder after we calculated the prior.

9.2 Composing Quantum Computing Controls 261
Listing 9.4: Use the X-gate to work with the remainder

gc = QuantumCircuit(1)

Set qubit to prior
gc.ry(prob_to_angle(0.4), 0)

Switch the qubit's value
gc.x(0)

execute the qc

results = execute(qc,Aer.get_backend('statevector_simulator')).result().
get_counts()

plot_histogram(results)

1
2
3
4
s
&
7
¥
2
lo

[ond
-

Figure 9.7: The X-gate changes the qubit state

0.60
0.45
0.30
0.15
0.00

[7y]
[§]
=
E
o
i |
o
o

This is useful because some gates only apply a transformation on a qubit (the
target qubit) when another qubit (the control qubit) is in the state |1).

For instance, the controlled Ry-gate (CRy-gate) lets us specify a joint probabil-
ity of the prior’s remainder and another probability.

262 Chapter 9. Quantum Bayesian Networks
Listing 9.5: Calculate the joint probability

gc = QuantumCircuit(2)

Set qubit to prior
gc.ry(prob_to_angle(0.4), 0)

Switch the qubit's value
gc.x(0)

1
R
3
4
s
&
7
¥
2

Calculate the joint probability of NOT—prior and an event
gc.cry(prob_to_angle(0.8), 0,1)

execute the qc

results = execute(qc,Aer.get_backend('statevector_simulator')).result().
get_counts()

plot_histogram(results)

Figure 9. The joint probability

0.45
0.30
0.15

[4]
[i §]
=
E
]
i |
o
™

0.00

The CRy-gate is a composite gate. We learned how to create this gate from
more basic gates, in section 6.3. Foremost, we used the CNOT-gate.

At first sight, the ability to apply an X-gate on a qubit if another qubit is |1)
does not seem necessary. But the CNOT-gate takes a central role when creat-
ing higher-level qubits because it entangles two qubits. Conceptually, entan-
gled qubits share a state of superposition. Practically, the CNOT-gate is the
building block of most composite quantum transformation gates.

The following code depicts the decomposition of the CRy-gate.

9.2 Composing Quantum Computing Controls 263
Listing 9.6: Decomposition of the CRY-gate

gc = QuantumCircuit(2)

Set qubit to prior
gc.ry(prob_to_angle(0.4), 0)

Switch the qubit's value
gc.x(0)

1
2
3
4
s
&
7
¥
2

Apply half of the event's probability
gc.ry(prob_to_angle(0.8)/2, 1)

entangle qubits 0 and 1
3 qc.cx(0,1)

Apply the other half of ev_b
gc.ry(—prob_to_angle(0.8)/2, 1)

g # unentganle qubits 0 and 1
gc.cx(0,1)

execute the qc

results = execute(qc,Aer.get_backend('statevector_simulator')).result().
get_counts()

plot_histogram(results)

Figure 99: Result of the decomposed CRY-gate

N
[i §]
=
._E
5]
i |
o
a

0.00

What if you wanted to apply a certain gate if and only if two other qubits are

264 Chapter 9. Quantum Bayesian Networks

in state |1)? If you read this book carefully thus far, you may object AND is not a
valid qubit gate. A brieflook at the truth table discloses that the AND-operator
is not reversible. If you get false as its output, you can’t tell what the input
was. It could be one of three different states.

Figure 9.10: Truth-table of AND

But the CNOT-gate provides a way out. Remember, when we constructed the
CRy-gate, we used the CNOT-gate to switch the amplitudes of the controlled
qubit in the middle of a rotation about the first half and a backward rotation
about the second half of the overall rotation. A similar pattern allows us to
create a controlled-controlled gate. Such a gate contains an AND-relationship
because it has two control qubits and it only changes the target qubit if both
control qubits are in state |1).

The following figure depicts the circuit of the CCNOT-gate - a controlled-
controlled-NOT-gate.

The CCNOT-gate is also known as the Toffoli-gate. The Toffoli-
gate has a different algorithm than this one. The Toffoli-gate
uses qubit phases. Phases are concept we cover later in this book.
The implementation we presented here is not optimal, but it
provides a vivid explanation of the underlying concept.

(!

9.2 Composing Quantum Computing Controls 265

Figure 2.11: The CCNOT-gate

The following listing depicts the code of this CCNOT-gate sequence. We de-
fine a reusable function ccnot (line 4). It starts with the controlled rotation
with qubit ¢y as control qubit (line 6). It rotates the controlled qubit about

6 = 7, the value we defined earlier (line 2).

Then, we have another controlled rotation with the same qubit as the control
qubit (line 11) encapsulated into CNOT-gates (lines 10 and 12). It is important
to note that this encapsulated CRy-gate has —6 as a parameter. It denotes a
rotation in the opposite direction.

Finally, we have another controlled rotation about 6. Here, qubit ¢; is the
control qubit.

Let’s go through the circuit one by one. First, we define our 6 = Z (line 2).
The value 7 represents rotation about a quarter of the circle. This is half of
the overall rotation we want to apply. The rotation about half of the circle (r)
switches the amplitudes from |0) to |1) and vice versa.

In the first step, we rotate the controlled qubit about a quarter circle if qubit
¢1 isin state |1) through a CRy(5)-gate (line).

266 Chapter 9. Quantum Bayesian Networks
Listing 9.7: The CCNOT-function

k8 from math import pi
Pl theta = pi/2

def ccnot(qc):
Apply the first half of the rotatione
gc.cry(theta, 1,2)

This sequence has no effect if both control qubits
are in state |1>

gc.cx(0,1)

gc.cry(—theta,1,2)

gc.cx(0,1)

Apply the second half of the rotation
gc.cry(theta, 0,2)

execute the qc
return execute(qc,Aer.get_backend('statevector_simulator')).result().
get_counts()

If both control qubits are in state |1), the result of this gate is as the following
figure depicts.

Figure 9.12: State after half of the rotation

0.60
0.45
0.30
0.15

[4]
[i §]
=
E
i
i |
o
a

0.00

Both control qubits (the upper ones, read right to the left) are in state |1)
per our initialization. Then, half the time (as per rotation about %), the con-

9.2 Composing Quantum Computing Controls 267

trolled qubit isin state |1).

Next, we apply a sequence of a CNOT-gate with ¢, as the control qubit and ¢;
as the target qubit. For ¢y is in state |1), it changes the state of ¢; from |1) to
|0). The following controlled rotation with ¢, as the control qubit has no ef-
fect because ¢; isnow in state |0) and the CRy-gate only changes the controlled
qubit if the control qubit is in state |1). The next CNOT-gate reverts the effect
the first CNOT-gate had. For the control qubit ¢y is still in state |1), it switches
the state of ¢; back from state |0) to |1).

If both control qubits are in state |1), these three gates have no effect at all.

Finally, we apply a controlled rotation about 7 with ¢ as the control qubit.
This turns the state of the controlled qubit ¢, from being in state |1) half the
time to be in state |1) all the time. It rotates the qubit state vector about the
other quarter of the circle, adding up to a half rotation. A half rotation about
the circle turns the state |0) into |1) as the following figure shows.

0=nx

Figure 9.13: Angles in a circle

Let’slook at the code and the result if both control qubits are in state |1).

268 Chapter 9. Quantum Bayesian Networks
Listing 9.8: The CCNOT-gate with both control qubits in state | 1>

gc = QuantumCircuit(3)

set both qubits to |1>
gc.x(0)
gc.x(1)

apply the ccnot—gate and execute the qc
results = ccnot(qc)
plot_histogram(results)

OX P wre

Figure 9.14: Result of the CCNOT-gate with both control qubits
in state 1>

1.00
0.75
0.50
0.25
0.00

L
1]
=
._E
5]
o
o
s

We see qubit ¢, isin state |1) all the time. It completely switched from its ini-
tial state |0).

What if one of the control qubitsis notin state |1)? Let’s say qubit ¢ is in state
0).

Again, the first CRy-gate rotates the qubit state vector of the controlled qubit
by 7 - a quarter circle - because the control qubit ¢; is in state [1).

But this time, the following CNOT-gate has no effect. For qubit ¢ isin state |0),
itdoes not switch the state of qubit ¢, from |1) to |0). Asaresult, the following
CRy-gate with 6 = —Z takes effect. It reverts the effect the first CRy-gate had.
The following CNOT-gate and the final CRy-gate have no effect because qubit
qoisin state |0). Thus, we only applied the first two CRy-gates with the second
reverting the first. Let’s see the code and the result.

9.2 Composing Quantum Computing Controls 269
Listing 9.9: The CCNOT-gate with only control qubit q1 in state | 1>

W qc = QuantumCircuit(3)

2

k] # set only qubit g_1 to |1>

g qc.x(1)

s

3 # apply the ccnot—gate and execute the qc
¥4 results = ccnot(qc)

b4 plot_histogram(results)

Figure 9.18: Result of the CCNOT-gate with only control qubif:
9l in state [1>

1.00
0.75
0.50
0.25
0.00

[Ty]
[il]
=
E
5]
L
o
s

We see the overall state did not change. The target qubit remainsin state |0).

Finally, let’s see what happens if only control qubit ¢ is in state |1), but qubit
q1 is not. Then, the first CRy-gate is passed without effect. The following se-
quence of the second CRy-gate encapsulated into CNOT-gates first switches
qubit ¢; from |0) to |1), then applies the rotation of the controlled qubit about
—60 = —7Z, and switches qubit ¢; back from |1) to |0). Now the controlled qubit
has been rotated by half of a circuit in the opposite direction. The following
figure depicts the result thus far.

270 Chapter 9. Quantum Bayesian Networks

Figure 9.16: State after half of the rotation in opposite
direction

0.60
0.45
0.30
0.15

[7y]
[§]
=
E
o
i |
o
o

0.00

Half of the time, the controlled qubitisin state |1). Since the probabilities are
the squared amplitudes that we change by a rotation, we do not see a negative
value here.

Finally, the last CRy-gate rotates the controlled qubit back by 6 because the
control qubit go is in state |1). The result is the original state again, as the fol-
lowing code and result show.

Listing 9.10: The CCNOT-gate with only control qubit qO in state | 1>

8 qc = QuantumCircuit(3)

2

£l # set only qubit q_0 to |1>

g qc.x(0)

s

1Y # apply the ccnot—gate and execute the qc
¥ results = ccnot(qc)

b:d plot_histogram(results)

9.2 Composing Quantum Computing Controls 271

Figure 9.17: Result of the CCNOT-gate with only control qubi&
90 n state [1>

1.00
0.75
0.50
0.25
0.00

[y
(i}
=
E
5]
L
o
s

We created a controlled-controlled-NOT-gate through a composition of
CNOT- and CRy-gates. We could even further compose the CRy-gates through
CNOT- and Ry-gates. This effectively shows the importance of the CNOT-
gate. The CNOT-gate does not only serve as the best example to explain
quantum entanglement, but it is also the building block of creating fur-
ther controlled gates. Or controlled-controlled-gates. And even controlled-
controlled-controlled-gates. You may continue this sequence until you run
out of qubits.

The pattern we used here can be applied in general. Thus, let’s have a more
abstract look at what we just did.

Insection 6.3, we constructed a controlled Ry-gate using the CNOT-gate. Let’s
revisit this approach in general, too.

The CNOT-gate lets us easily turn any qubit transformation gate, let’s call it
U, into a controlled one.

Besides the CNOT -gate, there are two more things we need. The first thing is
to split the gate U into halves. We must find a gate-let’s call it V that, if applied
twice, results in the desired overall transformation gate U. We cansayV -V =
UorV =+/U. Thus,V is the square root of U.

The second thing is to create a gate that reverts the effect of gate V. Usually,
this is the transpose of the gate’s transformation matrix. The transpose (V)
of a matrix is the original matrix V flipped over its diagonal (from top-left to
bottom-right).

872 Chapter 9. Quantum Bayesian Networks

The following figure depicts how we control an arbitrary gate U.

& olul

Figure 9.1¥: Constructing a controlled gate

First, we apply the V-gate on the controlled qubit. Thus, we completed half
of the U-gate. Then, we entangle the qubits. Thus, the controlled qubit flips
its state. But it flips it only if the control qubit is in state |1).

When we now apply the transpose matrix V7, it reverts the effect of V. But
only if the control qubit is |0) because in this case, the CNOT-gate does not
have any effect.

By contrast, if the control qubit is in state |1), the CNOT-gate flipped the state
of the controlled qubit. It is in the exact opposite state. When we now apply
the transposed V7 -gate, we apply the exact opposite of V once again because
vT isthe opposite of V. Essentially, if the control qubitisin state |1) we applied
NOT-V -V-or NOT-U.

The final CNOT-gate turns the state NOT-U into U. But again, only if the con-
trol qubit isin state |1).

Now, let’s have a look at the controlled-controlled gate. We want to create a
quantum transformation gate we apply on a qubit ¢. (the target qubit) only if
two control qubits, ¢p and ¢, are in state |1).

We use the same tools.

« CNOT-gate
- V-gateis the square root of U
- VT-gate that reverts the effect of V

This time, the gate V needs to be a controlled gate already. Ifit is not, you can
use the CNOT-gate to turn any gate into a controlled gate. As we just saw.

The following image shows the construction of a controlled-controlled gate.

This controlled-controlled gate, let’s callit U again, applies only if two control
qubits, g and ¢, are in state |1).

Again, we start with applying the gate V. For this is a controlled qubit now,
we use g; as the control qubit and ¢. as the target qubit. If ¢; is in state |1), we

9.2 Composing Quantum Computing Controls 73

q0
——
S ql
dc

Figure 9.19: The structure of a controlled-controlled qate

apply the first half of the overall transformation.

Accordingly, we end the circuit by applying gate V with ¢y as the control qubit
and ¢. as the controlled qubit. If ¢y isin state|1), too, we apply the second half
of the overall transformation.

In between, we have a sequence of three gates: CNOT, V', and CNOT . Thefirst
CNOT-gate puts the then controlled qubit ¢; into the state |0) if both qubits g
and ¢; are in state |1) or in state |0). If one qubit is in state |0) and the other
qubitisin state|1), it puts the controlled qubit ¢; into the state |1).

The following figure shows the truth-table of applying the CNOT-gate with ¢;
as the controlled qubit.

Figure 9.20: Truth-table of CNOT

As a result, we apply the following gate V7 only if one qubit is in state |0) and
the other isin state |1). In these cases, we applied one of the two V-gates, ei-
ther the one at the start or the end. Thus, there is no effect on the controlled
qubit g. in total. We applied V on it and V7 to revert it.

If both qubits ¢y and ¢, are in state |0), we do nothing at all leaving the con-
trolled qubit as it was, too. Only if both qubits ¢p and ¢; are in state |1), then
we apply both V-gates while not applying the gate Vr.

The CNOT-gate after the V7 -gate reverts the effect of the first CNOT-gate so

2.3

74 Chapter 9. Quantum Bayesian Networks

that we leave qubit ¢; unchanged as well.

Finally, if V is not a controlled gate, we can make it one by inserting the first
circuit into the second. The following figure depicts the resulting circuit.

B ai

Figure 9.21: Complete construction of a controlled-controlled
gate

In this case, we need to split the V-gate into halves, too. Thus, W is the square
rootof V.

In summary, by splitting the overall effect into halves (V), we can implement
a gate (U) that depends on two other qubits to be in state |1). If neither one
control qubitis|1), nothing happensatall. If only one control qubitisin state
1), we miss one application of V, and we apply the V7-gate that cancels the
effect of the one V-gate we applied. If both control qubits are in state |1), we
apply both V-gates but miss the V7 gate. That is the controlled-controlled U-
gate.

Circuik &mpi&meh&a&ion

We start with the implementation of our example thus far, the effect the Sex
of a passenger and being a child (ischild) had on the survival of the Titanic
shipwreck.

A qubit represents each node in the Bayesian network. Since all our nodesare
binary (Sex, isChild, Survival), a single qubit each is sufficient. If we had more

9.3 Circuit implementation 275

discrete states or a continuous distribution, we would need more qubits. The
qubit states represent the marginal (for root nodes) and the conditional (for
Survival node) probability amplitudes of the corresponding variables.

The state |0) represents a male passenger or an adult. The state |1) a female or
achild. The superposition of the qubit denotes the probability of either state.

© Ysex = \/P(male)|0) + /P(female)|1)
* Wiscnita = v/ P(adult)|0) 4+ /P (child)|1)

We initialize these two qubits through rotations around the Y-axis.

Listing 9.11: Initialize the parent nodes

the maximum age of a passenger we consider as a child
max_child_age = 8

probability of being a child
population_child = train[train.Age.le(max_child_age)]
p_child = len(population_child)/len(train)

probability of being female
population_female = train[train.Sex.eq("female")]
p_female = len(population_female)/len(train)

1
R
3
4
s
&
7
¥
2

Initialize the quantum circuit
gc = QuantumCircuit(3)

Set qubito to p_child
gc.ry(prob_to_angle(p_child), 0)

Set qubit1l to p_female
gc.ry(prob_to_angle(p_female), 1)

We calculate the probabilities of being a child (line 6) and being female (line
10). We use Ry-gates to let the qubits g, (line 16) and ¢; (line 19) represent these
marginal probabilities.

Next, we add the CPT of survival to the circuit. Thisis a little more work.

There are four different combinations of parent node values, Sex, and isChild
. These are, a male adult (|00)), a male child (|01)), a female adult (|10)), and
a female child (|11)). Therefore, we have four rotation angles, one for each
parent node combination.

276 Chapter 9. Quantum Bayesian Networks

For each of these combinations, we use a controlled-controlled Ry-gate (CCRy)
to specify the probability of survival. If there were n parent nodes, then we
would implement a C"Ry-gate.

Asthe following figure shows, we encapsulate each rotation into X-gates. For
a CCRy-gate only applies the rotation on the controlled qubit if both control
qubits are in state |1), the leading X-gates select the corresponding combina-
tion, and the trailing X-gates revert the selection.

For example, to apply the conditional probability of a male adult (state |00)),
we need to flip both qubits. This is what we do. After applying the CCRy-gate
with the respective angle, we flip the qubits back into the original state.

Ry (Ochita)

Ry (efemale) :

Figure 9.22: The gquantum bayesian network circuit

We learned how to create a CCRy gate in section 9.2. The function ccry (lines
1-6) adds such a gate to our circuit.

Listing 9.12: Definition of the CCRY-gate

f8 def ccry(qc, theta, controll, control2, controlled):
Pl qc.cry(theta/2, control2, controlled)

1 qc.cx(controll, control2)

4 qc.cry(—theta/2, control2, controlled)

] qc.cx(controll, control2)

] qc.cry(theta/2, controll, controlled)

In the following code, we calculate the conditional probability of each of our
four cases. We separate the population, for example, female children (line 3),
separate the survivors among them (line 4), and calculate their probability
to survive by dividing the number of survivors by the total number of female
children among the passengers (line 5).

9.3 Circuit implementation 77

We do the same for female adults (lines 8-10), male children (lines 13-16), and
male adults (lines 19-21).

Listing 9.13: Calculate the conditional probabilities

1
R
3
4
s
6
7
¥
2
lo
11
12

female children

population_female=train[train.Sex.eq("female")]
population_f_c=population_female[population_female.Age.le(max_child_age)]
surv_f_c=population_f_c[population_f_c.Survived.eq(1)]
p_surv_f_c=len(surv_f_c)/len(population_f_c)

female adults
population_f_a=population_female[population_female.Age.gt(max_child_age)]
surv_f_a=population_f_a[population_f_a.Survived.eq(1)]
p_surv_f_a=len(surv_f_a)/len(population_f_a)

male children

population_male=train[train.Sex.eq("male")]
population_m_c=population_male[population_male.Age.le(max_child_age)]
surv_m_c=population_m_c[population_m_c.Survived.eq(1)]
p_surv_m_c=len(surv_m_c)/len(population_m_c)

male adults
population_m_a=population_male[population_male.Age.gt(max_child_age)]
surv_m_a=population_m_a[population_m_a.Survived.eq(1)]
p_surv_m_a=len(surv_m_a)/len(population_m_a)

Next, we select the states representing these groups of passengers and apply
the CCRy-gate with the corresponding probability.

278 Chapter 9. Quantum Bayesian Networks
Listing 9.14: Initialize the child node

set state |00> to conditional probability of male adults
gc.x(0)

gc.x(1)

ccry(qc,prob_to_angle(p_surv_m_a),0,1,2)

gc.x(0)

gc.x(1)

set state |[01> to conditional probability of male children
gc.x(0)

ccry(qc,prob_to_angle(p_surv_m_c),0,1,2)

gc.x(0)

1
R
3
4
s
&
7
¥
K

set state |10> to conditional probability of female adults
gc.x(1)

ccry(qc,prob_to_angle(p_surv_f_a),0,1,2)

gc.x(1)

set state |11> to conditional probability of female children
ccry(qc,prob_to_angle(p_surv_f_c),0,1,2)

We’re now ready to run the circuit. Let’s have a look.

Listing 9.15: Execute the circuit

kB # execute the qc

Pl results = execute(qc,Aer.get_backend('statevector_simulator')).result().
get_counts()

3 plot_histogram(results)

9.3 Circuit implementation 279

Figure 9.23: Results of the gbn

0.500

0.45
S 0.201
0.15 C.140 8-109
0.010 0.006 0.030 0.016

=
=
™
e
Qo
0o

0.00

We can see eight different states. These belong to the victims (qubit ¢, = 0)
and the survivors (¢, = 1) of the four groups. Thus, the overall marginal prob-
ability of surviving is the sum of all states where qubit ¢, = 1.

To not add them manually, let’s include a measurement into our circuit. We
include a ClassicalRegister into our circuit.

Listing 9.16: A quantum circuit with classical register

¥ # Quantum circuit with classical register
P4 qr = QuantumRegister(3)

k] cr = ClassicalRegister(1)

4 gc = QuantumCircuit(qr, cr)

Then, we need to apply all the gates (skipped for brevity). We add a measure-
ment (line 3). Here, we’re interested in qubit ¢,.

Finally, we select the appropriate backend (qasm_simulator) and run the circuit
several times (here 1,000 shots) (line 4).

Listing 9.17: Run the circuit including a measurement

kB # —— INCLUDE ALL GATES HERE ——

2

23 qc.measure(qr[2], cr[0])

4 results = execute(qc,Aer.get_backend('qgasm_simulator'), shots=1000).
result().get_counts()

=] plot_histogram(results)

280 Chapter 9. Quantum Bayesian Networks

Figure 9.24: QBN including a measurement

0.6
0.4

0.2

7]
[i]
=
E
5]
i |
o
&

Theresult shows that we’re close to the actual probability of surviving of 0.38.
The actual result varies a little since we do not calculate but empirically sim-
ulate this result.

Implementing a quantum Bayesian network is straightforward for a set of bi-
nary state variables because we can represent each variable by a single qubit.
Even if we had variables with more than two states, the structure would not
change. We still would activate each state by X-gates and apply the corre-
sponding controlled rotation. But, we would have to cope with more states.

We have implemented our quantum Bayesian network. It represents a pas-
senger’s overall chance to survive the Titanic shipwreck. It considers two
features, the passenger’s gender and whether the passenger was a child.

It’s time to use this network. We want to infer something we don’t already
know. We perform inference.

Generally, (statistical) inference is the process of deducing properties about
apopulation or probability distribution from data. This is the reason why we
build the entire network. We want to be able to make predictions about some
new data from the data we already know.

Specifically, Bayesian inference is the process of deducing properties about
a population or probability distribution from data using Bayes’ theorem.

There are various questions we can answer with inference. We already per-
formed one type of inference. That is marginal inference. We calculated the
overall probability of survival. Given our network with three variables, we
tried to find the probability of one variable, Survival.

Posterior inference is the second type of inference. It aims to find the pos-
terior distribution P(H|E = ¢) for a hidden variable H given some evidence
E = e. Basically, we infer the posterior probabilities by applying Bayes rule.
For example, given that we know the passenger’s gender and age, what was
her chance to survive? We perform this type of inference when we use our
Bayesian network to predict the survival of a single passenger.

10,1

282 Chapter 10. Bayesian Inference

Maximum-a-posteriori (MAP) inference is the third type of inference. Itisa
variational approach for fitting model parameters to training data. We can
use it to estimate the distribution of a hidden variable that best explains an
observed dataset. In general, variational methods approximate the distribu-
tion of a hidden variable analytically. Based on a mathematical expression of
the distribution of interest, these methods solve alternate expressions that
are known to be close to the original distribution.

Let’sdoit.

Learning Hidden Variables

Our quantum Bayesian network is quite simple. It uses only two features of
our dataset. Let’s add another. Let’s add the ticket class (Pclass). We already
know the ticket class was a pretty important factor determining the survival
of the Titanic shipwreck.

If we added Pclass as the third condition of Survival, the CPT would have
twelve cases. One case for each combination. It would be straightforward to
create. However, the advantage of a Bayesian network lies in deciding which
dependencies to include and which to omit. A network with a more selective
structure sometimes reveals interesting patterns in our data. Moreover, a
flat Bayesian network is not that interesting.

Let’s make a different choice on the design of our network. Thus far, we use
the Age and the gender (sex) of a passenger because we know about the social
norm of “women and children first.”

Instead of keeping the direct effect of Age and Sex on Survival, we define
another variable. It represents whether a passenger was favored by a norm
when the crew decided who may board a lifeboat. It is not limited to women
and children. Maybe some men were selected for other aspects we don’t
know. We name it Norm.

Of course, being favored by aNormaffects a passenger’s chancesto survive. Yet,
to be favored for a valuable seat in a lifeboat, the passenger must have been
close to a lifeboat.

Once no more favored person was in sight of the crew, they might have given
the next seat to anyone else in sight. Another decisive factor is the accessibil-
ity of the decks where the passengers boarded the lifeboats. Let’sassume that
the Pclass represents this accessibility. To not complicate things too much
right away, we say Pclass has a direct effect on Survival. In contrast the Age
and Sex of a passenger have an indirect impact by determining the Norm that

102

10.2 Estimating A Single Data Point 283

influences Survival.

The following figure depicts our updated Bayesian network.

Ticket
class

Figure 10.1: U[ado&ed Bajesiqm nebwork

The question is, how do we calculate the CPTs involving the Norm. The Norm is
conditionally dependent on Age and Sex. And Survival is conditionally depen-
dent on Norm and Pclass. But beyond its relation to other variables, we don’t
have any data of the Norm. It is a hidden variable. Fortunately, given some ob-
served data and the specified relationships, we can infer the CPTs involving
the Norm.

Estimating A Single Data Point

Before we calculate Norm, let’s look at a straightforward case first. We apply a
variational method to approximate the distribution of a hidden variable an-
alytically. Let’s say we have two binary variables, A and B. We know they’re
not independent. Ais the parent node. B is the child node whose conditional
probability we try to estimate.

The following figure depicts this Bayesian network.

Usually, we count how many times both variables are true, how many times
Ais true and B is false, how many times A is false, but B is true, and the times
both are false. Then, we divide each of these counts by the total number of
cases and get the maximum likelihood probabilities.

Here’s the data we have of A and B. The problem is, we miss one data point.

284 Chapter 10. Bayesian Inference

Figure 10.2: A simple Bayesian network

Figure 10.3: Dataset with missing value

The following listing specifies the data in Python.

Listing 10.1: Dataset with missing value

k¥ data = [
|4 (1, 1), (1, 1), (e, 0), (o, 0), (0, 0), (0, None), (0, 1), (1, 0)
3

¢ Thedata have to be missing at random for the methods we apply
to be helpful. The data must not be missing for a reason. For in-
stance, if we don’t know the Age of passengers who died aboard
the Titanic but only know the Age of survivors because we asked
them after their rescue, data would not be missing at random.
We would have biased data and could not reliably infer the Age
of victims from the data. But if we took the Age from a passenger
list but we could not read the Age of some due to bad handwrit-
ing, we could assume the data to miss at random.

»

Before we start filling in the missing value, we need an evaluation function.
We need some measures to tell us how well we do.

Let’susealikelihood function. Likelihood functions represent the likelihood
of a model to result in the observed data. There are two well-known types of

10.2 Estimating A Single Data Point 285

likelihood functions.

The maximum likelihood function is defined as the product of all probability
estimations.

L(6) = flﬁmw)

The log-likelihood function takes the natural logarithm of the estimations
and sums them.

F(8) = ilnmy,we)

In these equations, we calculate the likelihood score (either L(6) or F(0))
based on the data (), the variables (y;, in our example A and B), and the model
(f;). The model is our Bayesian network, including all its parameters.

Both methods produce a single number as output—the likelihood score.
More likely events have higher values. Thus, the higher the number, the bet-
ter the model. However, the likelihood score must be interpreted carefully.
The more data you add, the lower the overall score will be. With each proba-
bility below 1 (any probability is at maximum 1), you either multiply by a num-
ber below 1 (the actual probability if you use maximum likelihood) or you
add a number below O (the logarithm of a probability below 1 if you use log-
likelihood). The result gets smaller and smaller. Consequently, these meth-
ods are only meaningful if you compare two (or more) models on the same
data.

Compared to the maximum likelihood method, the log-likelihood offers
mathematical convenience because it lets us turn multiplication into addi-
tion. Therefore, we use the log-likelihood function.

The following function implements the log-likelihood algorithm adapted to
our needs.

286 Chapter 10. Bayesian Inference
Listing 10.2: The log-likelihood function adapted for our data

k¥ from math import log

] def log_likelihood(data, prob_a_b, prob_a_nb, prob_na_b, prob_na_nb):
def get_prob(point):
if point[0] == 1 and point[1] == 1:
return log(prob_a_b)
elif point[@] == 1 and point[1] == 0:
return log(prob_a_nb)
elif point[@] == 0 and point[1] == 1:
return log(prob_na_b)
elif point[@] == 0 and point[1] == 0:
return log(prob_na_nb)
else:
return log(prob_na_b+prob_na_nb)

return sum(map(get_prob, data))

The function expects the data to be a list of tuples with two items each. Fur-
ther, it takes the parameters of our model. These are the probabilities of A
and B (prob_a_b), A and not B (prob_a_nb), not A and B (prob_na_b), and not A and
not B (prob_na_nb) (line 3).

We call the function get_prob for each tuple in the list and return the sum of
all results. This function get_prob takes a data point (the tuple) and evaluates
the combination of it. It simply returns the logarithm of the corresponding
probability. For example, if both values of A and B are 1 it returns log(prob_a_b
)—the probability of A and B.

If we can’t identify the combination, we return the logarithm of the sum of
prob_na_band prob_na_nb. Thisisthe case when we miss the value of B. We have
only a single case ((@, None))in our data, and its value of A ise. Thus, we know
it contains not A. But we’re not sure about B.

If our data were different, we would need a different implementation.

We start with importing the Qiskit libraries and the implementation of the
prob_to_angle-function we introduced earlier.

10.2 Estimating A Single Data Point 287
Listing 10.3: Our known convenience function

B from giskit import QuantumCircuit, Aer, execute

PA from qiskit import ClassicalRegister, QuantumRegister
k2] from qiskit.visualization import plot_histogram

8 import matplotlib.pyplot as plt

=] from math import asin, sqrt
&
7
¥

def prob_to_angle(prob):
return 2xasin(sqrt(prob))

Further, we introduce another convenience function. It creates the scaffold
of a quantum circuit for us.

Listing 10.4: the as-pqc function

Wl def as_pqgc(cnt_quantum, with_qc, cnt_classical=1, shots=1, hist=False,
measure=False):

Prepare the circuit with qubits and a classical bit to hold the
measurement

gr = QuantumRegister(cnt_quantum)

cr = ClassicalRegister(cnt_classical)

gc = QuantumCircuit(qgr, cr) if measure else QuantumCircuit(qr)

N

with_gc(qc, qr=qr, cr=cr)

oXwuornPw

results = execute(
qc,
Aer.get_backend('statevector_simulator') if measure is False else Aer.
get_backend('qasm_simulator'),
shots=shots
).result().get_counts()

return plot_histogram(results, figsize=(12,4)) if hist else results

The as_pgc-function takes as the required parameter the number of qubits
(cnt_quantum) we use during the initialization of the QuantumRegister (line 3).
The optional parameter cnt_classical takes the number of classical bits we
employ in the circuit and initializes the ClassicalRegister (line 4). We add the
ClassicalRegister to the circuit (line 5) only if we include a measurement into
our circuit by setting the optional parametermeasure to True. We then measure
the qubit at position 0 by default (line 11), and use the gasm_simulator (line 15).
Further, only in this case, we need to work with multiple shots to reproduce

288 Chapter 10. Bayesian Inference

the resulting measurement probability empirically. If we don’t measure our
qubits, we use the statevector_simulator (line 15) that gives us precise probabil-
itiesin a single shot. The parameter hist specifies whether we want to return
a histogram of the results (True) or the raw measurement data (False).

The parameterwith_gcisa callback function. We call it with the QuantumCircuit
(gc), the QuantumRegister (qr), and the ClassicalRegister (cr) as arguments. This
callback function lets us implement the specificities of the PQC.

Next, we implement the quantum Bayesian network. We define the function
gbn. It takes data and hist as parameters.

Listing 10.5: The quantum bayesian network

def gbn(data, hist=True):
def circuit(qc, gr=None, cr=None):
list_a = list(filter(lambda item: item[0] == 1, data))
list_na = list(filter(lambda item: item[@] == 0, data))

set the marginal probability of A
gc.ry(prob_to_angle(

len(list_a) / len(data)
), 0)

1
R
3
4
5
&
7
¥
2

set the conditional probability of NOT A and (B / not B)
gc.x(0)
gc.cry(prob_to_angle(

sum(list(map(lambda item: item[1], list_na))) / len(list_na)
),0,1)
gc.x(0)

set the conditional probability of A and (B / not B)
gc.cry(prob_to_angle(

sum(list(map(lambda item: item[1], list_a))) / len(list_a)
),0,1)

return as_pqc(2, circuit, hist=hist)

We implement the actual quantum circuit in the circuit function we pass to
as_pgc as the callback function (line 23). This callback function starts with the
declaration of two lists. The first 1ist_a (line 3) contains all the items in our
data where the value of A is 1, representing A is true. The second 1list_na (line
4) includes all items where the value of A is @ representing not A.

We use these lists to calculate the probabilities of the four combinations (A A B,

10.2 Estimating A Single Data Point 289

AAN-B,-AAB,-AA-B).

We start with the marginal probability of A (lines 7-9). This is the number of
items in our data where A is true (1, the length of 1ist_a) divided by the total
number of items in our data (size of data). We let the qubit at position O repre-
sent this probability.

Next, we separate the cases where A is false into those where B is true and
those where B is false (lines 12-16). First, we “activate” the state where A is
false by applying the NOT-gate on the qubit at position O (line 12). The con-
trolled Ry-gate sets the qubit at position 1 into state |1) when B is true (line
14). We calculate the probability by dividing the number of items where A
is false and B is true (sum(list(map(lambda item: item[1], list_na)))) divided by
the number of items where A is false (1en(list_na)). Of course, we need to
switch the qubit back to state |1) in the cases where A is true (line 16).

Finally, we separate the cases where A is true into those where B is true, and
those where B is false. We apply another controlled Ry-gate. The rotation an-
gle represents the probability of B is true given A is also true (line 20).

The following figure depicts this quantum circuit graphically.

Figure 104: The qu.ah&u.m Bajesiah nebtwork with two nodes

-

a1

Let’s now see it in action. The first and simplest way of coping with missing
dataistoignoreit. Wedrop theitem with the missingitem (list(filter(lambda
item: item[1] is not None ,data)))before we pass the datato the qbn function.

Listing 10.6: Ignoring the missing data

qbn(list(filter(lambda item: item[1] is not None ,data)))

290 Chapter 10. Bayesian Inference

Figure 10.5: Resulting probabilities when irgnoring the mssing
data

0.45
0.20

0.15

[Ty}
[i}]
=
E
[
L1
2
(o

0.00

The measurement probabilities of the four different states represent the
probabilities of the possible combinations of A or —A and B or —B.

Let’s feed the results into the log_likelihood function we created earlier. We
create another convenience function for that.

Listing 10.7: Calculate the log-likelihood when ignoring the missing data

def eval_gbn(model, prepare_data, data):
results = model(prepare_data(data), hist=False)
return round(log_likelihood(data,
results['11'], # prob_a_b
results['01'], # prob_a_nb
results['10'], # prob_na_b
results['00'] # prob_na_nb
), 3)

S uve

0w X300

i¥e] eval_gbn(gbn, lambda dataset: list(filter(lambda item: item[1] is not

None ,dataset)), data)

-9.499

This function eval_gbn (line 1) takes the gbn-function as the model. But we can
plug in any other model, too, as long as it takes a dataset of the given for-
mat and returns the results we obtain from Qiskit. The second parameter
prepare_data is a function that takes care of the missing data point. We putin
our data and expect the dataset we put into our model (line 2).

10.2 Estimating A Single Data Point 291

The function returns the log-likelihood score of the given model (line 3).
Therefore, we provide the probability measures we get from the quantum
circuit (lines 4-7). Note that the states we get from the quantum circuit read
from the right (qubit at position O represents A) to the left (qubit at position 1
represents B).

In thisexample, we provide a function that filters out the missing item (filter
(lambda item: item[1] is not None)) (line 10).

The results show a log-likelihood score of —9.499. As mentioned, the overall
value does not say much. We see how good itis when we compareit with other
models.

Next, let’stry to fillin a value for the missing data. In three of five cases where
Aise, Bise, too. Bis1in only one of these cases. And, one time, it is missing.
Thus, filling in @ seems to be the better option.

Listing 10.8: Calculate the log-likelihood when filling in O

il eval_gbn(gbn, lambda dataset: list(map(lambda item: item if item[1] is
not None else (item[@], @) ,dataset)), data)

-9.481

When filling in e for the missing item, we get a log-likelihood score of —9.481.
This is an improvement over —9.499, the value of the previous model.

Let’stry to find the value that makes the log-likelihood (of the actual data) the
biggest.

In a Bayesian network, we work with probabilities all the time. So why don’t
we fill in the missing data point with a probability distribution instead of a
particular value?

Wait! How could we fill in the value with a probability distribution if this
distribution is what we aim to calculate in the first place? Let’s do something
extraordinary. Spock!

292 Chapter 10. Bayesian Inference

Figure 10.6: A Guess?

Kirk: “Mr. Spock, have you accounted for the variable mass of whales and water
in your time re-entry program?”

Spock: “Mr. Scott cannot give me exact figures, Admiral, so... Iwillmake a guess.”
Kirk: “A guess? You, Spock? That’s extraordinary.”
Spock to McCoy: “Idon’t think he understands.”

McCoy: “No, Spock. He means that he feels safer about your guesses than most
other people’s facts.”

Spock: “Then you'’re saying... it is a compliment?”
McCoy: “Itis.”

Spock: “Ah. Then I will try to make the best guess I can.”
Listing 10.9: The updated eval-gbn

def eval_gbn(model, prepare_data, data):
results = model(prepare_data(data), hist=False)
return (
round(log_likelihood(data,
results['11'], # prob_a_b
results['01'], # prob_a_nb
results['10'], # prob_na_b
results['00'] # prob_na_nb
)) 3)’
results['10'] / (results['10'] + results['00'])
)

OX P wrme

10.2 Estimating A Single Data Point 293

We guess a distribution. And we do not only take the log-likelihood score but
also the distribution of B given —A. We need to edit the qbn function to get this
distribution.

The updated eval_gbn-function did not change much. It simply adds another
number as its returned value. Now, it returns a tuple. At the first position of
the tuple, it returns the log-likelihood score. At the second position (line 10),
it returns the probability of B given -4

(ﬁAAB) . P(—VA/\B)
P(—\A) - P(—\A/\B)+P(—‘A/\—\B)

P(B|-A) =1L

So, let’s start by initializing our distribution with P(B|-4) = 0.5.
Listing 10.10: Evaluation of the guess

8 eval_gbn(gbn, lambda dataset: list(map(lambda item: item if item[1] is
not None else (item[@], 0.5) ,dataset)), data)

(-9.476, 0.3)

It seems as if it was a pretty good guess. The log-likelihood score is at —9.476.

But we don’t stop there. The model tells us a new value of P(B|—A) = 0.3. Let’s
run our model with this value.

Listing 10.11: Refining the model

8 eval_gbn(gbn, lambda dataset: list(map(lambda item: item if item[1] is
not None else (item[@], 0.3) ,dataset)), data)

(-9.452, 0.26)

Our model improves. We got alog-likelihood score of —9.452 and a new distri-
bution for our missing data point.

We can iterate between filling in the missing data with the distribution and
estimating a new probability distribution.

l10.3

294 Chapter 10. Bayesian Inference
Listing 10.12: Further refining the model

8 eval_gbn(gbn, lambda dataset: list(map(lambda item: item if item[1] is
not None else (item[@], 0.26) ,dataset)), data)

(-9.451, 0.252)

Listing 10.13: Another iteration

8 eval_gbn(gbn, lambda dataset: list(map(lambda item: item if item[1] is
not None else (item[@], 0.252) ,dataset)), data)

(-9.451, 0.2504)

This iterative process is an example of a general procedure called the
expectation-maximization (EM) algorithm.

But for how long do we have to iterate?

If you don’t get tired first, you iterate until the score converges. In our exam-
ple, the log-likelihood score did not improve (measurably) between the val-
ues of 0.252 and 0.2504.

It can be hard to tell when the EM has converged, though. Sometimes, the
models just get a tiny bit better for a long time. Once you think the process is
done, there is a sudden increase in the score. There’s no way to tell.

Another problem with EM is that it is subject to local maxima. As a result,
it might effectively converge to a maximum near to the starting point even
though there’s a much better model with different values. To prevent from
getting stuck in a local maximum, you can either run the algorithm multiple
times starting at different initial values or—-if available—-you can use do-
main knowledge to initialize the model.

Estimating A Variable

Let’s get back to our quantum Bayesian network consisting of four nodes.
The Age and Sex of a passenger determine the Norm. The Norm and the Pclass de-
termine Survival.

10.3 Estimating A Variable 295

- child | adulk
Py

Figure 107: The CPTs including the norm

Our data consists of all the cases of passengers onboard the Titanic. The
dataset contains observations of Age, Sex, and Survival. These are observable
variables. The values of the Norm are missing data. The Norm is a hidden vari-
able.

The image above depicts the missing CPT of our Bayesian network.
We aim to find the CPTs that maximize the probability of the observed data.

Rather than writing a single big function, we split our code into small pieces
we can put together at the end. Let’s start with the marginal probabilities of
being a child (ischild) and a passenger’s gender (Sex).

296 Chapter 10. Bayesian Inference
Listing 10.14: Apply the known

import pandas as pd
train = pd.read_csv('./data/train.csv')

the maximum age of a passenger we consider as a child
max_child_age = 8

probability of being a child
population_child = train[train.Age.le(max_child_age)]
p_child = len(population_child)/len(train)

1
R
3
4
s
&
7
¥
2

probability of being female
population_female = train[train.Sex.eq("female")]
p_female = len(population_female)/len(train)

positions of the qubits
QPOS_ISCHILD = 0
QPOS_SEX = 1

def apply_ischild_sex(qc):
set the marginal probability of isChild
gc.ry(prob_to_angle(p_child), QPOS_ISCHILD)

set the marginal probability of Sex
gc.ry(prob_to_angle(p_female), QPOS_SEX)

We keep the maximum age of 8 years of a passenger we consider as a child
(line 5). The probability of being a child is given by the number of children
(line 8) divided by the total number of passengers (line 9).

We do the same calculation for the passenger being female (lines 12-13).

We specify two constant values, Qpos_1ScHILD and QPoS_SEX (lines 16-17). These
depict the positions of the qubits that represent the respective marginal prob-
abilities.

We use the Ry-gate and the prob_to_angle-function to put the qubits into the
corresponding states. The qubit at position QPos_1ScHILD has the probability
being in state |0) that corresponds to the probability of the passenger being an
adult. The probability of being in state |1) is the probability of the passenger
being a child (line 21).

Accordingly, the qubit at position QPos_sex represents the probabilities of the
passenger being male (state |0)) and being female (state |1)) (line 24).

10.3 Estimating A Variable 297

In the next step, we specify the conditional probabilities of being favored by
anorm.

Listing 10.15: Represent the norm

I # position of the qubit representing the norm
P4 QPOS_NORM = 2

def apply_norm(qc, norm_params):
norm_params = {
"p_norm_am': 0.25,
"p_norm_af': 0.35,
"p_norm_cm': 0.45,
"p_norm_cf': 0.55
}

set the conditional probability of Norm given adult/male
gc.x(QPOS_ISCHILD)
qc.x(QPOS_SEX)
ccry(qc, prob_to_angle(
norm_params['p_norm_am']
),QPOS_ISCHILD, QPOS_SEX, QPOS_NORM)
gc.x(QPOS_ISCHILD)
gc. x(QPOS_SEX)

set the conditional probability of Norm given adult/female
gc.x(QPOS_ISCHILD)
ccry(qc, prob_to_angle(
norm_params['p_norm_af ']
),QPOS_ISCHILD, QPOS_SEX, QPOS_NORM)
gc.x(QPOS_ISCHILD)

set the conditional probability of Norm given child/male
gc.x(QPOS_SEX)
ccry(qc, prob_to_angle(
norm_params['p_norm_cm']
),QPOS_ISCHILD, QPOS_SEX, QPOS_NORM)
gc.x(QPOS_SEX)

set the conditional probability of Norm given child/female
ccry(qc, prob_to_angle(

norm_params['p_norm_cf']
),QPOS_ISCHILD, QPOS_SEX, QPOS_NORM)

298 Chapter 10. Bayesian Inference

We also define another constant to keep the position of the qubit that repre-
sents the Norm (line 2).

The function apply_norm applies the conditional probability given a set of pa-
rameters (norm_params). This is a Python dictionary with four key-value pairs.
The keys are p_norm_am, p_norm_af, p_norm_cm, and p_norm_cf. The values are the
conditional probabilities of being favored by a norm given the passengerisa
male adult (p_norm_am), a female adult (p_norm_af), a male child (p_norm_cm), and
a female child (p_norm_cf).

For each of these conditional probabilities, we select the qubit states repre-
senting the marginal probabilities of ischild and Sex using X-gates. For in-
stance, the state |00) of the qubits at the positions QPoS_ISCHILD and QPOS_SEX
represents the probability of being a male adult. Since the CCRy-gate only ap-
plies a rotation on the controlled qubit if both control qubits are in state |1),
we need to switch both qubits first (lines 15-16). Now, the state |11) represents
the probability of a male adult. We apply the corresponding conditional prob-
ability (prob_to_angle(norm_params['p_norm_am'1])) (lines 17-18) and switch back
the state of the control qubits (lines 20-21).

We do the same for the other three conditional probabilities, too.

Listing 10.16: Calculate the probabilities related to the ticket-class

pop_first = train[train.Pclass.eq(1)]

surv_first = round(len(pop_first[pop_first.Survived.eq(1)1)/len(pop_first)
, 2)

p_first = round(len(pop_first)/len(train), 2)

pop_second = train[train.Pclass.eq(2)]

surv_second = round(len(pop_second[pop_second.Survived.eq(1)])/1len(
pop_second), 2)

p_second = round(len(pop_second)/len(train), 2)

pop_third = train[train.Pclass.eq(3)]

surv_third = round(len(pop_third[pop_third.Survived.eq(1)1)/1len(pop_third)
y 2)

p_third = round(len(pop_third)/len(train), 2)

print("First class: {3} of the passengers, survived: {}".format(p_first,
surv_first))

print("Second class: {} of the passengers, survived: {}".format(p_second,
surv_second))

print("Third class: {} of the passengers, survived: {}".format(p_third,
surv_third))

10.3 Estimating A Variable 299

First class: 0.24 of the passengers, survived: 0.63
Second class: 0.21 of the passengers, survived: 0.47
Third class: 0.55 of the passengers, survived: 0.24

Now, let’s turn to the marginal probability of having a ticket of a certain class
(Pclass) and the respective chances to survive.

The calculation of the probabilities is straightforward. The marginal proba-
bility of owning a ticket is given by the number of tickets of the respective
class divided by the total number of passengers (lines 3, 7, 11). The condi-
tional probability of surviving given a certain ticket class is the quotient of
the number of survivors and the total number of passengers with a ticket of
that class (lines 2, 6, 10).

Listing 10.17: Represent the ticket-class

¥ # positions of the qubits
QPOS_FIRST = 3

k23 QPOS_SECOND = 4

Y QPOS_THIRD = 5

set the marginal probability of Pclass=1st
gc.ry(prob_to_angle(p_first), QPOS_FIRST)

qc.x(QPOS_FIRST)
set the marginal probability of Pclass=2nd
gc.cry(prob_to_angle(p_second/(1—p_first)), QPOS_FIRST, QPOS_SECOND)

set the marginal probability of Pclass=3rd

gc.x(QPOS_SECOND)

ccry(qc, prob_to_angle(p_third/(1—p_first—p_second)), QPOS_FIRST,
QPOS_SECOND, QPOS_THIRD)

gc.x(QPOS_SECOND)

gc.x(QPOS_FIRST)

Thus far, we only had to cope with boolean variables. These are variables that
have only two possible values. The Pclass is different because there are three
different ticket classes, 1st, 2nd, and 3rd.

Technically, we could represent three values by using two qubits. But we will
use three. We represent the probability of having a ticket of a certain class by

300 Chapter 10. Bayesian Inference

a single one qubit being in state |1). We start with applying an Ry-gate on the
qubit at position Qpos_FIRST. Itletsthisqubit bein state |1) with the probability
of a passenger having a first-class ticket (line 8).

Now, given that the passenger doesn’t have a first-class ticket, we want the
qubit at position QPOS_FIRST to be in state |0). Therefore, we temporarily
switch the amplitudes of this qubit by an X-gate (line 10). This allows us to
use this qubit as a control qubit for controlled rotations of the qubits repre-
senting the other two classes.

We apply the rotation on the qubit at position QPos_second only if qubit
QPOS_FIRST is in state |1). Temporarily, this is the case if the passenger does
not have a first-class ticket. Since the control qubit is not always in state |1),
we have to adjust the rotation angle we apply. We apply the conditional prob-
ability of having a second-class ticket given the passenger doesn’t have a first-
class ticket (prob_to_angle(p_second/(1—p_first)) (line 12).

Next, we want the qubit at position QPos_SECOND to be in state |0) if the passen-
ger has a third-class ticket. Thus, we temporarily switch its amplitude, too
(line 15). Now, we apply a controlled-controlled rotation of the qubit at posi-
tion QPos_THIRD. We apply the conditional probability of having a third-class
ticket given the passenger doesn’t have a first-class or a second-class ticket
(prob_to_angle(p_third/(1—p_first—p_second)) (line 16).

Finally, we undo the temporary switches of the amplitudes of the qubits at
the positions QPos_seconD (line 17) and QPos_FIRST (line 18). Each of these three
qubits has the probability of being in state |1) now that corresponds to the
probability of the passenger having a ticket of the corresponding class. And
if one of these three qubits is in state |1), the other two qubits are in state |0)
because a passenger can only have a ticket of a single class.

In the next listing, we apply the conditional probability of survival.

10.3 Estimating A Variable 301
Listing 10.18: Represent survival

¥} # position of the qubit
P4 QPOS_SURV = 6

def apply_survival(qc, surv_params):
surv_params = {
"p_surv_f1': 0.3,
"p_surv_f2': 0.4,
'"p_surv_f3': 0.5,
'p_surv_ul': 0.6,
'p_surv_u2': 0.7,
'p_surv_u3': 0.8

}

set the conditional probability of Survival given unfavored by norm
gc . x(QPOS_NORM)
ccry(qc, prob_to_angle(
surv_params['p_surv_u1l']
),QPOS_NORM, QPOS_FIRST, QPOS_SURV)

ccry(qc, prob_to_angle(
surv_params['p_surv_u2']
),QPOS_NORM, QPOS_SECOND, QPOS_SURV)

ccry(qc, prob_to_angle(
surv_params['p_surv_u3']

), QPOS_NORM, QPOS_THIRD, QPOS_SURV)

qc.x(QPOS_NORM)

set the conditional probability of Survival given favored by norm
ccry(qc, prob_to_angle(

surv_params['p_surv_f1']
),QPOS_NORM, QPOS_FIRST, QPOS_SURV)

ccry(qc, prob_to_angle(
surv_params['p_surv_f2']
), QPOS_NORM, QPOS_SECOND, QPOS_SURV)

ccry(qc, prob_to_angle(
surv_params['p_surv_f3']
),QPOS_NORM, QPOS_THIRD, QPOS_SURV)

302 Chapter 10. Bayesian Inference

Again, we start with the specification of the qubit position (line 1). Like the
function apply_norm, the function apply_survival takes a Python dictionary as
a parameter that holds all the probabilities we want to apply on the qubits.

The value at the key p_surv_f1 represents the probability of surviving given
the passenger was favored (f) by a norm and had a first-class ticket (1). The
key p_surv_u3 represents the probability of surviving given the passenger was
unfavored (u) by a norm and had a third-class ticket (3). The other keys depict
all the possible combinations.

We use a temporary X-gate (line 17) to set the qubit representing the Norm to
the value we want to apply. We start with the unfavored passengers (lines
18-28). Before we continue with the favored passengers, we switch the qubit
back (line 29).

Since we prepared three qubits to represent the three ticket classes, we do
not need another X-gate to activate the corresponding state. But we can use a
CCRy-gate with the qubits representing the Norm (QP0S_NORM) and the respective
ticket class (QPOS_FIRST, QPOS_SECOND, or QPOS_THIRD) as the control qubits.

With these few functions, we can create a parameterized quantum circuit eas-
ily.

Listing 10.19: The quantum bayesian network

kB QUBITS = 7

2

2 def gbn_titanic(norm_params, surv_params, hist=True, measure=False, shots
=1):

¥ def circuit(qc, qr=None, cr=None):

) apply_ischild_sex(qgc)

& apply_norm(gc, norm_params)

7 apply_class(qc)

¥ apply_survival(qgc, surv_params)

9
lo return as_pqc(QUBITS, circuit, hist=hist, measure=measure, shots=shots)

We define the function gbn_titanic (line 3). It takes two Python dictionaries
(norm_params and surv_params) that contain all the parameters we need to con-
struct the circuit. We use the as_pqc function we created earlier again (line 11).
Finally, we pass the number of qubits our circuit should have (defined in line
1) and a callback function (circuit) that constructs the actual circuit (lines 4-
8).

Let’s try to run it with some arbitrary parameters.

10.3 Estimating A Variable 303
Listing 10.20: Try the QBN

norm_params = {
'p_norm_am":
'p_norm_af"':
'p_norm_cm"':
"p_norm_cf"':

.25,
.35,
.45,
.55

[N RN

surv_params = {
"p_surv_f1'":
'p_surv_f2"':
"p_surv_f3"':
'p_surv_ul':
'p_surv_u2':
'p_surv_u3"':

OX P wre

-

-

-

[SENS ISR SRS I S]
00 NO Ul AW

It produces a set of quite a few states with associated probabilities. These re-
sulting probabilities are quite meaningless because we made up the input pa-
rameters. We need to derive them from the data.

Let’s start with the norm_params.

304 Chapter 10. Bayesian Inference

Listing 10.21: Calculate the parameters of the norm

def calculate_norm_params(passengers):
the different populations in our data
pop_children = passengers[passengers.IsChild.eq(1)]
pop_adults = passengers[passengers.IsChild.eq(0)]

combinations of being a child and gender

pop_am = pop_adults[pop_adults.Sex.eq('male')]
pop_af = pop_adults[pop_adults.Sex.eq('female')]
pop_cm = pop_children[pop_children.Sex.eq('male')]
pop_cf = pop_children[pop_children.Sex.eq('female')]

1
R
3
4
s
&
7
¥
2

norm_params = {
'p_norm_am': pop_am.Norm.sum() / len(pop_am),
'p_norm_af': pop_af.Norm.sum() / len(pop_af),
"p_norm_cm': pop_cm.Norm.sum() / len(pop_cm),
'p_norm_cf': pop_cf.Norm.sum() / len(pop_cf),
}

return norm_params

The function calculate_norm_params takes the Pandas dataframe of the passen-
gers and returns the norm_params dictionary. First, we specify different popula-
tions (groups) of passengers (lines 2-10). Then, we calculate the probabilities
of a passenger being favored by a Norm (Norm) given the passenger belongs to
a group (lines 12-17).

We separate the children from the adults in the data by evaluating whether
the value of column 1schild is 1 (children) or o (adults) (lines 3-4). We further
split these two groups into four based on the gender(sex) being female or male
(lines 7-10).

Let’s pay some attention to how we calculate the probabilities of a passenger
being favored by a Norm (lines 13-16). We sum the Norm of all passengers of a
group and divide by the number of passengersin the group. Normis the hidden
variable. Similar to the example of a missing value, we will fill this column
with a number between 0 and 1 that represents the probability of the respec-
tive passenger to be favored by a norm.

Forexample, if we have ten passengers and five have a value of 0, and five have
a value of 1, we get a resulting probability of P(Norm) = (5-1+5-0)/10 = 0.5.
Likewise, if we have five passengers with a value of 0.75 and five with a value
0f 0.25, we get a resulting probability of P(Norm) = (5-0.75+5-0.25)/10 = 0.5.

10.3 Estimating A Variable 305

Next, we calculate the surv_params.
Listing 10.22: Calculate the parameters of survival

def calculate_surv_params(passengers):
all survivors
survivors = passengers[passengers.Survived.eq(1)]

weight the passenger

def weight_passenger(norm, pclass):
return lambda passenger: (passenger[0] if norm else 1—passenger[0]) *
(1 if passenger[1] == pclass else 0)

1
R
3
4
s
6
7

calculate the probability to survive
def calc_prob(norm, pclass):
return sum(list(map(
weight_passenger(norm, pclass),
list(zip(survivors['Norm'], survivors['Pclass']))
))) / sum(list(map(
weight_passenger(norm, pclass),
list(zip(passengers['Norm'], passengers['Pclass']))

)

surv_params = {
'p_surv_f1': calc_prob(True, 1),
'p_surv_f2': calc_prob(True, 2),
'p_surv_f3': calc_prob(True, 3),
'p_surv_ul': calc_prob(False, 1),
'p_surv_u2': calc_prob(False, 2),
'p_surv_u3': calc_prob(False, 3)

return surv_params

Let’s go through this function backward from the bottom to the top. First,
we return the Python dictionary that contains the conditional probabilities
of survival given the passenger’s ticket class and whether a norm favored him
or her.

We use a convenience function calc_prob to calculate these probabilities given
the specific values of being favored (the first parameteris True orFalse) and the
ticket class (either 1, 2, or 3) (lines 20-25).

The probability to survive is defined by the number of survivors in a group
(numerator) divided by the total number of passengers in a group (denomi-

306 Chapter 10. Bayesian Inference

nator). The problem is that the Norm column contains a number between 0
and 1-the probability that a norm favors the passenger. Therefore, we can’t
count the passengers, but we have to “weigh” each of them.

If a passenger has a Norm value of 0.75, she belongs to the group of favored
passengers in 75% of the cases and the group of unfavored passengers in 25%
cases. If we sum the weights of all survivors and divide it by the sum of the
weights of all passengers, it yields the probability (lines 11-17).

Since we do this calculation of the weight twice (lines 12 and 15), we put itinto
another function (weight_passenger) (lines 5-7).

We create tuples of the Norm and the Pclass values of a passenger (using
Python’s zip-function) and pass them into weight_passenger as input (l