
Insert here your thesis’ task.





Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

VO-compatible post-processing proxy server
of stellar spectra
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Abstract

Amount of astronomic data increases exponentially with doubling rate every 6-
9 months. The efficient handling and analysis of data spread around the world
is a main goal of International Virtual Observatory Alliance (IVOA). Aim of
this thesis is to extend service for publishing spectra with post-processing
ability according to the latest IVOA standards.

Keywords IVOA, SSAP, server, spectral, post-processing, cutout, scale

Abstrakt

Množstv́ı atronomických dat exponenciálně roste. Každých 6 až 9 měśıc̊u se
objem dat zdvojnásob́ı. Efektivńı správa a analýza dat rozprostřených po
celém světě je hlavńım ćılem Sdružeńı pro mezinárodńı vituálńı observatoř
(IVOA). Ćılem této práce je rozš́ı̌rit službu pro poskytováńı spekter o schop-
nost zpracováńı spekter podle požadavku klienta. Služba muśı odpov́ıdat
nejnověǰśıch standard̊um vydaných IVOA.

Kĺıčová slova IVOA, SSAP, server, spektra, ořez, škálováńı
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Introduction

Motivation and objectives

The phenomena of data avalanche is mostly visible in astronomy. As more
telescopes are being built, the amount of data increases exponentially with
doubling rate every 6–9 months.(5) In one of the biggest astronomical reposi-
tory The Sloan Digital Sky Survey (SDSS) there are measurements for nearly
500 million stars and galaxies, and spectra of nearly two millions objects1, all
publicly available.

Spectral data are the most useful when studied together. Therefore as-
tronomers need to understand and analyse huge sets of data from many repos-
itories at once. International Virtual Observatory Alliance (IVOA) sets the
standards for global interoperability of all astronomical data archives.(6)

The main purpose of this work is to create server tools for providing and
post-processing spectra with usage of new Virtual Observatory standards.
This work uses spectra and resources of the Astronomical Institute of the
Academy of Sciences of the Czech Republic in Ondřejov.

This thesis is divided into three main parts: analysis and design, imple-
mentation, and conclusion. In the beginning of analysis chapter, there is
a short and comprehensive overview of astronomical formats, history, tech-
nologies and present state. Second part of analysis is dedicated to feasibility
study, requirements and sketch of our own solution. In implementation chap-
ter, there is mentioned unfinished project of ingestor. Then is shown process
of implementing DaCHS extension and its testing. Usage chapter provides
guide how to use the extension and summarize improvements which it brings.
In conclusion chapter you will find list of all achieved goals and future of this
work.

1http://www.sdss.org/
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Chapter 1

Analysis and design

Astronomers have been using one format called FITS for more than 30 years.
It was really well designed and is still in use. Now there is a flood of data
volumes produced by powerful ground and space-based instrumentation. The
real advantage of this is that there are many observations of one object from
different telescopes and in different times.

The old style of astronomy work consisted of obtaining and analysing indi-
vidual observations from different archives. The data were downloaded from
proprietary server via web form which was not sufficient for advanced filtering.
Then they were manually converted to unique form (e.g. converting units and
data formats) so the astronomer could use them for research. Big obstacle was
to find these servers because there was not any list of available archives. Most
of the servers were written by astronomers so each piece is unique. There is
a possibility to unite proprietary servers with proxy service, or they can be
replaced with more mature and standardized technology.

The ideal situation would be when all spectra are publicly available and
there are mature tools for accessing them in unified manner. Then scientists
can easily cooperate and analyse celestial objects in an innovative way not yet
done before. Another big and neglected advantage of this mindset is that it
is possible for almost everybody with sufficient knowledge to do top research
without investments to technology. Ordinary people can download free tools
and easily get real data. This could be new and interesting field of science
and it can lead to new discoveries.

This idea could be realized through Virtual Observatory. Virtual Obser-
vatory aims to allow global access to world-wide spread astronomical archives.
Virtual Observatory also aims to enable analysis of huge sets of data through
standard set of advanced tools.

3



1. Analysis and design

1.1 Notions and definitions

1.1.1 Virtual Observatory

The International Virtual Observatory Alliance (IVOA) was formed in June
2002 with a mission to “facilitate the international coordination and collab-
oration necessary for the development and deployment of the tools, systems
and organizational structures necessary to enable the international utilization
of astronomical archives as an integrated and interoperating virtual observa-
tory.” The IVOA focuses on the development of standards and encourages
their implementation for the benefit of the worldwide astronomical commu-
nity. (4)

Figure 1.1: IVOA architecture

1.1.2 Simple Spectral Access Protocol

At this point it is worth to remark that I have worked only with spectra but
astronomy deals with much more. Beside spectra there are e.g. data cubes,
light curves, event list and data obtained in different way than via telescopes
(e.g. neutrino detectors). Another worth-to-notice thing is that each astro-
nomical branch has their own protocol. For example images are distributed
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1.1. Notions and definitions

through Simple Image Access Protocol (SIAP). As the default protocol for
spectra was chosen Simple Spectral Access Protocol. This protocol is cur-
rently version 1.1. This version contains only specification of queryData with
sketch of getData It is obvious that the protocol is still under development
and during this thesis we have provided many proposals and comments to the
next version.

The protocol is HTTP based and specification defines parameters and
their behaviour. Protocol has main guide-post — parameter called REQUEST
(each argument must be upper-case). REQUEST can be queryData or getData.
QueryData selects spectra from all available spectra on a queried server.
GetData still has not been specified but it will be able to describe details
about a downloaded spectra.

The list below contains only four parameters from many possible. They are
valid only in combination with REQUEST=queryData First two parameters are
mandatory for understanding how the searching works. The rest is optional
but important for this thesis.

• POS (mandatory) means coordinates of target star. The coordinates are
comma separated pair where first item is RA (right ascension) and the
second one is DEC (declination). The coordinates must be written as
decimal numbers. This is quite against conventions because astronomers
are used to write coordinates in different formats. Right ascension is
mostly written in HMS format (hours:minutes:seconds). The value tells
us how far is the object we seek from vernal point on celestial equator.
Complete circle with 360◦ has 24 hours in HMS format. That means
every hour is 15◦ and the value is always positive.
Declination is height above the celestial equator. Objects which are
above equator have positive declination. It is mostly used in DMS format
(degrees:minutes:seconds). For example Polaris has DEC about 89.3◦

what is +89 : 1 : 12.0 in DMS.

• SIZE (optional) defines diameter of the search region specified in decimal
degrees.

• BAND (optional) restricts spectral axis (wavelength). It can have two
meanings. If it is single number it means that queried spectra must
contain this point. Second meaning is interval. Interval can define lower
bound, upper bound or both. Units are meters. Astronomers are used to
Ångströms, thus the most common format of band is angstroms×10−10.

• FLUXCALIB (optional) tells how should be flux axis calibrated. Pos-
sible values are “absolute”, “relative”, “normalized” and “any” (the
default)(2)
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1. Analysis and design

1.1.3 Data formats

Flexible Image Transport System (FITS)

FITS was released in 1981 and is commonly used in astronomy. The reason
why it is still alive is a good design. Each file is composed from a header and
data. Header is in human-readable ASCII form. Header is composed from
cards. These card corresponds to the old punch cards. It means that each card
is 80 characters wide(without trailing new-line character). Cards are grouped
into blocks which have 36 cards each. With 1 byte per character the sum is
2880 bytes per block. Each card has form of keyword = value / comment

where key can have up to 8 characters. In column 9 there is always = sign
(columns are counted from 1). The value can be anything encoded to ASCII.
Comment is optional. There are special keywords COMMENT and HISTORY
but they are not significant. Size of data is written in header. There are many
formats of data. It is main problem of this format. Common representation of
data is so-called 1D image where there is only one row of data. Other values
can be inferred from information in header.
More sane format is called binary table. Table in sense that it has columns
and rows. Meta-data like column names and units are still written in header.
But there is no need to calculate any data from information in header. This
format is better to work with because of possibility to process it in stream.
The main disadvantage of all FITS files is lack of semantics because there are
only few keywords standardized.

VOTable

New format of data presented by IVOA, VOTable is designed as a flexible
storage and exchange format for tabular data, with particular emphasis on
astronomical tables. Interoperability is encouraged through the use of stan-
dards (XML). The XML fabric allows applications to easily validate an input
document, as well as facilitating transformations through XSLT (eXtensible
Style Language Transformation) engines. VOTable is an unordered set of
rows, each of a uniform structure, as specified in the table description (the
table meta-data). Each row in a table is a sequence of table cells, and each
of these contains either a primitive data type, or an array of such primitives.
VOTable is modelled on the FITS Table format; VOTable was designed to be
close to the FITS Binary Table format.(3)
VOTable is composed from parameters and fields. Parameters are constants
common for all spectra from a observatory. Fields describe columns in data
table at the end of file. Data can be encoded in many formats but the most
proper is binary data encoded using BASE64. VOTable exceed in semantic
information about data and possibility to be processed in stream. Since it has
strong semantic it can be used not only for description of one spectra, but it
is returned by VO compatible spectra server as a list of found spectra.
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1.2. Feasibility study

1.1.4 Ondřejov 2m Telescope Archives

There are so far two main archives of stellar spectra observed with 2m telescope
of Ondřejov observatory. The first is called CCD700 and contains so far almost
10 thousand of spectra and is still growing as the spectrograph creates spectra
files in 1D FITS format every clear night. Second is a spectra archive called
HEROS with about 2000 spectra acquired during the Ondřejov team part of
observing time of Heidelberg Extended Range Optical Spectrograph (HEROS)
connected to Ondřejov 2m telescope (years 2000-2003). As the HEROS project
in Ondřejov was finished, the archive is frozen and all its modifications concern
only the reprocessing of raw data or additional post-processing. Namely all
spectra in archive are continuum normalized manually and put in separate
folder.

1.2 Feasibility study

Feasibility study is divided into two parts. First part is a list of available
server toolkits with proper implementation of SSAP. At the end there is a
conclusion with discussion which option from the list is best for continuation
of this thesis.

1.2.1 Existing SSA Server Toolkits

In VO there are currently more server toolkits already working with VOTables
and SSA protocol. Most of them are older servers updated for SSAP. The
criteria of selection are

• implementation of latest VOTable and SSAP – since our solution should
be reference implementation it is crucial to use latest technologies.

• extensibility of protocols – the support of SSA protocol is obvious but if
server toolkit will be modified to serve as a proxy than it will be needed
to have more protocols to communicate with proprietary servers.

• ingesting capability – server toolkit is intended as reference service for
Ondřejov data to propagate SSA and VO among stellar community. If
propagation should be successful it has to offer more than the others.
Ingesting capability is still uncommon. The reason for this is that each
spectrograph and observatory has its own method of processing spectra
thus different files. No one has designed general tool for indexing these
files into database. Another reason for missing tool is that there was no
standardized database schema. This will change with using VOTable.

It was found that no currently available server toolkit supports optional pa-
rameters of SSAP version 1.1. This is because SSAP specification is still
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1. Analysis and design

incomplete and under development thus it would be waste of time to imple-
ment things which could change. All listed server toolkits except DALserver
were tested live at Ondřejov. DALserver was not because of the old version
was not worth trying. New version is very promising but because of time
schedule for this thesis it was impossible to consider it.

DALserver

• State: Old but robust server toolkit. New version will be soon.

• Author: Doug Tody, main creator of SSA protocol. The server toolkit
is now maintained by VAO in USA.

• Technologies: Java (Apache Tomcat 5.5), MySQL 4.1

• Ingesting mechanism: yet none but it is planed

The last stable version of DALserver is 0.9. released in 2008. It probably does
not support SSAP version 1.1. neither VOTable version 1.2. New version
should come out very soon but there are no guaranties for that.
The server toolkit is well written and well documented. Therefore on first
look it is easy to extend. A disadvantage is that DALserver itself cannot
ingest FITS files hence it can not fill the database with data. You need a
prefilled database with all mandatory keyword from SSAP. Only thing that
DALserver can do is to perform basic computations and conversions of data
from database. Mr. Tody has promised that in version 1.0. there will be
database ingestion implemented. SSA Proxy has been made from this server
to one of the biggest spectral database Sloan Digital Sky Survey 2

Pleinplot

• State: Old and charged with features. New version unlikely.

• Author: Philippe Prugniel, Lyon

• Technologies: mainly written in C with benefits of FORTRAN and
PERL

• Ingesting mechanism: feature-rich tool for importing data

Pleinpot is not just a server. It is complete set of tools for general analysis
of catalogs and images. Installation archive has approximately 15GB. This
is because it includes database of celestial objects. This server can create
schema in the database, ingest data into database and perform many post-
processing operations on spectra. The biggest disadvantage is that this server

2https://webtest.aoc.nrao.edu/ivoa-dal/
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1.2. Feasibility study

is fully written in C and other low level languages and it is very complicated
(it contains about 1500 modules). It is almost impossible to modify the code.
Development of this server is frozen in field of Virtual observatory because of
changes of authors priorities.

GAVO DaCHS

• State: Under active development. VO friendly

• Author: Markus Demleitner from Astronomisches Rechen-Institut (ARI)
of Heidelberg University.

• Technologies: Python and XML, PostgreSQL with PgSphere

• Ingesting mechanism: part of the toolkit. Almost brilliant design. It
is possible to define new columns, compute columns, set constants and
values from different source than FITS file.

Surprisingly great server. It is very well documented. The server has ability
to ingest data into database from many types of sources. This is because some
parts of data description can be Python code hence it is possible to connect
to server during ingesting. Only the crucial parts of ingesting process are
left on astronomer so ingesting routine definition is relatively simple. Basic
configuration is via XML with optional nested python code. On the first
look is the configuration difficult although there is great documentation. We
recommend to contact directly Mr. Demleitner for help in initial phase.
The server can operate with more protocols at once. Server handles not even
SSAP queries but also TAP and SIAP queries. Protocols and other definitions
are done with XML too. These XML definitions are serialized into Python
objects and then run. It is an advantage because it is easy and fast to extend
the server when programmer has overview about all possible objects.

VODance

• State: Brand new product. Still under heavy development.

• Author: Marco Molinaro from Centro Italiano Archivi Astronomici

• Technologies: Java (Apache Tomcat), Django, MySQL.

• Ingesting mechanism: nothing. There is django admin for manual set-
ting of meta data to columns in existing database. It is also possible to
define type of columns via assigning utype and ucd. There are possible
conversions from database to java types and some computations.

Server uses Django only for administration. Main logic is done in Java. Server
is still under development hence it will be hard to work on extensions and keep

9



1. Analysis and design

up to date and not to spoil anything. It is hard to speak about disadvantages
because the product is not complete. In the version we tested there was not
the cone search. Query to database cut out square and then the square was
cropped to cone shape. It is slow and memory consuming process.
This project is promising and it is worth to wait for stable version. Final
release is planned to be distributed as a virtual machine file.

Our own solution

Our own implementation was one of the possible solutions as well. The advan-
tage was that it would meet all our expectations. Of course the price would be
a lot of time invested into solving problems which someone other has solved
already.

1.2.2 Best option discussion

In all listed servers (except DaCHS) disadvantages overweighted advantages
so we have chosen our own solution. This decision was made because DaCHS
was discovered in later part of this thesis, and caused development of few sub-
projects which were stopped afterwards. First I started to work on script for
indexing files into PostgreSQL called ingestor. I also prepared requirements
and analysis of architecture of future server. During the work we have discov-
ered that GAVO DaCHS was updated with SSAP capabilities. It impressed
us with digesting mechanism which is similar to the one which was written
early in the beginning of this thesis. Of course it has many other advantages
described in the list above so it is the winner.

1.3 Requirements

Main request was to implement reference service with spectra post-processing
located in Ondřejov.

1.3.1 Operating environment

Final product will run on latest Debian linux in virtual server. As a database
was chosen PostgreSQL because of many plugins for cone search.

1.3.2 Functional requirements

1.3.2.1 Database preparation

Schema has to have ability to store various information about spectra eg.
wavelength start and end point, target object name, target coordinates, time
of observation etc. Database will be queried with usage of spatial queries
and spherical trigonometry. Therefore coordinates must be in usable format.

10



1.3. Requirements

Every data column must have meta attributes like name, ucd3 , utype4 and
others required by VOTable.

1.3.2.2 Ingestor

Collection of tools for

• schema creating – Schema map can be partially generated from example
FITS file. The application is expected to extract meta-data from given
file and construct initial concept of data table. Table has to contain (rel-
ative) source file path, embargo for hiding private spectra, owner of the
spectra and a unique hash for all local spectrographs. It should propose
mapping from common FITS keywords to SSA names and types5. User
will be able to edit these mappings and define conversions, computa-
tions, and constants in simple programming language (ideally Python).
Final map should be serialized into text-based file for possible later man-
ual modifications. Constants should be stored in the database because
the ingesting script is planed to be independent on the server and vice
versa. Every spectrograph will have its own schema map. Application
will be able to generate SQL command for creating database schema
from schema map.

• data importing – Simple console application intended to be periodically
executed by CRON. It will import new spectra from filesystem into
database using schema map. It has to be able to distinguish spec-
trograph by input arguments. During the import each file should be
converted into SDM compliant FITS format6.

• schema clearing — Script for cleaning all data related to a spectrograph.
It has to dro all tables and delete all related files.

1.3.2.3 SSA server

Server will implement SSA protocol in version 1.1. List of crucial features

• Scalability of protocol – it has to be easy to modify protocol. Protocols
should be stored as static definitions in a markup language. Main reason
is that SSAP is still evolving and major changes are still expected.

• VOTable generation – server’s response is always valid VOTable. Does
not matter which protocol is used. Of course when serving static files it
does not convert them.

3UCD Unified content descriptor http://www.ivoa.net/Documents/latest/UCD.html
4http://www.ivoa.net/Documents/latest/UtypeListCharacterisationDM.html
5This mapping will be provided in official spreadsheet by IVOA.
6Spectral Data Model http://www.ivoa.net/Documents/latest/SpectrumDM.html

11

http://www.ivoa.net/Documents/latest/UCD.html
http://www.ivoa.net/Documents/latest/UtypeListCharacterisationDM.html
http://www.ivoa.net/Documents/latest/SpectrumDM.html


1. Analysis and design

• Authentication and authorization – it is possible to hide private spectra
based on date or a key. No client software supports authentication but
this will change in near future (e.g. in SPLAT-VO is the restricted access
to spectra already being tested).

1.3.2.4 Proxy server

• Pluggable protocols – the server should communicate on one side with
many proprietary archives and on the other side via latest SSAP. This
requires protocol definitions separated from server logic. Optionally in
a markup language.

• Post-processing – an ability to perform mathematical operations on spec-
tra. Mainly two operations are required.

– cutout – operation when wavelength (spectral axis) is cropped to
concrete interval.

– scale – operation on flux axis when all values are shifted near 1.
This operation is not substitution for normalization. This operation
is intended to enable quick comparison of many spectra (e.g. line
profile changes).

1.3.3 Testing

Server has to communicate with the most used VO clients — Splat-VO and
VO-Spec. All available formats (except the native one) have to be processed
with these clients — which means that clients have to be able to visualise and
analyse these spectra.
All spectra files have to correspond to SDM standards. This means that every
FITS file has to be in binary table format and contain keywords which are
specified by IVOA. The resulting FITS should contain standardized meta data
and all the original meta data except invalid ones. The crucial attributes of
each spectra are utype and ucd which describe data columns.

12
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1.4 Analysis

There were two possibilities how to fulfil requests. It could be all-in-one ap-
plication or divided into smaller pieces. First architecture in Figure 1.2

SSA server

PgSQL FS

SSAP 1.x

VOTable 1.x

CRONingestor

SPLAT-VO

SpecView
VO-Spec

Clients

    SSAP 1.1  VOTable 1.2

SSAProxy

  - rescale capability
  - cutout capability

Figure 1.2: Proposed infrastructure 1

SSA server

  - rescale capability
  - cutout capability

PgSQL FS

SSAP 1.1

VOTable 1.2

CRONingestor

SPLAT-VO

SpecView
VO-Spec

Clients

Proprietary
server

Extensions

Proxy2Proxy1

Figure 1.3: Proposed infrastructure 2

has proxy server independent of a base server which communicates with the
database. This leads to easy deployment of the proxy server in front of any
server. This solution is on first look very good but it has few disadvantages.
First is that SSAP response requires meta data which could change with post-
processing. We cannot modify meta data to correspond to post-processed
spectra (e.g. correct spectral length, filesize) because of concrete files will be
downloaded afterwards and there is not any other choice how to figure the
meta data out. If we want to normalize data we probably would need to
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wants
normalized
spectra?

Remove fluxcalib

yes

Remember which are already normalized.
Mark all as normalized

Return list of spectra

no

     Get list of spectra

Figure 1.4: Normalization problem

get two list of spectra. List of all spectra (even unrectified) and normalized
spectra to avoid normalization on already normalized spectra. We need to
mark all spectra as normalized and remember which files should be processed.
This algorithm may be naive and real implementation will be so much more
complicated that it will be easier to replace the old server with VO server.

Another disadvantage is that it will take much more time to implement
because it will be necessary to implement SSAP client as well. With these
obstacles in mind we have to say that the second architecture in Figure 1.3 is
better. The development process will not be bound to concrete server which
can change because it is not standardized. On top of it the second architecture
provides something what Virtual Observatory still does not have – complete
tool for spectra publishing.

In component diagram in figure 1.5 there is indicated data flow for better
understanding. Data flow does not belong there but the diagram could be
misunderstood without it.
Protocols component is entry point of server. It wraps one of the available pro-
tocols. Default protocol is of course SSAP 1.1. Component protocols accepts
HTTP request and transforms protocol’s parameters into inner representation.
Because of query protocols are just a set of constraints the inner representa-
tion is set of Condition Descriptors.
Core controls flows of objects between components. Core holds thread pool
and takes care about system resources. When core gets a new set of conditions
it starts a thread from the pool. Data flow how the thread operates is visible
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1.4. Analysis

 Protocols 

 Core 

 Plugins 

DB

Internet

Cutout

Normalize

Fortran application

 Proxy 

Proprietary Server 1

Proprietary Server 2

Database Proxy

SSAP

Condition
Descriptor

Result
Table

 Renderers 

VOTable

FITS

Figure 1.5: Component diagram

from Figure 1.5
Plugins component is closely bounded to the Core. Plugins can modify request
and result. They can “sign” the request by modifying conditions and setting
special attribute before the request is sent to proxies. The sign persists in
response thus the response can be modified according to the sign as well.
Proxy transforms conditions into real data. Each proxy object can map con-
ditions into query which can point to local database or another server at the
internet. Proxy objects return Result Table or nothing if timeout expires.
Wrapper around proxies then merges these tables into one and returns the
table back to the Core.
Renderers component takes the Result table and renders results in requested
format to the client. Result table will have similar format as binary table fits.
It means that it will contain meta data and data separately.
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Chapter 2

Implementation

2.1 Database and ingestor

Database

PostgreSQL was chosen as RDBMS because of cone search plugins. There is
a list of available plugins.

• PgSphere handles spatial queries and spherical trigonometry. Known
disadvantage is that it losses performance in larger databases. Its ad-
vantage is well written documentation, widespread usage and ability to
perform advanced geometrical tasks.

• q3c has similar features as PqSphere. It is less widespread and doc-
umentation is not very good. But it excels in performance on large
collections.

After careful selection was chosen PgSphere for its simple usage and good
documentation.

Schema is easy since each table is dynamically generated from schema
map. The only thing which remained to solve is how to store meta data. This
schema is inspired from the one which Pleinpot uses. There are two tables
for each spectrograph — data table and meta data table. Meta data will
be joined to data table on column name. Each schema will be named after
corresponding spectrograph.

Ingestor

Ingestor is a console script for indexing FITS files into database.
Requirements

• python 2.5+

• pyfits
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2. Implementation

data

+filename: TEXT
+hash: TEXT
+imported: DATETIME
+private: DATETIME
+ssa_keywords: unknown
Generated
columns based on
source

metadata

+name: TEXT
+type: TEXT
+value: TEXT

Figure 2.1: Simple database schema

Features

• It can create SQL script for creating tables. The reason why it does
not directly create database table is the possibility of editing file before
performing SQL CREATE command.

• It can periodically import new files into database. These files must be
similar to reference file. The script has inner database of imported files.
Script has maps which it uses for computing values or generating new
columns which are not obtainable from file.

• It can clean everything with DROP command.

This software is build upon fitsql — script by Jan Fuchs from Astronomical
Institute in Ondřejov. Although almost whole script was rewritten, the ini-
tial non-objective design was kept. DaCHS appeared precisely before major
rewriting thus work on this script was stopped.
List of some features which were added to the script

• Configuration with .ini files – There is a global category [global] and
local categories named after spectrograph for which it is currently used.
Local configuration inherits from [global]. Each spectrograph has unique
name, tablename, datasource (path to FITS files), and reference fit (ini-
tial schema map will be build upon this file)

• Automatic table generation with SSA metadata – Dictionary with map-
ping from ordinary FITS keywords into SSA keywords was added.

• PgSphere integration – Values from FITS file can be mapped to Pg-
Sphere objects. This feature can be disabled in configuration.

18



2.1. Database and ingestor

• User defined computations – For each spectrograph it is possible to define
mapping — computations and conversions on input values. Mapping is
python dictionary with lambda functions.

Most interesting part is a user input into ingesting routine. Why is the
user-specific configuration necessary is shown in the following example: Al-
most each FITS file has wrong format of key dateObs (date of observation).
IVOA recommends the time format in ISO 8601. All FITS I worked with had
date of observation as a date in format YYYY-MM-DD and time of observation
in seconds from midnight. In addition the keyword was different for different
spectrographs. It is obvious that this mapping cannot be automatically gener-
ated and user’s intervention is necessary. The user is kept away from routines
and writes only main logic. Python was chosen to be most suitable language
because it comes up with nice structures and syntax that it is possible to let
user write python code directly with almost no programming skills.

mapping = (

{

’keys’ : ("CRVAL1", "NAXIS1" ,"CDELT1"),

’map’ : lambda crval1, naxis1, cdelt1: {

"key" : "META_SPEC_MIDDLE",

"typename" : "datetime",

"value" : ((naxis1 - 1) / 2.0 * cdelt1) + crval1,

"default" : "NOT NULL"

}

},

{

’keys’ : ("NAXIS1", "CDELT1"),

’map’ : lambda naxis1, cdelt1: {

"key" : "META_SPEC_EXT",

"typename" : "float",

"value" : float((naxis1 - 1) * cdelt1)

}

},

)

Figure 2.2: Example of mapping

Mapping always parses FITS file and returned values are directly mapped
into database. Thus we need to specify input keys from FITS file. They are
in item "keys". Output must have at least three items. They are described in
item "map", where is a lambda expression which returns dictionary with name
of new column, type of value and a value. Lambda expression is necessary
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because of computations which are performed. It can not be static definition.
Only this form does not constrain user from advanced functions.

2.2 DaCHS

DaCHS is close to be an ideal server. It almost meets architecture described
in analysis in Figure 1.3. The major part is defined in markup language and
is separated from underlying logic. Therefore it is easy to extend.

Quite a big obstacle is complexity. In revision 2543 it had 138445 lines of
code. The server is still signed as unstable what is immoderately careful. The
server has more features than all other servers together and looks like most
robust software which I have ever met. We suppose the that the test coverage
is nearly perfect.

2.2.1 Setting up GAVO DaCHS

GAVO DaCHS is collection of libraries and binary files which can manipu-
late FITS files, VOTables and serve VO-compatible files via many protocols.
It is written in python with usage of many uncommon libraries. The basic
installation is well described in the documentation 7 If you are planning main-
tain the DaSCH server next to other servers it is highly recommended to use
virtualenv. When setting up postgresql database do not forget to act as user
postgres. After installation is default GAVO_ROOT set to /var/gavo/ where is
a directory inputs.

Input directory contains archives with resource document (abbreviation
RD will be used). The document is generally named q.rd and placed under
directory named after the archive. For example archive named ccd700 will
have RD /var/gavo/inputs/ccd700/q.rd Resource document is a combi-
nation of XML and Python code. Every XML object will be serialized into
python object and run. In RD are defined

• Services

• Definition for tables for metadata

• Importing routine

• Definition for tables for data

• Constraints definitions for metadata table

Service is the part which communicates with clients, performs queries
and returns results. It is complex wrapper around a Core. Services in RD
are represented by tag service. They have attributes id, to be referenced

7http://docs.g-vo.org/DaCHS/install.html
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with inside RD, and allowed which specifies what type of front-end the ser-
vice will use. Available front-ends are ssap.xml (communicates with SSAP
1.1), form (renders HTML form), siap.xml (uses SIAP) and many others.
More front-ends are allowed to be run together. Name of front-end is the
final part of URL. Now we have complete knowledge how the URL is built:
http://web_root/archive/RD/service_id/frontend (RD has to be with-
out extension.)

Tables are represented with tag table. Like all object in RD they have id
attribute too. Metadata tables can be easily distinguished from data tables
because they have onDisk attribute set to "true". It means they are stored
in the database. Table can contain more tags column. These tags can be
directly written into table or mixin can be used for filling in predefined
columns. Columns definition must be wrapped with STREAM to be accessible
with mixin.

Importing routine is the most tricky and crucial part in RD. It is repre-
sented by tag data. This tag has to have a grammar and make. Grammar is
used for yielding dictionary with parsed data from data source. Make is used
for binding parsed values to database columns.(1)

2.2.2 Postprocessing extension to DaCHS

Our implementation of extensions had two stable versions. First version added
SSAPProcessCore and SpectralProduct classes. In the second version there
were these classes removed and code was integrated into existing standard
classes. This could be done because of final (partially) understanding of
server’s architecture.

First implemenation was fully functional but naive and bounded to Ondřejov.
It did not use inner mechanism of the server. First class added was
gavo.protocols.ssap.SSAPProcessCore. It was direct child of SSAPCore

which handles SSAP queries. Since SSAPCore was not designed as a super-
class some changes had to be made in this class. The only purpose of the new
class was to modify returned data - specifically access references of files8. The
access reference was modified in a way which did not correspond with phi-
losophy of server implementation. This mechanism is already replaced with
better solution.
gavo.protocols.products.SpectralProduct did all the processing work. It
cut spectra and scaled them. More parts of server were updated for new fea-
tures to enable post-processing. Main changes were done in the section of
manipulating FITS files. SpectralProduct had many issues. First it did not
use parsed data from grammar in RD. It had own parsers. They tried to find
source FITS file and guess its format. There were many converters which could
succeed with few files but in production they will be useless. These parsers

8Access reference is URI where the spectra file is available.
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could not replace data parsers from RD. Second it worked only with FITS file
renderer. If a client wanted to cut spectra in VOTable it was not possible.
Thus it did not fulfil assignment. In addition it did not take care if the spec-
tra were already normalized and just scaled them. This implementation cut
spectra, scaled spectra but only in Ondřejov in CCD700 archive.

Second implementation is far better. The modification of access reference
is built directly in the standard SSAPCore. It do not create any artificial
parameters but it just pass SSAP parameters into file access reference. The
modification can be enabled and disabled with setting boolean postprocess

parameter in SSAPCore in RD. SpectralProduct was removed and all com-
putations are done in standard SDMCore9. This implementation comes with
numerous advantages. Firstly redundant SpectralProduct was removed.
Secondly it takes all advantages from RD because SDMCore is presented in
RD and has to be set up by user. Finally it gained ability to render VOTable
because it was the original purpose of the SDMCore. Extended SDMCore has
support for rendering products according to mime type in the database. It
can return SDM compliant binary table FITS and VOTable. When returning
FITS it tries to find source file and extract header from it. If it finds the file it
removes all data-related keywords, add or update SDM keywords and tries to
validate the header. Validation is destructive - invalid keyword are removed.

Scaling now checks if spectra are not already normalized. It does not use
mathematics for this but only checks if ssa_fluxcalib is set to "normalized".
Scaling is implemented as division of all flux10 values by their modus. The
computing of modus is interesting problem because it is surprisingly slow.
The slowness is not caused by number of steps. It is the same as in mean
computing. The main problem is hashing which is always used.

Algorithms were tested on three different files without threading. First al-
gorithm used hash map to store number counts. It was naive implementation
with default hash function for dictionaries in Python.

Figure 2.3: Normal distribution

Second algorithm used my own basic
hash function and static array. This
solution was very memory consum-
ing and was not faster than the pre-
vious one. It indicates well designed
dict type in Python.

Third algorithm was similar to
the second but has improved mem-
ory usage with simple usage of statis-
tics. Counting of mean and variance
is fast thus they can be used for optimization. I suppose that values on flux

9SDMCore can render data in SDM format. It is binary table FITS and VOTable
10Spectrum is usually compound from two axis - spectral axis (wavelength) and flux axis

with photons count or derived units
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Table 2.1: Comparison of modus algorithms

algorithm type time(relative) memory usage

naive hash table 1 N/c

array and own hash function 1 N

2σ array 1.4 4σ

axis have normal distribution. With this knowledge and with definition of
modus11 is possible to restrict set of values to values not further than 2σ from
the mean because there is 95 % of values. The remaining 5 % are so diverged
that they cannot have significant impact on modus. They just widen interval
thus consuming memory for nothing.

The c is a coefficient of how many numbers in array are equal. If there
are many equal numbers then coefficient is large. If all numbers are the same
then c = N , where N is the array size.

Cutout was optimized too. Data are stored in the class InMemoryTable
which keeps data in linked list. Cutout sometimes needs to remove only few
records. There are two possible approaches to this problem. Remove nodes
which we do not want or build a new linked list with wanted nodes. If we
compare the worst case when only the last one should be preserved then we
get for the first case

1 + 2 + 3 + ...+ n− 1 =
n× (n− 1)

2
= O(n2) −O(n) = O(n2)

In C/C++ it would be O(n) but there are not pointers, only iterators. The
only way to delete node from linked list is by index. This causes repeated
passing from the beginning to wanted position. For the second case with
appending wanted values at the end of linked list we get

n−1∑
0

1 = n− 1 = O(n)

Second case is better and this is how it is implemented.
Scale had one issue and that was negative values which made fake peaks.

These scaled data are used in for searching of emission line stars, which are
distinguishable with high peaks in one wavelength. This is how the mistake
was discovered.

2.2.3 Data preprocessing

Part of the testing was a development of new SSA-compatible archives of
Ondřejov spectra. There are two archives. Newer and still growing CCD700
and older, closed, named HEROS.

11most common value
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(a) (b)

Figure 2.4: Original and wrongly scaled spectra

CCD700 produce data in form of almost valid 1D FITS file. Data prepara-
tion consisted only from setting up right importing routine. 1D FITS means
that the only row in the data table is filled with FLUX values. Spectral axis
values are derivable from metadata (supposing equidistant interval of wave-
length — using rebinning). They contain NAXIS1 which implies number of
records, CRVAL1 is the wavelength in angstroms of the reference pixel CR-
PIX1 (in our case the first) at spectral axis and CDELT1 is difference between
pixels at spectral axis.

SIMPLE = T / Fits standard

BITPIX = -32 / Bits per pixel

NAXIS = 1 / Number of axes

NAXIS1 = 1997 / Axis length

DATE-OBS= ’2001-12-09’ / UTC date start of observation

TM_START= 8715 / 02:25:15

TM_END = 9347 / 02:35:47

UT = ’02:25:15’ / UTC of start of observation

RA = ’5:21:57.4’ / 5.365944

DEC = ’41:47:53.9’ / 41.798306

CTYPE1 = ’LINEAR ’

CRVAL1 = 4269.51301773849

CRPIX1 = 1.

CDELT1 = 0.127108484224366

Figure 2.5: Example of CCD700 FITS meta data
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HEROS data were older and more dirty. Each FITS file should have RA and
DEC. These information were hidden in comments in HISTORY block which
is hard to parse.

Luckily these information were in an old database handled by Pleinpot.
We decided to insert these information back to FITS files. The update script
was complex because it merged RA and DEC from database and datetime
of observation and observers’ names from enclosed CSV into corresponding
FITS.

HEROS has normalized and original spectra. It was needed to add sign
of normalization into database. SSA protocol has key FLUXCALIB which can
be “absolute”, “relative”, “normalized” and “any”. It is optional argument
therefore it was not implemented in DaCHS. This problem was initial stimu-
lation for rewriting scale because it could scale these normalized spectra what
is wrong.

2.3 Testing

DaCHS comes with its own testing framework based on unittest library. It
extends the unittest library for some features related to accessing serialized
resources like getTestRD() and getTestTable(). The main test class is
gavo.helpers.testhelpers.VerboseTest which is subclass of
unittest.TestCase. This class is used for integration tests as well. DaCHS
itself has very high test coverage.

2.3.1 Unit testing

Doctests were the most used tests while implementing the extension because
they are independent of any testing framework thus easy to use. Some con-
straints distinguish them from unittests therefore they can not substitue stan-
dard unittests. Doctests are special ability of python. They are written di-

def _parseBand(self, band):

’’’Return tuple with interval based on BAND

>>> sdm = SDMCore(None)

>>> sdm._parseBand("1000e-10")

(None, None)

>>> sdm._parseBand("1000e-10/")

(1000.0, None)

>>> sdm._parseBand("1000e-10/1400e-10")

(1000.0, 1400.0)

Figure 2.6: Doctest example
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rectly in documentation of the source code. Python can be run as follows:
python -m doctest -v ssap.py performing all doctests in given file.

2.3.2 User testing

User testing corresponds to the specification in the section 1.3.3.
Two main clients were tested. VO-Spec, java client executable using Java

Web Start, and Splat-VO which is standalone Java application. VO-Spec had
problem with units of flux axis. The VO specifies that units has to be in
SI format but data in Ondřejov have not flux units convertible to SI. The
solution was to chose the nearest SI units possible. VO-Spec refused UCD as
well. This error is because of mistake in SSA specification. It propose em.wl

as the spectral UCD which is invalid according to the UCD specification. This
mistake is known and in next version of UCD specification will be fixed.

Splat-VO is less pedantic therefore all formats were accepted.
The SDM compliance cannot be objectively verified because there is not

any validator. The only possible test is to open rendered file and manually
check if all mandatory fields are presented in the correct form.
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Chapter 3

Usage

3.1 Using of postprocessing extensions

To enable the extension, set the postprocess parameter of SSAPCore to
"true".

<service id="pssa" allowed="ssap.xml">

...

<ssapCore queriedTable="data" postprocess="true">

<FEED source="coreDef"/>

</ssapCore>

</service>

Then it is recommended to create more access references for each file. You
have to tell the client which formats you provide. For each mime-type create
extra row in database with unique accref and mime-type. This can be done
in a grammar within data tag. Our solution is shown below.

<data id="import">

<sources recurse="true" patterns="data/*.fit"/>

<fitsProdGrammar>

<rowfilter procDef="//products#define">

<bind name="table">"\schema.data"</bind>

</rowfilter>

<rowfilter name="addSDM">

<code>

baseAccref = os.path.splitext(row["prodtblPath"])[0]

row["prodtblAccref"] = baseAccref+".fit"

row["prodtblMime"] = "image/plain"

yield row

row["prodtblAccref"] = baseAccref+".fits"
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row["prodtblPath"]="dcc://\rdIdDotted/mksdm?"+baseAccref+".fits"

row["prodtblMime"] = "application/fits"

yield row

row["prodtblAccref"] = baseAccref+".vot"

row["prodtblPath"]="dcc://\rdIdDotted/mksdm?"+baseAccref+".vot"

row["prodtblMime"] = "application/x-votable+xml"

yield row

</code>

</rowfilter>

</fitsProdGrammar>

<make table="data">

<rowmaker idmaps="*">

...

There are created three different access references for each file. First accref
points to normal product. Others point to DCCProduct which is the main gate
to SDMCore thus cut out and scale service. You can see that each accref differs
only with extension. This is probably best way how to do this. Do not forget
to use the right accref as a parameter to DCCProduct. Mime type is crucial
for renderer and only application/fits and application/x-votable+xml

are possible outputs of SDMCore. Be sure that you have set proper conversion
from access reference to absolute path to file in embededGrammar in SDM-
Core. This is one of bad things in DaCHS that it does not have separated
filename and access reference in db.

The reference services of our work are implemented in the Astronomical
Institute of the Academy of Sciences of the Czech Republic in Ondřejov Access
URLs are
http://ssaproxy.asu.cas.cz/ccd700/q/pssa/ssap.xml

http://ssaproxy.asu.cas.cz/HEROS/q/pssa/ssap.xml

CD700 archive does not have so far pre-normalized spectra, but the rescaling
of flux happens on-the-fly. HEROS has all spectra manually normalized, but
unrectified data are still presented. Normalized and unrectified spectra are
distinguishable by accref because of normalized spectra starts with “NORM”
and the others with “UNRECT”. Normalized spectra has also NORM as a
prefix in their name.

Behaviour of these archives differs. Cutting service works on both as ex-
pected. It is possible to define open intervals as well. Scaling is activated when
client adds FLUXCALIB=normalized into SSAP query. HEROS returns only
normalized spectra as is written in SSA recommendation. CCD700 has not
any normalized spectra thus it returns all spectra matching other conditions
and scale them when they are downloaded.

This behaviour does not conform to SSA recommendation since it defines
FLUXCALIB parameter as following: “FLUXCALIB specifies the minimum
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3.1. Using of postprocessing extensions

level of flux calibration for acceptable data. Possible values are “absolute”,
“relative”, “normalized”, and “any” (the default). If “relative” is specified,
spectra which have an absolute flux calibration will be found as well. “Normal-
ized” refers to spectra which have been normalized by dividing by a reference
spectrum (including continuum normalization).”(2) As you can see the exten-
sion does not do what is specified as normalization. It only shifts values near
to y=1 to be comparable with other spectra. Robust fitting is complicated
mathematical operation which requires external application.

Postprocessing is easy to notice. Access reference will have arguments like
SSA query. URI with all post-processing abilities activated looks like http://
ssaproxy.asu.cas.cz/getproduct/ccd700/data/rrlyr/4895-5147/ng190014.

vot?BAND=4900e-10%2F5000e-10&FLUXCALIB=normalized

(a) (b)

Figure 3.1: Query and result without post-processing

(a) (b)

Figure 3.2: Query and result with cutout
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(a) (b)

Figure 3.3: Query and result with cutout and scale

3.2 Examples

This extension brings few significant improvements into spectral analysis.
First it spends less time with downloading spectra. Some spectra has spectral
axis longer than 10000 pixels (e.g. the HEROS is about 20000 points and
the merged echelle spectra from VLT UVES are about 200000 points). But

Figure 3.4: Example of long spectra

astronomers mostly needs only small fragment of this data at once (e.g. pro-
file of one spectral line). This can sound insignificantly but astronomers work
with many spectra at once. Figure 3.5 shows cutout of only 12 spectra but in
real application the spectra are downloaded by tens and thousands. Then the
speed-up is really significant.

Scale operation brought better optical comparison of spectra. Sometimes it
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Figure 3.5: Example of cutouted details

is better to look at the spectra than analyse them with mathematical models.
Of course that mature tools for spectra analysis provide calibration of flux
axis. But astronomer has to set calibration for each spectra separately and it
is very time-consuming activity. It is better when it is done automatically.
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(a)

(b)

Figure 3.6: Unrectified and scaled spectra
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Conclusion

The main goal — adding spectra post-processing capability to SSAP server
was achieved. It is done through implementation of SSAP which does not
correspond with current SSAP recommendation. But it was unavoidable be-
cause there is not (yet) specification for obtaining data. This will come in
next release of SSAP with modification called getData. Current specification
describes only selection queries and it is called queryData.

This thesis can be used as a list of available SSAP servers thanks to the
feasibility study.

Development of database ingestor was cancelled because of similar product
in DaCHS, but may be used as a stand-alone tool for ingesting 1D FITS
spectra from other archives in a database - e.g. as a part of tasks connected
with usage of other SSA server tookits. DaCHS server met our expectations
about ingesting, architecture, protocol extensibility and SSAP 1.1 support.
That is why the final decision resulting from feasibility study was to use and
modify this server toolkit.

Beside this work some proposals for modification were sent 12 to IVOA
for consideration. These changes are related to getData modification to en-
able postprocessing and extension of queryData. Proposed extensions are
WILDTARGET, WILDTARGETCASE and getTargetNames. All requested changes
of SSAP were built into DaCHS.

Thanks to Mr. Demleitner’s goodwill DaCHS obtained mechanism for
embargoing private spectra. Mechanism will be built in SPLAT-VO client
soon. This feature will help to spread Virtual Observatory tools to people
who disagreed with full publication of data.

Ondřejov’s archives HEROS and CCD700 were moved to new infrastruc-
ture. HEROS data were cleaned and updated for important metadata. These
archives have been used already as reference service for presentations and
propagation of Virtual Observatory.

In future this work is to be merged with getData extension. This tempo-
rary modification of SSAP shows possibilities and desired features.

12http://docs.g-vo.org/ssaevolution.html
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Appendix A

Acronyms

CSV Comma-Separated Values

DAL Data Access Layer

DEC Declination

FITS Flexible Image Transport System

IVOA International Virtual Observatory Alliance

VO Virtual Observatory

SSAP Simple Spectral Access Protocol

UCD Unified Content Descriptors

XML Extensible markup language

RD Resource Descriptor

RA Right ascension

SI International System of Units

accref Access reference
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Appendix B

Contents of enclosed CD

readme.txt.................................brief description of content
src/

impl/....................................sources of implementation
fitsql/.............................unfinished database ingestor
dachs/.extended astronomical server with post-processing abilities

thesis/.......................... sources of this document in LATEX
res/

readme.txt................................deploy guide for DaCHS
ccd700/...................spectral archive with Resource Descriptor
gavo.rc............................GAVO DaCHS configuration file

text/................................................text of the thesis
BP Peterka Tomas 2012.pdf...................thesis in PDF format
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