
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of software engineering

Bachelor’s thesis

Ondřejov Southern Sky CCD
Photometry Survey: Catalog Server

Jiř́ı Nádvorńık

Supervisor: RNDr. Petr Škoda, CSc.

9th May 2013

Acknowledgements

I would like to thank my supervisor Dr. Škoda for great and colliding
leadership of this project and my thesis. I am also very grateful to Dr.
Demleitner for very good support in every aspect of this project. Without
it would be my work much harder. Last but not least, I would like to thank
my colleague Daria Mikhaliova for cooperation and her efforts to develop
our work towards successful ending.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adher-
ing to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended.
In accordance with Article 46(6) of the Act, I hereby grant a nonexclusive
authorization (license) to utilize this thesis, including any and all computer
programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any
and all persons that wish to utilize the Work. Such persons are entitled
to use the Work in any way (including for-profit purposes) that does not
detract from its value. This authorization is not limited in terms of time,
location and quantity. However, all persons that makes use of the above
license shall be obliged to grant a license at least in the same scope as
defined above with respect to each and every work that is created (wholly
or in part) based on the Work, by modifying the Work, by combining the
Work with another work, by including the Work in a collection of works or
by adapting the Work (including translation), and at the same time make
available the source code of such work at least in a way and scope that are
comparable to the way and scope in which the source code of the Work is
made available.

In V Praze on 9th May 2013 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2013 Jǐŕı Nádvorńık. All rights reserved.

This thesis is a school work as defined by Copyright Act of the Czech Repub-
lic. It has been submitted at Czech Technical University in Prague, Faculty
of Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis

Nádvorńık, Jǐŕı. Ondřejov Southern Sky CCD Photometry Survey: Catalog
Server. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2013.

Abstract

This bachelor’s thesis takes as it’s task to use and apply informatics as a
solution to common astronomical problems. The main task is to preprocess,
store and publish astronomical data from a southern sky survey made by
DK-154 telescope in Chile within the part of observing time used by Czech
astronomers in remote observing mode. These data are to be stored and
processed at Ondřejov data center by scientists from Astronomical institute
AVČR in Ondřejov. The practical output of it will be an online catalog of
light curves extracted from these observations. Also, this output is to serve
as an example of the implementation which may help further development
of astronomical standards used in this thesis.

Keywords Virtual Observatory, server, light curves, SSAP, TAP, SIAP,
CCD photometry, Sky survey

ix

Abstrakt

Tato bakalářská práce si dává za úkol uplatnit informatiku jako řešeńı
běžných astronomických problémů. Hlavńım úkolem je zpracováńı, uložeńı
a zveřejněńı astronomických dat źıskaných z přehĺıdky jižńı oblohy nafo-
cené teleskopem DK-154 v Chile v rámci vzdáleného pozorováńı českými
astronomy. Tyto data budou ukládána a zpracovávána v datovém centru v
Ondřejově vědci z Astronomického ústavu AVČR v Ondřejove. Použitelným
výstupem bude onlinový katalog světelných křivek źıskaných z těchto po-
zorováńı. Tento výsledek bude také sloužit jako př́ıklad implementace, který
by mohl pomoct při daľśım vývoji astronomických standart̊u, které zde byly
použity.

Kĺıčová slova Virtuálńı observatoř, server, světelné křivky, SSAP, TAP,
SIAP, CCD fotometrie, přehĺıdka oblohy

x

Contents

Introduction 1

1 Concepts involved 3
1.1 The Virtual Observatory . 3
1.2 IVOA . 4
1.3 Light curves . 4
1.4 Data formats . 5
1.5 Protocols and related stuff 6
1.6 Clients . 8
1.7 Servers . 10

2 Analysis and design 11
2.1 Requirements . 11
2.2 Testing . 12
2.3 Options . 12
2.4 My solution . 15
2.5 Analysis . 15

3 Implementation 21
3.1 Database . 21
3.2 Extracting from FITS images 24
3.3 Downloading catalog . 25
3.4 Crossmatching . 27
3.5 Publishing the data . 28

4 Usage and testing 31
4.1 TAP service . 31

xi

4.2 SCS service . 32
4.3 SSAP service . 35
4.4 SAMP usage . 36
4.5 Usage with SIAP . 40

5 Future work 43

Conclusion 45

Bibliography 47

A List of used acronyms 51

B Resource descriptor 53

C Data examples 63

D Installation of GAVO DaCHS 67
D.1 Sources . 67
D.2 Database . 67
D.3 Filesystem . 68

E Ingesting manual 69

F Userguide for services 71
F.1 Web-based . 71
F.2 Aladin . 72
F.3 SPLAT-VO . 75

G CD contents 77

xii

List of Figures

1.1 IVOA Members . 4
1.2 M31 Galaxy with Simbad objects over it 9

2.1 Analysis of the architecture . 16
2.2 Analysis of the data . 17
2.3 Catalog identification . 18

3.1 Database schema. 22

4.1 SCS query example in TOPCAT. 32
4.2 A simple example of the SCS form. 33
4.3 TOPCAT SCS query . 33
4.4 Clusters of observations. 34
4.5 Zoomed observations representing the light curve. 35
4.6 The final light curve. 36
4.7 Send to topcat button in the Aladin application. 37
4.8 Cleaning up the result in TOPCAT and creating a subset from it. 38
4.9 Displaying the light curve in TOPCAT graph. 38
4.10 Displaying the light curve in SPLAT. 39
4.11 Image taken by the DK-154 telescope in Chile in Aladin. 40
4.12 Original image with yellow pluses as identified objects. 41
4.13 Previous image with crossmatched objects as blue circles. 41

F.1 Web-form example. 72
F.2 Enter the query parameters. 73
F.3 Checkout the result, we can select objects on the image. 74
F.4 Move the image downwards in the planes list. 74
F.5 Add our server to the list. 75

xiii

F.6 Fill in the query parameters. 76
F.7 Display the light curve. 76

xiv

Introduction

I choose this topic of my bachelor’s thesis because of my attitude to as-
tronomy and informatics both. It is a great connection of these sciences
meant to create a more complex approach in solving astronomic issues like
processing and storing large amounts of data. Another part is also to get
the new information from this data, majority of which is usually not used in
particular research. I am trying to make it easier for astronomers to extract
this data, automize the processes as much as possible, and deliver the data
to them in a clear and simple way.

We will be working on an OSPS1 project, which has among other things
taken as it’s goal to extract light curves from it’s observations.

This bachelors thesis can be summed up in one sentence. Try to extract,
process, store and publish light curves from large number of images. It is to
be both automated and flexible - doing automatically what the astronomers
in Ondřejov need, but leaving all the parts of the process easily changeable
and expandable. It is also to be simple in the means of astronomical output
it will provide. This will be accomplished by using several astronomical
standards, which are well known and used in the community.

We also try here to give a practical example as a reference implemntation
for identifying the light curves. It should help any other people who will
try to publish the light curves in the future. Such person can save its time
and efforts by inspiring in our solution instead of creating a new one.

I must also mention the cooperation on this thesis with my colleague
D. Mikhaliova. We are working on the same goal, mainly united by the
purposes of the project as such. But, we have divided the work in two
almost independent concepts. One part is taking care of ingesting and
displaying the images, which is done by my colleague. The second part is

1Ondřejov Southern Photometry Survey

1

Introduction

about extracting, ingesting and interpreting the information contained in
these images. I will always mention only those parts of my colleague’s work
, which are affecting my work directly, in order to explain their impacts on
my solution.

2

Chapter 1

Concepts involved

In this chapter I will provide an explanation of some terms and concepts I
will later use in the following chapters. It shall only make clear the facts
about these terms, their advantages and drawbacks will be discussed later,
as well as their consequences on my work.

1.1 The Virtual Observatory

Virtual Observatory [7] (VO) is a network of data centres holding astro-
nomical data. It uses the internet to form a scientific environment in which
astronomical programs can be efficiently used.

The goals of the Virtual observatory are to:

• allow or improve direct access to all kinds of astronomical data (photo-
metry, astrometry, time series, spectroscopy, ...) easily, in well defined
protocols,

• provide the astronomers with an easy way to find, access and use any
data relevant to them,

• ensure that all the data will be properly described, can be accessed
and understood in the future,

• provide programs which can be used to interpret and use all this

By meeting all these goals, the VO will be capable of providing any kind
of data in any format, taken on any telescope in any astronomical facility,
in the same way. This will allow the scientists to make much more efficient

3

1. Concepts involved

use of their data. They will be able to exploit the data more efficiently.
In my task, I will use some of the protocols and constructs provided by
the German Astronomical Virtual observatory (later GAVO), which I will
describe later.

1.2 IVOA

The International Virtual Observatory Alliance [7] is a global scientific or-
ganization founded in 2002. It consists of many projects and data centres
worldwide which are working towards the same purpouse - to ensure all as-
tronomical datasets and other resources will be accessible in uniform stand-
ard. The list of IVOA current members can be seen on picture 1.1.

Figure 1.1: IVOA Members

1.3 Light curves

This is the critical term for my whole work, however, creating one is far
more difficult, than understanding it. It is a simple graph of light intensity
over a period of time. Mostly it is measured in logarithmic magnitude of
the object. The problem is with the obvious time-series object it would
need to represent it. There are no standarts for it at the time specified by
IVOA, or any other organization.

4

1.4. Data formats

1.4 Data formats

Concerning my problem, I will be mostly working with images, because I
am making light curves of objects as they are identified on them. Therefore,
I will describe the data formats which are used with images in astronomy,
and provide a simple explanation of aspects important to me.

1.4.1 Metadata

The metadata can be translated as ”data about data”. Officially, there are
two kinds of metadata - structural and descriptive metadata. The first one
describes the structure of some dataset and the other one describes the data
itself. Structural metadata are rather provided in astronomy by standards.
The data itself only contains some MIME type2, which is already specified
in a standard, which defines how the specific MIME type should look like.
The descriptive metadata however, is left open for anyone who creates the
data. It’s usage is described on some file formats below.

1.4.2 FITS

There is large number of image formats, but in astronomy there was de-
veloped an image format called Flexible Image Transport System [18], which
was first standardized in 1981 already. The last version 3.0 is from year
2008. It has the capability of storing almost any kind of data thanks to
it’s abstract structure. They can contain almost any kind of astronomical
data. It is often filled in already by the telescope which obviously knows a
lot of information about the picture it is taking.

The primary header of the image can be read as ASCII text. It contains
metadata, which describe what the image itself contains. It can contain 2D
images or spectra, which are some sort of 1D image. But it can also carry
far more complex structures like data cubes and even multi-dimensional
spectra.

FITS files also can include more headers after the first data block (which
is mostly the image). These headers can represent FITS extensions added
to the original image later when reducing it3. They can also contain some
data which cannot be easily seen on the image, but can be extracted from
it.

2Multipurpose Internet Mail Extensions. Mime types are used to describe the type
of content of a data file passed between two applications over the internet.

3Reducing is an astronomical term for post-processing the image in order to get rid
of chip errors, normalize it, or fix coordinates accordingly to the ICRS system.

5

1. Concepts involved

1.4.3 VOTable

Virtual Observatory Table [15] is another great file structure developed
and used in order to standardize and represent all astronomical data in
one standard, in one file format. It was designed as a file transfer format
between astronomical applications. It is ensured by it’s tabular structure,
which is more transparent and flexible, than in the FITS images. This is
actually an XML-structured file, which begins similarly to the FITS format
by metadata, which are defining the rest of the file containment. In general,
this file can transfer any kind of astronomical data. An example can be seen
in appendix C, listing 4.

1.5 Protocols and related stuff

VOTable is the building stone for all protocols, which are actually used to
transfer astronomical data. They are provided via Web-services running on
a specific address of a server. Whereas file formats are unified for all the
data as much as possible, the protocols are specialized for the astronomical
task they are used for. There are protocols for accessing images, spectra,
photometry and astrometry tables, simple cone search protocol, and others.
All of them have to support GET parameters for the purpose of easy and
independent querying. All of them are defined by IVOA alliance as the
main authority providing worldwide standards for better usefulness of VO
as such.

1.5.1 Registry

The astronomical registry [14] are services that provides data about all
other astronomical services. When we want to find astronomical data, we
first look in the registry, which services are available, that provide the data
we need, and then we will choose the ones we want to query.

1.5.2 ADQL

All of the protocols can use some kind of a form as ”API” for building the
query, which is written in ADQL, the Astronomical Data Query Language
[6]. It is based on SQL, but contains default functions and methods for
geometrical queries like finding results in a region on sky. In my thesis, I
use it for queries, that are not protocol dependent, or cannot be realized by
other protocols due to their limitations.

6

1.5. Protocols and related stuff

1.5.3 TAP

The Table Access Protocol [12] is used to retrieve tabular data and therefore
it can contain any sort of information. The characteristic query language
we use here is the ADQL, but it can support other languages as well. The
result of the query is a VOTable, which can be displayed very easily. The
TAP endpoint on a server will provide metadata of its tables first, so we
can easily find the tables we actually want to query by the ADQL language.
Then we can enter synchronous, or asynchronous queries, which I will also
use in my thesis.

1.5.4 SCS

The Simple Cone Search [9] is probably the simplest and most abstract
protocol. Its mandatory input parameters are only ICRS coordinates and
a radius, forming a conical region on the sky in which we want to find the
objects. Other input criteria can be added too. The output on the other
hand can be represented by any kind of VOTable - any kind of observation
in the given region of sky. This is very useful for data types that are not
sufficiently defined in other standards. In my work I use it for example to
get a list of objects defined by their positions on the sky to verify whether
they were identified correctly in other processes.

1.5.5 SIAP

The Simple Image Access Protocol [10] is used to publish images. The result
has to contain some kind of link to the image file. How the link works is
free to choose, but when somebody clicks it, it has to return the image in
FITS or other graphics format (JPEG, PNG, etc.). This service is to be
used for publishing the images I extract my data from, but it is not part of
my thesis. It is the work of my colleague D. Mikhaliova.

1.5.6 SSAP

The Simple Spectral Access Protocol [11] works the same as SIAP, but it
is used to publish spectra instead of images, thus it has to contain other
sorts of data characteristic for the spectra. This one will play a big part
in publishing our light curves in the end. A spectrum is very similar to
the light curve, because where SSAP’s primary information is a graph of
flux (intensity) over a range of wavelengths, light curve needs intensity

7

1. Concepts involved

(in astronomical convention usually in logarithmic magnitudes) over time
range.

1.6 Clients

When we have data formats, in which to store the data, and the protocols
to transfer them, we need some clients in which we could display and work
with the data. These are mainly customized for the needs and requirements
of astronomers and scientists. I will only try to test my solution to be
compatible with some clients used for displaying my data in the end.

An important and great information is, that it really doesn’t matter
in which environment runs the server, as most of these clients are written
in JAVA and therefore multi-platform. So long as the server provides ser-
vices accordingly to the IVOA standard, the clients can access them from
whatever platform they choose. A brief description of some clients we will
use follows.

1.6.1 Aladin

Aladin [1], typical appearance of which can be seen on picture 1.2, is in
my opinion the best and the most widespread solution for visualization of
astronomical images and data concluded in them. It has some very useful
features to verify wheter my algorithms are doing what they should be doing
and compare the results from them. It can display all sorts of images in
several sky-coordinate systems, but much more important is its capability
to visualize tables of objects. It can render their positions in layers over the
image providing very light and intuitive way to compare them.

1.6.2 TOPCAT

Whereas Aladin is specialized to display graphical data and images, TOP-
CAT [24] is specialized for working with tables. Through the registry sys-
tem, it can find the most suitable servers for getting the information we
need and then query them by for example ADQL. It also contains some
examples of FAQ queries used to get the most common data on the server
we are actually working with. TOPCAT has as well very powerful spread
sheet capability.

8

1.6. Clients

Figure 1.2: M31 Galaxy with Simbad objects over it

1.6.3 SPLAT-VO

SPLAT-VO [22] is specialized in viewing spectra. As it is relevant to our
work, I mention it here too. It is able to find via VO Registry SSAP servers
and query them. It can also quite nicely download and view the spectra,
and render them in one graph over each other.

1.6.4 SAMP

Rarely will our work be so specific or a client so robust, that we could do all
our work on it. Mostly, our work will be running on multiple clients because
of our needs to collect different types of data to see the circumstances we are
working in. This means we need our clients to communicate in some simple
way. This is ensured by Simple Application Messaging Protocol [8]. The
main structure is represented by a SAMP Hub, through which we can send
point-to-point, or broadcasted messages to other running clients connected
to the hub just with one click. In practice, we can, for example, find our
information using TAP protocol in TOPCAT, filter the table and then send
it via SAMP to Aladin to visualize it.

9

1. Concepts involved

1.7 Servers

There also must be VO servers for running the Web-services, which will
access our data through protocols. My requirements for that server as an
end-user would be a light and clear access to the data, ergo to the services it
provides. These services must work by the standards and my only concern
is, whether they work fast and reliably.

For a person who ingests the data however, would be also important
the absolute transparency, i.e. where are the data stored and how does
they look like, what exactly the services are doing with it and how can
I change it. With it also of course comes the possibility to change and
bend the solutions of the server itself, to be able to apply it to a slightly
different environment, or make it able to work with slightly different kinds
of data. The simplicity on the outside provide lots of servers, however, the
simplicity on the inside is quite another issue. We will discuss this in the
analysis chapter.

10

Chapter 2

Analysis and design

2.1 Requirements

The official requirements for my thesis can be found in the thesis task, so I
will rather mention here their consequences and purposes in my work.

2.1.1 Non-Functional Requirements

Platform

The environment will be Debian Linux running on a virtual server. The
database used will be PostgreSQL [19] because of number of plugins with
geometrical functions optimizing it’s usage with astronomical data.

2.1.2 Functional Requirements

Database ingestion

The solution will have to prepare a structure in the database and store
the data in it. This structure must be able to use all kinds of queries the
protocols will use. It has to be reasonably fast too, ergo using efficient
indexes to search in the data. The result of the query must be structured
accordingly to the standard required by the protocol.

The ingestion has to be periodically repeatable and doesn’t touch the
data already ingested, only add the new data.

11

2. Analysis and design

Identifying the light curve

The light curve will have to be extracted from the original data and present
a unique ID, which will be the ID of the object itself. This means we will
have one light curve per one object identified on the pictures.

Providing the data

There will be two services providing each one protocol (SCS for simple
search in the data table, SSAP for publishing the light curve). Each of them
will provide firstly a web-based access, and secondly a GET form returning
VOTable and supporting parameters as defined in the IVOA specification.

2.2 Testing

The services will return data in formats supported by visualization tools like
Aladin, SPLAT-VO or TOPCAT accordingly to the IVOA specifications. If
I want to make the output of this thesis usable, there is no better measure,
than a satisfied user who in our case will typically be an astronomer using
these applications. They will be therefore used for testing and confirmation,
that we successfully met our requirements.

Also, I will try to use such examples, that will nicely illustrate and
explain the processes used in our solution. It is always easier to understand
explanation on pictures, than in text.

2.3 Options

There is always the option to start from scratch when we don’t want to use
any solutions already available. The reasons could be that they don’t exist,
they do not fit our problem exactly, we don’t like the way they are written,
or we simply want to do it by ourselves. But with all these reasons, we still
can’t provide that amount of functionality in one year’s work as we could
when using something already done. This problem is too complex to do it
only by myself, and along with the possibilities that are currently available
for these purposes, there is no need to try it.

2.3.1 Server toolkit criteria

In the VO there are currently several server toolkits used to publish data.
The most important criteria for choosing the right one for my problem are

12

2.3. Options

listed below.

• Ingestion mechanism - The ingesting mechanism has to be flexible to
allow us to map our information correctly in the database. This can
be complicated, because each telescope and observatory has a different
way of creating the data, thus for example the FITS files bearing the
same information can have different headers. Because of that, our
mechanism should be able to modify the data before ingesting. Not
only by altering strings, but also by mathematical calculation and
data conversion from for example hour angle to degrees.

• Support for the latest VO standards - The toolkit will have to sup-
port all of the protocols I need for publishing my data and if it is
to be usable worldwide, it has to be by latest standards. The sup-
ported protocols will be TAP for direct access to the tables, SCS for
geometrical approach, SIAP for accessing the images4 and SSAP for
accessing the light curves.

• Interoperability with other VO Tools - It is also important to have
a simple link to clients processing the data we get from our server.
These could be for example Aladin or TOPCAT and the link will be
mostly represented by connection to a SAMP Hub.

2.3.2 Existing VO server toolkits

Here I compare all the solutions listed on the official sites of IVOA [13] and
discuss their advantages and drawbacks.

DALServer, DAL Toolkit, DSA

All of these solutions have the same major flaw, so I put them together.
Their development is frozen and since the support for latest standards is
crucial, we will no longer deal with them.

VODance

VODance is a light-weight solution that does not have an ingesting mech-
anism. It allows us to create a layer above our data, that will publish it
using DAL5 services without actually moving our data into the database.
Since this solution has very little possibilities to transparently process and
modify our data, it is not suitable for our problem.

4SIAP is critical for my colleague’s work
5Data Access Layer

13

2. Analysis and design

Saada [21]

• Author: Dr. Michel from Strasbourg Observatory.

• Status: Stable version, active support.

• Technologies: Java, Tomcat, Mysql, SaadaQL instead of ADQL.

• Ingestion mechanism: Automatical, easy to use, little possibility of
custom mapping.

This solution is a very user-friendly environment, easy to set up and
easy to use. It supports all of the protocols needed (including TAP, SCS,
SIAP, SSAP, and web interfaces).

It’s drawbacks however, are it’s own querying laungage SaadaQL instead
of standardized ADQL language. The mapping of data against attributes
in the FITS header is rather click-based, and cannot be automatized very
transparently. Since our FITS files will need a lot of custom mapping we
indicated this as a major problem and focused on the rest of our possibilities.

GAVO DaCHS [3]

• Author: Dr. Demleitner from Heidelberg university.

• Status: Stable version, active support.

• Technologies: Python + XML, PostgreSQL + pgShpere and q3c.

• Ingestion mechanism: Automated, powerful custom mapping, pre-
processing.

In this case we underwent the deepest testing on our problem, because
we didn’t come upon a shortage that would be in conflict with the primary
criteria we defined. Here we encounter a very robust solution able to uni-
formly describe metadata and data to be ingested and publish it in multiple
protocols (including TAP, SCS, SIAP, SSAP, and web interfaces).

All of this is very transparently defined in a structure called RD6 Here
is found the mapping for all of the metadata, and since it is XML tag
based, it is very easy to modify. Using the functions and macros defined in
this RD we can easily process and convert the data. The services used for
publication are also defined in this file, so all is nice, clean and transparent.

6Resource Descriptor is an XML file. This is very convenient, as a normal user has
usually no need to look into the Python code. Almost all is usable via XML tags in this
file.

14

2.4. My solution

All of the XML tags are then processed as Python objects. That ensures
very transparent approach and despite the fact that GAVO DaCHS server
has at the last revision 70000 lines of code, it is quite easy to expand with
new features. The Python language provides also a quite simple and agile
method of using all of its possibilities in a command line.

Last but not least, the author of this software Dr. Demleitner is very
cooperative, and along with a very good online documentation it was much
easier to understand server’s organization and structure.

The major advantage of this server however is its biggest drawback.
Its complexity and robustness makes much harder to understand the code
itself, if some sort of change or fix is needed. However, we need a lot of
functionality and therefore we couldn’t plan for a small and easy toolkit.

2.4 My solution

In the end, our requirements turned out to be very specific, so the choice
was quite clear. GAVO DaCHS took advantages in almost every aspect we
need.

The most important advantages are:

• Complexity - This server toolkit solution can systematically define
data ingestion, storage and publishing services in a very sophisticated
structure of an XML file.

• Flexibility - As already mentioned above, the XML resource descriptor
ensures us great possibility to configure the server to our needs, and
if that would not suffice, Python language provides quite easy way
(relatively) to expand the server itself.

2.5 Analysis

The architecture of the whole process of ingesting, storing and publishing
data is quite given by the choice of using a solution that is already optimized.
The flow of the data is quite simple and is described on the picture 2.1.

2.5.1 Data ingesting

There will be two kinds of images7. Each will be FITS files, but they will
have different content.

7In my thesis the images can be always understood as FITS images.

15

2. Analysis and design

Figure 2.1: Analysis of the architecture

• Raw data - the first one will contain only raw data. As it was taken
on the telescope (chip), it will be saved to the file, along with the
metadata, that are known at the moment. These metadata may con-
tain inaccurate numbers, like coordinates of the image, or noise in the
image data.

• Reduced data -the second image type will be reduced. Data reduc-
tion is a term in astronomy for cleaning and improving the image.
It contains of several steps, for example removing instrument signa-
tures (e.g., bias, flatfield), or applying photometric and astrometric
calibration. Here it is done by Munipack [17]. This is not only about
improving the image, but also extracting the knowledge about the
content of the image.

• Binary table extension - the second image type will be the most im-
portant to me, because it will contain a binary table extension. It is
added by Munipack too, right after the original content of the FITS

16

2.5. Analysis

image and has similar structure to it. It has its own ASCII header
with metadata describing the actual content of the binary table below
it. The binary table contains all objects identified on the image. An
example can be found in the appendix C on listing 7. The binary
table extension of course doesn’t carry redundant information about
the image itself. This information is contained in the primary header
at the beginning of the file.

An illustration of how the preparation of the data looks like can be
found on picture 2.2 and the structure of the headers can be found in
appendix C. The raw data header on listing 5, the information added
to the primary header by Munipack on listing 6 and the binary table
extension header is found on listing 7.

Figure 2.2: Analysis of the data

17

2. Analysis and design

2.5.2 Building the light curve

The main problem is, that the observations of one object won’t have even
after calibration their positions equal. The radius of their occurrence can
be statistically proclaimed as one arcsecond. We will assume that all ob-
servations taken in this radius represent one object and therefore form a
single light curve.

There is also a big issue of how to identify the objects on our images.
The best option came out as crossmatching8 the objects on our images with
an online catalog. However, this also can’t be done by exact matching of
the coordinates, because the coordinates vary around the object position in
the catalog. Given by the accuracy of Munipack reduction, we can consider
all observations within one arcsec radius from the catalog position as one
object as well.

The visualization of what is exactly done can be found on image 2.3.

Figure 2.3: Catalog identification

8With crossmatching we mean here identifying an object we don’t know by matching
it’s coordinates with an object we know.

18

2.5. Analysis

2.5.3 Publishing light curve

2.5.3.1 SCS protocol

The intermediate product of our observations will hold complete informa-
tion about them (the band, time, and their crossmatch id against catalog),
and will be published by the SCS protocol. The SCS service is used to
publish all our data before it is “divided” into the individual light curves.
It is important, because when we have senseless values in the light curve,
we can visualize the observation from which it was taken, and see what is
wrong.

Since the SCS protocol by default provides only geometrical parameters,
we will expand it by some other options that we need.

The input parameters supported by our SCS service will be :

• Position/Name - In a standard SCS service this is the mandatory RA
and DEC parameters. A name resolver is attached to this column ergo
standard object names like ngc 330 will be resolved and converted to
their coordinates, which will be passed to the query itself.

• Search radius - This one is mandatory for standard SCS too. It
provides the radius within which the query will return results. To-
gether with the Position of the target it forms the basic geometrical
condition for the query.

• Bandpass - We add this column to the standard SCS definition. It
provides a simple direct match condition of the band name entered.
This means it will only return those results, which have the band
name exactly same as provided in this field.

• Minimum Date + Maximum Date - If entered both, it will form a
simple BETWEEN clause for the query. If entered only one of these,
it will form an open interval and add it as a condition to the database
query. Ergo with only minimum date entered, the query will return
every observation since that date, if maximum date is entered, the
observations taken before this date will be returned.

The SCS query is also specifically intended to be used by the Aladin
client, because of simple visualisation of the results. We will ensure that
we can access this service directly from Aladin too.

19

2. Analysis and design

2.5.3.2 SSAP protocol

The final table which will be published via the SSAP will have as little
information as possible to fulfill the standart requirements.

In the end, we are only trying to bypass them because we are trying
to use the SSAP for something it wasn’t built for. That is also the part
for discussion, what can be done about it. In my solution, there will be
the information identifying the light curve, like the date, band, or location.
All of these are necessary because they will represent the parameters of the
SSAP service and the light curve will be searched by them.

However, the most important column is the accref 9. In SSAP it is
usually a link to a physical FITS file carrying the spectrum. The CoRot
approach also uses physical FITS files to store the light curve.

That in my opinion is unnecessary, and would only store redundant data
on the hard drive. We can generate the light curve on fly if we have all the
data in the database already. So we decided to use the accref as a URL
which points to the TAP endpoint of our server and bears the ADQL query
which extracts the light curve of given parameters from our server.

It will also be able to cut the spectra, when the minimum date, or
maximum date of our observations will exceed the query date parameters.
This will be actually quite easy compared to the light curve stored on hard
drive, because here it will be only two more parameters of a SELECT query.

The input parameters supported by our SSAP service will be:

• Location - This parameter works the same as in SCS service. It is
the center of a cone search done by the query. Name resolver is also
attached.

• Search radius - The same as in SCS service. Completes the geomet-
rical condition for the query.

• Bandpass - The same as in SCS service. Direct match condition
against the name of the band will be added to the query.

• Minimum Date + Maximum Date - These will have a little more
complex purpose, than in a simple SCS query. They will cut the light
curve stored in the database, returning only observations taken after
the minimum date and before the maximum date. Only one of these
can be entered too, for open intervals.

The SSAP query will be mostly accessed from the SPLAT-VO client.
Therefore we will ensure that the client will be able to display our results.

9Access reference, used as link to download the file (mostly FITS)

20

Chapter 3

Implementation

The GAVO server uses a construct of the resource descriptor not as a con-
figuration file, but as declarative programming language [4]. It consists of
XML tags, which alone provide a structured access to scripts and functions
from inside the GAVO DaCHS source code. The GAVO DaCHS package
can be called as an “interpreter” for the programming language constructed
within this document. The XML tags have variety of attributes, which also
represent parts of code from the package. We can use predefined macros
and functions inside the XML elements too.

Also, when the server package cannot provide the exact functionality we
need, we can use elements named script, which allow us to add scripts in
other languages, e.g. Python, SQL. These can be run at a specified point
during table creation or teardown, which are exactly the moments where
we can transform the data before ingesting it.

In the resource descriptor are defined all the information and processes
needed for ingesting the data, or working with it. There is typically one
RD file per one resource10.

In this chapter, I will describe my RD program from the perspective
of its functionality, and reference the lines of code in appendix B. If it is
not enough, please seek out the GAVO DaCHS documentation, which is
absolutely exhausting [5].

3.1 Database

PostgreSQL Database has a great option of creating database schema as a
hierarchical structure above our tables. That is very useful to us, because

10By resource we mean here a collection of data of the same format

21

3. Implementation

my colleague D. Mikhaliova will work in one schema used for storing the
images and I in another one used for extraction the data from the images.
This allows us to work almost independently and without the fear, that we
would destroy each others data, but still we are using the same database
ergo the same server for publication our data.

A simple database schema is described on figure 3.1. The sourceId is
an identifier for one object in the catalog, obsname is the identifier for one
image (i.e. file) and the starNo column is the identifier of an object inside
one image (it is the number of the row at which it is stored in the binary
table.

Figure 3.1: Database schema.

3.1.1 Defining target tables

The trickiest part for me in this is to store the data in the database in
an organization which will provide fast access and searching for the light
curves. The content of the concrete tables is defined below. The tables are
defined in the RD in a very sophisticated way, an example can be found
between lines 9 and 48 in the RD11.

3.1.1.1 Tables

Since the reading from files is done by grammars which handle them by
units which uniform structure (e.g. headers, binary tables), we cannot read

11Appendix B

22

3.1. Database

from primary header, secondary header (binary table header) or the binary
table at the same time. The best solution here is to create one table for
each such section of the file.

Table observation info
This table is used for the primary header of the FITS file. We will need
metadata describing all the data on the image therefore they will be the
same for all rows in the binary table extension. That gives us a reason to
separate them in a single table too, because we don’t want their redundant
storage in each row of the binary table.

Table objobs incomplete
We don’t need any information from the binary header and all we want to
ingest are the data in the binary table itself. That means one row per each
object identified on the image stored in this particular FITS file. This can
be easily done by a grammar too, and best solution is to create a second
table, which will be joined with the first one on the obsname column12.

Now we have all data, that will form the light curve, but we need yet
something to identify the light curve itself.

Table objcat
After long analysis and discussion involving Dr. Demleitner, we choose to
cross-match our observations against an online catalog. There were two
possibilities useful for this task - UCAC4 catalog [25] and PPMXL catalog
[20]. But where UCAC4 had hundreds of objects per one our image, the
PPMXL had thousands. Also when trying to crossmatch, PPMXL left far
less objects observed without match. In these circumstances we choose the
PPMXL catalog.

Since the catalog contains literally astronomical amounts of data, cross-
matching online would be very problematic. We have to download at least
part of it and then ingest it to another table in the same database schema.
When we have all the data in one database, the crossmatching will be very
fast.

Table objid
The last table will have small number of columns. It represents a sort of m:n
database relation, joining columns identifying the object within a catalog
and columns identifying one observation of an object in our images. There-
for it contains foreign keys from these tables objcat and objobs incomplete.

12Identifier of the file the data was taken from

23

3. Implementation

It also contains the offset of how far was the observation from the catalog
coordinates.

3.1.1.2 Views

There are two views in my database and they are both specialized for the
protocol, which will access them.

View objobs
This view will contain all information about our observations we could re-
trieve and will used for publication via SCS protocol. One row will represent
one observation of an object identified on our image. All of the rows which
were successfully crossmatched against a physical object in the catalog con-
tain an identifier of this object too, others are left N/A. This column will
be used for the final separation of a light curve from this view. The script
for creating the view can be found in the RD13 between lines 235 and 247.

View objobs ssap
This view will be based on the previous view objobs, and will be specifically
used for publishing the light curve via SSAP protocol. It will contain accref
column, which’s content will be a URL with a database query. This query
will extract one specific light curve from the objobs view, and return it
as a VOTable compatible with the SSAP standards and convenient to be
displayed in a spectral analysis clients like SPLAT-VO.

For searching in the lightc urves as such, no internal identifier will be
used, but ICRS14 coordinates. That will be quite user-friendly and corres-
pond with the protocol requirements. Then it will also contain other simple
information characterizing the light curve, like the band, time epoch of the
light curve or publisher. The script for creating this view is very important
and can be found in the RD15 between lines 298 and 322.

3.2 Extracting from FITS images

When we have our tables defined, we need to fill them.
The first and easiest problem is to read data from FITS file. I’m not

overlooking this, because this is not only sequential reading, but also com-
bining the data from primary header with the Binary Table data. The

13Appendix B
14International Celestial Reference System
15Appendix B

24

3.3. Downloading catalog

second step is to transform the data to the form I want to be stored in the
database. That includes formal naming corrections and datatype conver-
sions. These ingestion scripts can be found in the RD16 between lines 327
and 389.

The first step is done by grammars embedded in the GAVO DaCHS
server. The grammar returns simple dictionaries of rows from the FITS
file. That enables simple mapping from attribute name in the FITS file to
the name of column in our database.

Filling observation info table
For reading from headers of a FITS file, FITSProdGrammar can be used.
This one we use to ingest data describing the image, e.g. coordinates of
the image, the date of the observation, or the band. All of the computing
done here is some conversion of a date format. Some strings are also parsed
in tiny Python scripts (for example observation name which is parsed from
the path to the file). That can be simplified by functions and macros usable
within the ingestion procedure in the RD.

Filling objobs incomplete table
For reading the Binary table from the FITS extension, we can use Binary-
Grammar. This grammar works the same as all other grammars, returning
dictionary with key as the name of the column and value as its content.
There are lots columns in the binary table, but all of them can be useful
when analyzing the light curve.

Updating tables
Both of these tables are filled within data elements in the RD. There are
two ones for rewriting the whole table in the case of changing its structure,
but the ones, that are automated, only add the new sources, ignore the ones
already ingested. That is done by using the ignoreSources clause with the
parameter as a database query, which will return accref of the files already
ingested.

3.3 Downloading catalog

The PPMXL Catalog contains very large amounts of data. With one row
per object identified in the catalog, the catalog contains about 900 million

16 Appendix B

25

3. Implementation

rows. It would be very ineffective to download the whole catalog and ingest
it to our database, when all we need are a few fields from the catalog.

The only reasonable way that occurred to us was to download only part
of the catalog as a result of a TAP query on the server within the areas.
Geometrically, these areas are cone searches around our images, with a
radius, that safely covers them. We can use the attributes from the original
image header, where the coordinates of the center of the image can be found
for it.

However, it would be very inefficient to build one area for each image.
Not only that it would be much slower when because of much more con-
straints for the SELECT query, but also we must not forget, that we are
limited with the length of the curl script we are using. If we didn’t op-
timize our query, with large amounts of data could easily happen, that we
exceed the operation system memory for commandline parameters. The
only thing we could do then would be to re-compile the linux core, and that
would make our solution very unportable.

What I do here is a little trick joining the table on itself using the
coordinates on a geometrical condition. The condition is provided by a
Q3C plugin function in the database, which takes x,y coordinates of two
objects, and returns true, if the two objects are within the radius of each
other.

The SQL script for joining the tables is very important and therefore
extracted from the code and can be seen on listing 1. We select image
coordinates (orira and oridec) from the observation info table and get rid
of duplicities which will occur in 1 arcmin radius.

Then the Python script for building ADQL Query condition is listed
below on listing 2. Here we create from the orira and oridec columns the
condition for the geometrical TAP query. It ensures, that all the PPMXL
objects characterized as a POINT contained within the CIRCLE of 15 ar-
cmin within center of the image will be returned as a result of the query.

The whole script can be found between the lines 391 and 430 in the
RD17.

17Appendix B

26

3.4. Crossmatching

SELECT DISTINCT obs1.orira,obs1.oridec

FROM bextract.observation_info as obs1

JOIN

(SELECT observation_info.orira,observation_info.oridec

FROM bextract.observation_info) as obs2

ON q3c_join(obs1.orira, obs1.oridec,

obs2.orira, obs2.oridec,

0.016666667);

Listing 1: SQL script for optimising the query.

"OR ".join(

["(1=

CONTAINS(POINT(’ICRS’,ppmxl.main.raj2000,ppmxl.main.dej2000),

CIRCLE(’ICRS’, %(orira).14f , %(oridec).14f, 0.25)))"

%x for x in coordinates])

Listing 2: Python script for condition generation.

After building the query, we curl it on a link to a GAVO DaCHS online
catalog TAP endpoint18.

The VOTable returned by this service is stored into a temporary file
and then ingested to the objcat table using a VOTableGrammar.

3.4 Crossmatching

The crossmatching is done in another script held in the dataelement cross-
match. In this script we fill the table objid, which holds foreign keys to
objcat19 and to objobs incomplete20.

These columns are joining the identifier of an object in a catalog with
our concrete observation of this object. For one object in the catalog, there
will be typically lots of observations. The crossmatching script is too long to
be shown here, but the most important part on it is the condition on which

18The TAP endpoint is a URL, which points to a service supporting GET parameters,
at which we can send the query using the parameters. The result is returned in a format
we ask, it can be VOTable, FITS, etc. as defined in TAP specification by the IVOA
organization.

19sourceId in the catalog table
20starNo and obsname - identifiers for one observation within the extracted binary

table data

27

3. Implementation

the objects21 are crossmatched. It is shown on listing 3 - our observations
are joined with the catalogs within 1 arcsec. The whole script can be found
in the RD22 between lines 432 and 454.

WHERE q3c_join(observation.raj2000, observation.dej2000,

catalog.raj2000, catalog.dej2000,

0.000277778)

Listing 3: Crossmatching ADQL script.

The crossmatching results will be joined into the objobs view. However,
not all objects are matched against the catalog, and their sourceId is left
as N/A. We could hold these when using a LEFT JOIN, instead of INNER
JOIN when building the view, but that has a fatal impact on the speed of
handling queries on the view.

Therefore we leave them unpublished at the time, until the algorithm
of their identification will be implemented.

3.5 Publishing the data

In this section I explain how the services for SCS and SSAP publish the
views objobs and objobs ssap. The source code doing this logic can be found
between lines 466 and 528 in the RD.

When defining the service, we can add some attributes like the name of
it and some default arguments - the name will be used for access URL on the
server. Also here is specified, in which form the service will be accessible.
Typically we would want scs.XML for application access23 and form access
for web-based access.

The important query logic is done in a component called dbCore24, which
provides the access to the database as such.

3.5.1 SCS service

The first view25 is used for ”direct” access to the observations we provide
and it is published26 using SCS.

21the object is meant as one row in a table here
22Appendix B
23applications access via GET parameters
24The Database core
25objobs
26Publishing is done in an RD too, defined in data element service.

28

3.5. Publishing the data

The dbCore for objobs view is called scsCore and is built from compon-
ents called condDesc27. As this service is almost regular Cone search, we
can use some predefined condDesc from the system RD’s28

The condDesc for SCS can be inherited from a system RD for SCS, but
it does not include the band and date condition we need. That means we
have to define these condition descriptors for ourselves. When we want a
direct match condition (equal) against one column in the table, we can use
the buildFrom attribute of the coneDesc.

However, for the date, we would like to have quite different behavior.
When the user fills in minimum date and maximum date of the observation,
the building of the SQL query is quite simple. But we also would like to
have an option to enter only the minimum date, or the maximum date.
That would mean, we want a result taken later than the date, respectively
sooner. This is not standard supported behavior according to the SCS
specification by IVOA, so we have to define it for ourselves. That can be
done in a structure called phrasemaker.

The phrasemaker structure is used for generating the ADQL query itself
from the parameters translated by the protocol we are using. All it does is
that it yields conditions for the WHERE clause in the final query. Typically,
it is hidden in system RDs and we don’t come in touch with it. But, if we
want a behavior which is not standard, or not implemented in the RDs, we
have to write it for ourselves. This case has occurred in scsCore with the
condDesc for date. It can be found in the RD29 between lines 484 and 504.

Altering Aladin for SCS

The SCS service also has to be usable directly from Aladin. That can
be easily accomplished by storing in the registry, however, until it will be
complete and working correctly, there is no reason to publish it. Mainly for
the testing purposes, we solved this by telling the Aladin the information
it would be normally provided to it by the registry.

That can be easily done by a glufile [23], which is an Aladin configuration
construct able to define new server connections directly by providing address
of the service, and parameters it supports. The final glufile can even be
embedded into the Aladin jarfile so we don’t need to load it manually.

27The Condition descriptor
28There are some system Resource Descriptors, which can be referenced in ours and

easy our life with predefined procedures and macros.
29Appendix B

29

3. Implementation

3.5.2 SSAP service

As the name foretells, this view is the one that in the end is seen published
by SSAP table.

The location is built quite easily from coordinates within the objobs
view, but the accref is a little bit complicated. Since we want it to contain
a query, which will generate the light curve of the parameters we contain
in this table, we have to generate the URL from the view. The URL also
contains the TIME parameter, which is generated eighter from the mindate
and maxdate of the light curve stored, or from mindate and maxdate given
by the original query parameters, thus cutting our light curve on the time
axis.

The SSAP service has to work under the SPLAT-VO client too, as it is
the client we chose for visualizing the light curve. Problematic here is the
format of the URL representing the light curve. SPLAT-VO has problems
to understand it at the time.

3.5.3 TAP service

The table is published using the TAP endpoint automatically, if it is defined
to support ADQL queries.

30

Chapter 4

Usage and testing

Since all the optimization we can do in our solution is to ensure, that all
of the columns by which the tables will be searched have to be indexed,
there is no sane reason for performance or other testing. Therefore all of
the testing will be done as an end user testing, which was mainly provided
by my supervisor Dr. Škoda.

By showing all the test cases on different endpoints of the services and
using several applications to do so, I will prove, that my solution has fulfilled
all of the original requirements and works as it should work.

Since all of the testing will be done by Aladin, TOPCAT and SPLAT-
VO, this chapter is also illustrating their practical usage in our solution.
I will also try to show a visual explanation of the processes used in our
solution.

The solution is at the time 24/7 available at the address of http://

vos2.asu.cas.cz, where our installation of GAVO DaCHS server is running
and providing the services implemented in the scope of this thesis.

4.1 TAP service

The TAP service can be used directly on the server via its component called
TAPshell, but for nicer access we can use the TOPCAT program.

4.1.1 TOPCAT

The topcat will access the TAP endpoint of the server which is located on
a direct URL of our server http://vos2.asu.cas.cz/ system /tap/run/

tap.

31

 http://vos2.asu.cas.cz
 http://vos2.asu.cas.cz
http://vos2.asu.cas.cz/__system__/tap/run/tap
http://vos2.asu.cas.cz/__system__/tap/run/tap

4. Usage and testing

When we access the endpoint, we can see list of tables the server actually
provides. Here we can choose which of them we want to use and write our
own ADQL query. After selecting the service by its URL, the ADQL query
can be sent as provides the example 4.1. We select here a light curve by its
internal sourceId. The ”mag<99” condition is meant to get rid of manually
excluded objects. These are identified by a magnitude 99.99, which is a
fixed value for a broken object (bad result of calibration).

Figure 4.1: SCS query example in TOPCAT.

4.2 SCS service

The SCS service can be accessed eighter by a web-based form through the
GAVO DaCHS server or by the application XML service endpoint.

4.2.1 Web-access

The web form can be accessed by direct URL of the service, which in our
case is http://vos2.asu.cas.cz/extract/q/scs/form . On this link we
can test our web-based access to the SCS service accessing our observations.

An example of a query is shown below. There is an example of how to
fill in the form at the picture 4.2.

An image can be found below.

32

http://vos2.asu.cas.cz/extract/q/scs/form

4.2. SCS service

Figure 4.2: A simple example of the SCS form.

4.2.2 TOPCAT

For the application access the URL is different http://vos2.asu.cas.cz/
extract/q/scs/scs.XML?. It can be used by any application supporting
the SCS default parameters - for example TOPCAT. When selecting an
SCS query in TOPCAT, we can query our server as described on picture
4.3.

Figure 4.3: TOPCAT SCS query

33

http://vos2.asu.cas.cz/extract/q/scs/scs.XML?
http://vos2.asu.cas.cz/extract/q/scs/scs.XML?

4. Usage and testing

4.2.3 Aladin

The SCS service however, can be accessed directly from Aladin too. We can
query the SCS service as described in the guide30 F.2. The result follows
on picture 4.4 and when we zoom in on one of the cluster of points, we can
see the observations, which represent one object (i.e. one light curve), on
the figure 4.5. The line on the picture is measuring the distance between
the most distant observations - it is less than 1 arcsec - therefore all of the
points will be identified as one light curve.

Figure 4.4: Clusters of observations.

30Appendix F

34

4.3. SSAP service

Figure 4.5: Zoomed observations representing the light curve.

4.3 SSAP service

The SSAP service will be mostly used directly from SPLAT-VO client. The
result of these queries can be displayed as our wanted light curve. Being
able to display it in such programs as SPLAT-VO is the goal of this thesis.

4.3.1 SPLAT-VO

An example of a light curve can be retrieved as on picture F.6 in the guide31

and the result - the light curve - can be seen on picture 4.6. Sadly, the
nature of our observations will not provide us some nice periodical steady
lighcurves. The observations can’t be taken periodically, because we can’t
for example observe very well, when it’s cloudy. There are always several
observations of the object in a short period of time, and then a long pause
until next image of the object is taken.

31Appendix F

35

4. Usage and testing

Figure 4.6: The final light curve.

4.4 SAMP usage

All of the applications already mentioned have the possibility to send res-
ults of their work via SAMP Hub to other applications. On one click, we
can transfer any data output from our application to other applications
connected to the SAMP Hub. An illustration is shown in the following
process.

First, we select all observations which appear to be of one object in
Aladin and then send them to TOPCAT using the interop button as shown
on the picture 4.7. Then we switch to the TOPCAT window, open the
table and then we can dispose of results we don’t want to be shown. These
can be for example the 100 values in magnitude columns, which mean their
observations are somehow broken. Then we make a row subset from the
others as shown on the picture 4.8.

This subset represents a light curve in a simple table and we can eighter
display it in TOPCAT as on picture 4.9, or send to SPLAT-VO for fur-
ther work. When we send it from TOPCAT by SAMP and switch to the

36

4.4. SAMP usage

SPLAT-VO window then we can choose the heliocentric date for x axe and
magnitude for y axe. The light curve displayed then is shown on picture
4.10. We can see, that the light curve looks the same in TOPCAT and
SPLAT-VO.

Figure 4.7: Send to topcat button in the Aladin application.

37

4. Usage and testing

Figure 4.8: Cleaning up the result in TOPCAT and creating a subset from
it.

Figure 4.9: Displaying the light curve in TOPCAT graph.

38

4.4. SAMP usage

Figure 4.10: Displaying the light curve in SPLAT.

39

4. Usage and testing

4.5 Usage with SIAP

This thesis is very closely linked with my colleague’s Daria Mikhaliova’s
work. It is very useful to combine our results, so I will represent this in the
following process.

Also, by this example I will show the circumstances in which I define
our light curve. On the first picture we can see the current main target of
the project observations - the SMC32.

On the other images, I have zoomed to one image and sliced the Aladin
panels away for better detail. On the first image 4.11 we can see the image
obtained by SIAP, ergo my colleague D. Mikhaliova’s thesis. The second
image 4.12 is the same one, but with the objects identified on the image33

as yellow pluses. When we put our crossmatched objects over the image
4.13, we can see that almost all of them are identified inside the blue circles.

Figure 4.11: Image taken by the DK-154 telescope in Chile in Aladin.

32Small Magellanic Cloud
33These are the rows from the binary table

40

4.5. Usage with SIAP

Figure 4.12: Original image with yellow pluses as identified objects.

Figure 4.13: Previous image with crossmatched objects as blue circles.

41

Chapter 5

Future work

There is still much to be done in this project. The identification against
the catalog has its advantages, but does not identify all our light curves
because there are lots of objects not listed in the catalog. These will have
to be identified in other ways and will add more valuable data to our output.

Another thing is, that the other parts of the project are changing in order
to improve the output and I will have to adapt my solution too. There will
be also changes to the SSAP protocol too, maybe even new SSAP version
will take place. That will also add more ways to improve our solution and
output of the OSPS project.

43

Conclusion

The goal of this thesis has been met. All of the light curves identified within
pictures taken by OSPS project have been published and are available on
our server for inspection. The publication is done with usage of official
standards and is able to support the original idea of Virtual Observatory
— to publish any sort of astronomical data under unified access standards.

The ingestion mechanism is able to workin two ways. Eighter rewrites
the tables, for example when their structure is changed, or corrupted, or
only updates them, which is normal behavior of the script. The update
script completely ignores all files already ingested, and it is therefore as
efficient, as it should be.

The publication of light curves had to be done with SSAP protocol,
which was never meant for it, but was quite similar to the principal of
interpreting a light curve. Still, we have achieved admirable results and by
showing a practical example, we have given a reason to expand the time-
series SSAP aspects, which I believe will be a good solution for this topic
in the future.

We also presented our results at the IVOA Interoperability meeting in
Heidelberg [16], where we shared our experience with identification and
interpretation light curves and tried to help with the development of the
SSAP standard towards the time-series direction.

45

Bibliography

[1] Aladin. [cit. 2013-05-08]. Available at WWW: <http://aladin.u-
strasbg.fr/>

[2] GAVO DaCHS installation docummentation. [cit. 2013-05-08]. Avail-
able at WWW: <http://docs.g-vo.org/DaCHS/install.htm/>

[3] GAVO Data Center Helper Suite server. [cit. 2013-05-08]. Available at
WWW: <http://dc.zah.uni-heidelberg.de/>

[4] Declarative programming. [cit. 2013-05-08]. Available at WWW:
<http://en.wikipedia.org/wiki/Declarative programming>

[5] German Astrophysical Virtual Observatory: GAVO DaCHS Doc-
ummentation. [cit. 2013-05-08]. Available at WWW: <http://
vo.ari.uni-heidelberg.de/docs/DaCHS/>

[6] International Virtual Observatory Alliance: ADQL. [cit. 2013-05-
08]. Available at WWW: <http://www.ivoa.net/documents/cover/
ADQL-20081030.html>

[7] International Virtual Observatory Alliance: IVOA. [cit. 2013-05-08].
Available at WWW: <http://www.ivoa.net/>

[8] International Virtual Observatory Alliance: SAMP. [cit. 2013-
05-08]. Available at WWW: <http://ivoa.net/documents/SAMP/
index.html>

[9] International Virtual Observatory Alliance: SCS. [cit. 2013-05-
08]. Available at WWW: <http://www.ivoa.net/documents/latest/
ConeSearch.html>

47

http://aladin.u-strasbg.fr/
http://aladin.u-strasbg.fr/
http://docs.g-vo.org/DaCHS/install.htm/
http://dc.zah.uni-heidelberg.de/
http://en.wikipedia.org/wiki/Declarative_programming
http://vo.ari.uni-heidelberg.de/docs/DaCHS/
http://vo.ari.uni-heidelberg.de/docs/DaCHS/
http://www.ivoa.net/documents/cover/ADQL-20081030.html
http://www.ivoa.net/documents/cover/ADQL-20081030.html
http://www.ivoa.net/
http://ivoa.net/documents/SAMP/index.html
http://ivoa.net/documents/SAMP/index.html
http://www.ivoa.net/documents/latest/ConeSearch.html
http://www.ivoa.net/documents/latest/ConeSearch.html

Bibliography

[10] International Virtual Observatory Alliance: SIAP. [cit. 2013-05-08].
Available at WWW: <http://www.ivoa.net/documents/SIA/l>

[11] International Virtual Observatory Alliance: SSAP. [cit. 2013-05-08].
Available at WWW: <http://ivoa.net/documents/SSA/>

[12] International Virtual Observatory Alliance: TAP. [cit. 2013-05-08].
Available at WWW: <http://www.ivoa.net/documents/TAP/>

[13] International Virtual Observatory Alliance: Virtual server toolkits. [cit.
2013-05-08]. Available at WWW: <http://wiki.ivoa.net/twiki/
bin/view/IVOA/PublishingInTheVONew>

[14] International Virtual Observatory Alliance: VO Registry. [cit. 2013-
05-08]. Available at WWW: <http://www.ivoa.net/documents/
RegistryInterface/>

[15] International Virtual Observatory Alliance: VOTable. [cit. 2013-05-08].
Available at WWW: <http://www.ivoa.net/documents/VOTable/>

[16] IVOA Interoperability meeting. International Virtual Observatory Al-
liance, [cit. 2013-05-08]. Available at WWW: <http://www.g-vo.org/
pmwiki/Interop/Interop>

[17] Munipack. [cit. 2013-05-08]. Available at WWW: <http://
munipack.physics.muni.cz/>

[18] National Aeronautics and Space Administration: FITS. [cit.
2013-05-08]. Available at WWW: <http://fits.gsfc.nasa.gov/
fits documentation.html>

[19] PostgreSQL. [cit. 2013-05-08]. Available at WWW: <http://
www.postgresql.org/>

[20] PPMXL catalog. [cit. 2013-05-08]. Available at WWW: <http://
irsa.ipac.caltech.edu/Missions/ppmxl.html>

[21] Saada server. [cit. 2013-05-08]. Available at WWW: <http://
saada.unistra.fr/saada/>

[22] SPLAT-VO. [cit. 2013-05-08]. Available at WWW: <http://star-
www.dur.ac.uk/~pdraper/splat/splat-vo/splat-vo.html>

[23] Strasbourg astronomical Data Center: Aladin glufile documment-
ation. [cit. 2013-05-08]. Available at WWW: <http://aladin.u-
strasbg.fr/glu/>

48

http://www.ivoa.net/documents/SIA/l
http://ivoa.net/documents/SSA/
http://www.ivoa.net/documents/TAP/
http://wiki.ivoa.net/twiki/bin/view/IVOA/PublishingInTheVONew
http://wiki.ivoa.net/twiki/bin/view/IVOA/PublishingInTheVONew
http://www.ivoa.net/documents/RegistryInterface/
http://www.ivoa.net/documents/RegistryInterface/
http://www.ivoa.net/documents/VOTable/
http://www.g-vo.org/pmwiki/Interop/Interop
http://www.g-vo.org/pmwiki/Interop/Interop
http://munipack.physics.muni.cz/
http://munipack.physics.muni.cz/
http://fits.gsfc.nasa.gov/fits_documentation.html
http://fits.gsfc.nasa.gov/fits_documentation.html
http://www.postgresql.org/
http://www.postgresql.org/
http://irsa.ipac.caltech.edu/Missions/ppmxl.html
http://irsa.ipac.caltech.edu/Missions/ppmxl.html
http://saada.unistra.fr/saada/
http://saada.unistra.fr/saada/
http://star-www.dur.ac.uk/~pdraper/splat/splat-vo/splat-vo.html
http://star-www.dur.ac.uk/~pdraper/splat/splat-vo/splat-vo.html
http://aladin.u-strasbg.fr/glu/
http://aladin.u-strasbg.fr/glu/

Bibliography

[24] Topcat. [cit. 2013-05-08]. Available at WWW: <http:
//www.starlink.ac.uk/topcat/>

[25] UCAC4 catalog. [cit. 2013-05-08]. Available at WWW: <http://
www.usno.navy.mil/USNO/astrometry/optical-IR-prod/ucac>

49

http://www.starlink.ac.uk/topcat/
http://www.starlink.ac.uk/topcat/
http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/ucac
http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/ucac

Appendix A

List of used acronyms

ADQL Astronomical Data Query Language

API Application Programming Interface

DaCHS Data Center Helper Suite

DAL Data Access Layer

DB Database

DEC Declination

DSA Deep Space Antenna

FITS Flexible Image Transport System

FS File System

GAVO German Astrophysical Virtual Observatory

ICRS International Celestial Reference System

IVOA International Virtual Observatory Alliance

MIME Multipurpose Internet Mail Extensions

N/A Not Applicable, Not Available or No Answer

NASA National Aeronautics and Space Administration

OSPS Ondřejov Southern Photometry Survey

RA Right Ascension

51

A. List of used acronyms

RD Resource Descriptor

SAMP Simple Application Messaging Protocol

SCS Simple Cone Search

SIAP Simple Image Access Protocol

SQL Structured Query Language

SSAP Simple Spectral Access Protocol

TAP Table Access Protocol

URL Uniform Resource Locator

VO Virtual Observatory

VOTable Virtual Observatory Table

XML Extensible markup language

52

Appendix B

Resource descriptor

The source code of the file q.rd.

1 <?XML version="1.0" encoding="iso-8859-1"?>

2
3 <resource schema="bextract" resdir="extract">

4 <meta name="title">DK-154 objects</meta>

5 <meta name="description">Identified objects on DK-154 surveys</meta>

6
7 <!-- table holding informations about the image, e.g. observation date, band,

8 meteorological information, ... -->

9 <table id="observation_info" onDisk="True" adql="true" primary="obsname" >

10
11 <meta name="description">Common information (band, dateObs,...) on

12 observations. 1 row per file</meta>

13
14 <column name="accref" type="text"

15 description="internal file reference"/>

16
17 <column name="dateObs" ucd="VOX:Image_MJDateObs"

18 type="double precision" unit="d" tablehead="Obs. date"

19 verbLevel="0" description="Epoch at midpoint of observation"

20 displayHint="type=humanDate"/>

21 <column name="HJD" ucd="time.start;obs"

22 type="double precision" unit="d" tablehead="HJD"

23 verbLevel="0"

24 description="Epoch at midpoint of observation in Heliocentric Julian Date"

25 displayHint="type=humanDate"/>

26 <column name="band" ucd="VOX:BandPass_ID"

27 tablehead="Bandpass" description="Freeform name of the bandpass used"

28 type="text" verbLevel="10"/>

29 <column name="obsname" type="text"

30 description="Identifier for the source file"

31 ucd="meta.id;meta.main"/>

32 <column name="TEL_ALT" type="double precision"

33 description="Horizontal telescope coordinates altitude"/>

34 <column name="TEL_AZ" type="double precision"

35 description="Horizontal telescope coordinates azimuth"/>

36 <column name="AIRMASS" type="double precision"

37 description="Airmass of target location"/>

38 <column name="PRESSURE" type="double precision"

39 description="Atmospheric pressure [mbar]"/>

53

B. Resource descriptor

40 <column name="TEMPERAT" type="double precision"

41 description="Outside temperature of enviroment [Celsius]"/>

42 <column name="AGON" type="double precision"

43 description="?"/>

44 <column name="ORIRA" type="double precision"

45 description="Original position of the center of the image (RA)"/>

46 <column name="ORIDEC" type="double precision"

47 description="Original position of the center of the image (DEC)"/>

48 </table>

49
50 <!-- table of our observations, one row per one object identified on the image.-->

51 <table id="objobs_incomplete" onDisk="True" primary="obsname,starNo"

52 mixin="//scs#q3cindex" adql="true">

53 <meta name="description">Observations of objects without common information

54 (band, dateObs,...) </meta>

55 <column name="accref" type="text"

56 description="internal file reference"/>

57
58 <column name="obsname" type="text"

59 description="Identifier for the source file"

60 ucd="meta.id;meta.main"/>

61 <column name="starNo" type="integer" required="True"

62 description="Running number of the extracted object"

63 ucd="meta.id"/>

64
65 <column name="raj2000" unit="deg" type="double precision"

66 ucd="pos.eq.ra;meta.main"

67 description="Observed RA of the object"/>

68 <column name="dej2000" unit="deg" type="double precision"

69 ucd="pos.eq.dec;meta.main"

70 description="Main value of declination"/>

71 <column name="FLUX" unit="W/m2"

72 ucd="phot.flux"

73 description="Photon flux"/>

74 <column name="COUNTS" unit="cts"/>

75 <column name="RATE" unit="cts/s/m2"/>

76 <column name="IMAG" unit="mag"/>

77 <column name="PHOTONS" unit="ph/s/m2"/>

78 <column name="PHOTNU" unit="ph/s/m2/Hz"/>

79 <column name="PHOTLAM" unit="ph/s/m2/nm"/>

80 <column name="FNU" unit="W/m2/Hz"/>

81 <column name="FLAM" unit="W/m2/nm"/>

82 <column name="MAG" unit="mag"/>

83 <column name="ABMAG" unit="abmag"/>

84 <column name="STMAG" unit="stmag"/>

85 <column name="COUNTS_ERR" unit="cts"/>

86 <column name="RATE_ERR" unit="cts/s/m2"/>

87 <column name="IMAG_ERR" unit="mag"/>

88 <column name="PHOTONS_ERR" unit="ph/s/m2"/>

89 <column name="PHOTNU_ERR" unit="ph/s/m2/Hz"/>

90 <column name="PHOTLAM_ERR" unit="ph/s/m2/nm"/>

91 <column name="FLUX_ERR" unit="W/m2"/>

92 <column name="FNU_ERR" unit="W/m2/Hz"/>

93 <column name="FLAM_ERR" unit="W/m2/nm"/>

94 <column name="MAG_ERR" unit="mag"/>

95 <column name="ABMAG_ERR" unit="abmag"/>

96 <column name="STMAG_ERR" unit="stmag"/>

97
98 <!-- we decided not to use these columns from the bintable -->

99 <!-- <column name="SKY_COUNTS" unit="cts/arcsec2"/>

100 <column name="SKY_RATE" unit="cts/s/m2/arcsec2"/>

101 <column name="SKY_IMAG" unit="mag/arcsec2"/>

54

102 <column name="SKY_PHOTONS" unit="ph/s/m2/arcsec2"/>

103 <column name="SKY_PHOTNU" unit="ph/s/m2/Hz/arcsec2"/>

104 <column name="SKY_PHOTLAM" unit="ph/s/m2/nm/arcsec2"/>

105 <column name="SKY_FNU" unit="W/m2/arcsec2"/>

106 <column name="SKY_FLAM" unit="W/m2/nm/arcsec2"/>

107 <column name="SKY_MAG" unit="mag/arcsec2"/>

108 <column name="SKY_ABMAG" unit="abmag/arcsec2"/>

109 <column name="SKY_STMAG" unit="stmag/arcsec2"/>

110 <column name="SKY_COUNTS_ERR" unit="cts/arcsec2"/>

111 <column name="SKY_RATE_ERR" unit="cts/s/m2/arcsec2"/>

112 <column name="SKY_IMAG_ERR" unit="mag/arcsec2"/>

113 <column name="SKY_PHOTONS_ERR" unit="ph/s/m2/arcsec2"/>

114 <column name="SKY_PHOTNU_ERR" unit="ph/s/m2/Hz/arcsec2"/>

115 <column name="SKY_PHOTLAM_ERR" unit="ph/s/m2/nm/arcsec2"/>

116 <column name="SKY_FLUX_ERR" unit="W/m2/arcsec2"/>

117 <column name="SKY_FNU_ERR" unit="W/m2/Hz/arcsec2"/>

118 <column name="SKY_FLAM_ERR" unit="W/m2/nm/arcsec2"/>

119 <column name="SKY_MAG_ERR" unit="mag/arcsec2"/>

120 <column name="SKY_ABMAG_ERR" unit="abmag/arcsec2"/>

121 <column name="SKY_STMAG_ERR" unit="stmag/arcsec2"/>-->

122 </table>

123
124 <!-- table holding the catalog objects needed for crossmatching-->

125 <table id="objcat" onDisk="True" primary="sourceId"

126 mixin="//scs#q3cindex" adql="True">

127 <meta name="description">Objects imported from PPMXL catalog

128 (used to crossmatch my observations)</meta>

129
130 <column name="sourceId" type="text"

131 ucd="meta.id;meta.main"

132 description="Identifier (Q3C ipix of the USNO-B 1.0 object)"/>

133 <column name="raj2000" type="double precision"

134 ucd="pos.eq.ra;meta.main"

135 description="Catalog RA of the object"/>

136 <column name="dej2000" type="double precision"

137 ucd="pos.eq.dec;meta.main"

138 description="Main value of declination"/>

139 <column name="e_raepRA" type="double precision"

140 ucd="stat.error;pos.eq.ra;meta.main"

141 description="Mean error in RA*cos(delta) at mean epoch"/>

142 <column name="e_deepDE" type="double precision"

143 ucd="stat.error;pos.eq.dec;meta.main"

144 description="Mean error in Dec at mean epoch"/>

145 <column name="pmRA" type="double precision"

146 ucd="pos.pm;pos.eq.ra"

147 description="Proper Motion in RA*cos(delta)"/>

148 <column name="pmDE" type="double precision"

149 ucd="pos.pm;pos.eq.dec"

150 description="Proper Motion in Dec"/>

151 <column name="e_pmRA" type="double precision"

152 ucd="stat.error;pos.pm;pos.eq.ra"

153 description="Mean error in pmRA*cos(delta)"/>

154 <column name="e_pmDE" type="double precision"

155 ucd="stat.error;pos.pm;pos.eq.dec"

156 description="Mean error in pmDE"/>

157 </table>

158
159 <!--table of my object IDs when identified against the catalog-->

160 <table id="objid" onDisk="True" primary="sourceId,obsname,starNo" adql="true">

161 <meta name="description">Table of IDs of my objects

162 (not particular observations)</meta>

163

55

B. Resource descriptor

164
165 <column original="objcat.sourceId"/>

166 <column original="objobs_incomplete.obsname"/>

167 <column original="objobs_incomplete.starNo"/>

168
169 <column name="pos_off" unit="deg" type="double precision"

170 description="Position offset (catalog vs. our observation) in degrees"/>

171
172 <foreignKey source="sourceId" inTable="objcat"/>

173 <foreignKey source="starNo,obsname" inTable="objobs_incomplete"/>

174 </table>

175
176 <!--FINAL SCS VIEW on the tables observation_info, objobs_incomplete and objid-->

177 <table id="objobs" onDisk="True" adql="True">

178 <meta name="description">Object observations with additional meta</meta>

179
180 <LOOP listItems=" raj2000

181 dej2000

182 COUNTS

183 IMAG

184 MAG

185 ABMAG

186 STMAG

187 RATE

188 PHOTONS

189 PHOTNU

190 PHOTLAM

191 FLUX

192 FNU

193 FLAM

194 COUNTS_ERR

195 IMAG_ERR

196 MAG_ERR

197 ABMAG_ERR

198 STMAG_ERR

199 RATE_ERR

200 PHOTONS_ERR

201 PHOTNU_ERR

202 PHOTLAM_ERR

203 FLUX_ERR

204 FNU_ERR

205 FLAM_ERR

206 ">

207 <events>

208 <column original="objobs_incomplete.\item"/>

209 </events>

210 </LOOP>

211 <column name="obsname" type="text"

212 description="Identifier for the source file"/>

213 <column name="starNo" type="integer" required="True"

214 description="Running number of the extracted object"/>

215
216 <column original="objid.sourceId"/>

217 <column original="objid.pos_off"/>

218
219 <LOOP listItems=" dateObs

220 HJD

221 band

222 TEL_ALT

223 TEL_AZ

224 AIRMASS

225 PRESSURE

56

226 TEMPERAT

227 AGON

228 ORIRA

229 ORIDEC">

230 <events>

231 <column original="observation_info.\item"/>

232 </events>

233 </LOOP>

234
235 <!-- creating the view objobs-->

236 <viewStatement>

237 CREATE OR REPLACE VIEW \curtable AS(

238 SELECT \colNames FROM

239 (\schema.observation_info

240 JOIN

241 \schema.objobs_incomplete

242 USING (obsname)

243 JOIN

244 \schema.objid

245 USING (starNo,obsname)))

246
247 </viewStatement>

248 </table>

249
250 <!-- view for representing the lightcurve via SSAP Protocol-->

251 <table id="objobs_ssap" onDisk="true" adql="true">

252
253 <column name="accref" type="text" tablehead="Product key"

254 description="Access key for the data"

255 verbLevel="1" displayHint="type=url"

256 utype="Access.Reference"/>

257 <column name="mime" type="text" verbLevel="20"

258 tablehead="Type"

259 description="MIME type of the file served"

260 utype="Access.Format"/>

261 <column name="band" ucd="VOX:BandPass_ID"

262 tablehead="Bandpass" description="Freeform name of the bandpass used"

263 type="text" verbLevel="10"/>

264
265 <column name="ssa_dstitle" type="text" required="True"

266 utype="ssa:DataID.Title" ucd="meta.title;meta.dataset"

267 tablehead="Title" verbLevel="15"

268 description="Title or the dataset (usually, spectrum)"/>

269 <column name="ssa_pubDID" type="text"

270 utype="ssa:Curation.PublisherDID"

271 tablehead="P. DID" verbLevel="15"

272 description="Dataset identifier assigned by the publisher"/>

273 <column name="ssa_location" type="spoint"

274 utype="ssa:Char.SpatialAxis.Coverage.Location.Value"

275 ucd="pos.eq"

276 verbLevel="5" tablehead="Location"

277 description="ICRS location of aperture center" unit="deg,deg"/>

278 <column name="ssa_publisher" type="text" required="True"

279 utype="ssa:Curation.Publisher"

280 tablehead="Publisher" verbLevel="25"

281 description="Publisher of the datasets included here."/>

282
283
284 <column name="min_date" type="double precision"

285 utype="ssa:Char.TimeAxis.Coverage.Location.Value" ucd="time.epoch"

286 unit="d"

287 verbLevel="5" tablehead="Start Date Obs."

57

B. Resource descriptor

288 description="The first date of observation"

289 displayHint="type=humanDate"/>

290 <column name="max_date" type="double precision"

291 utype="ssa:Char.TimeAxis.Coverage.Location.Value" ucd="time.epoch"

292 unit="d"

293 verbLevel="5" tablehead="End Date Obs."

294 description="The last date of observation"

295 displayHint="type=humanDate"/>

296
297
298 <!-- creating the view objobs_ssap from view objobs-->

299 <viewStatement>

300 CREATE OR REPLACE VIEW \curtable AS (

301 SELECT (

302 select (’http://vos2.asu.cas.cz/tap/sync?LANG=ADQL&REQUEST=doQuery&

303 FORMAT=fits&QUERY=’|| ’select * from bextract.objobs where sourceid = ’’’

304 || sourceid || ’’’ and band = ’’’ || band || ’’’’)) as accref,

305 ’application/fits’ as mime,

306 band as band,

307 ’ASU CAS lightcurve’ as ssa_dstitle,

308 sourceid as ssa_pubDID,

309 (SELECT spoint (obs1.raj2000 *pi()/180.0 , obs1.dej2000 * pi()/180.0))

310 as ssa_location,

311 ’ASU CAS’ as ssa_publisher,

312 (SELECT min(hjd) from

313 (select distinct hjd from

314 \schema.objobs as obs2 where obs2.sourceid=obs1.sourceid) as subq)

315 as min_date,

316 (SELECT max(hjd) from

317 (select distinct hjd from

318 \schema.objobs as obs2 where obs2.sourceid=obs1.sourceid) as subq)

319 as max_date

320
321 FROM \schema.objobs as obs1)

322 </viewStatement>

323 </table>

324
325
326
327 <!-- data element for importing the observation_info table.

328 Drops the table before ingesting. -->

329 <data id="import_observation_info" dependents="merge_observation_data" auto="False">

330 <sources recurse="True" pattern="data/*.fits"/>

331
332 <fitsProdGrammar>

333 <rowfilter procDef="//products#define">

334 <bind key="embargo">parseTimestamp(@DATE_OBS.split(".")[0])

335 +datetime.timedelta(days=365)</bind>

336 <bind key="owner">"beusers"</bind>

337 <bind key="table">"\schema.observation_info"</bind>

338 </rowfilter>

339 </fitsProdGrammar>

340 <make table="observation_info">

341 <rowmaker id="make_observation_info" idmaps="*">

342 <map dest="obsname">str.join("/", \inputRelativePath.split(’/’)[2:])</map>

343 <map dest="dateObs">dateTimeToMJD(parseTimestamp(@DATE_OBS.split(".")[0]))</map>

344 <map dest="HJD">@JD_HELIO</map>

345 <map dest="band">vars["FILTB"]</map>

346 <map dest="accref">\inputRelativePath</map>

347 <map dest="ORIRA">hmsToDeg(@ORIRA , sepChar=":")</map>

348 <map dest="ORIDEC">parseAngle(@ORIDEC , "dms", sepChar=":")</map>

349

58

350 <apply name="Halpha">

351 <code>

352 if vars["FILTB"]=="H-alpha_narrow":

353 vars["FILTB"] = "Ha-r"

354 </code>

355 </apply>

356 </rowmaker>

357 </make>

358 </data>

359
360 <!-- data element for importing the table objobs_incomplete.

361 Drops the table before ingesting. -->

362 <data id="import_observations" dependents="merge_observation_data" auto="false">

363 <sources recurse="True" pattern="data/*.fits"/>

364 <fitsTableGrammar/>

365 <make table="objobs_incomplete">

366 <rowmaker id="make_objobs_incomplete" idmaps="*">

367 <map dest="obsname">str.join("/", \inputRelativePath.split(’/’)[2:])</map>

368 <map dest="starNo">\rowsProcessed</map>

369 <map dest="accref">\inputRelativePath</map>

370 <simplemaps>raj2000: RA, dej2000:DEC</simplemaps>

371 </rowmaker>

372 </make>

373 </data>

374
375 <!-- data element for updating the table observation_info -->

376 <data id="update_observation_info" original="import_observation_info"

377 updating="True" auto="true" >

378 <sources recurse="True" pattern="data/*.fits">

379 <ignoreSources fromdb="select accref from bextract.observation_info" />

380 </sources>

381 </data>

382
383 <!-- data element for updating the table objobs_incomplete -->

384 <data id="update_observations" original="import_observations"

385 updating="True" auto="true">

386 <sources recurse="True" pattern="data/*.fits">

387 <ignoreSources fromdb="select accref from bextract.objobs_incomplete"/>

388 </sources>

389 </data>

390
391 <!-- data element for downloading the data from catalog as votable. -->

392 <data id="get_catalog_data" auto="false">

393 <make table="objcat">

394
395 <script type="preImport" lang="python">

396 import subprocess

397 with base.getTableConn() as conn:

398 coordinates= list(conn.queryToDicts(

399 "SELECT DISTINCT obs1.orira,obs1.oridec FROM bextract.observation_info as obs1 " +

400 "JOIN" +

401 "(SELECT observation_info.orira,observation_info.oridec " +

402 "FROM bextract.observation_info) as obs2

403 ON q3c_join(obs1.orira, obs1.oridec, obs2.orira, obs2.oridec, 0.016666667);"))

404 print coordinates

405
406 Query = ("SELECT TOP 10000000 ipix, raj2000, dej2000, e_raepRA, e_deepDE,

407 pmRA, pmDE, e_pmRA, e_pmDE " +

408 "FROM ppmxl.main WHERE ")

409 Query += ("OR ".join(["(1=

410 CONTAINS(POINT(’ICRS’,ppmxl.main.raj2000,ppmxl.main.dej2000)," +

411 "CIRCLE(’ICRS’, %(orira).14f , %(oridec).14f, 0.25)))"%x for x in coordinates]))

59

B. Resource descriptor

412
413 subprocess.call("curl -FLANG=ADQL -FREQUEST=doQuery

414 -FQUERY=\"%s\" -FFORMAT=\"votable/td\" \

415 http://dc.g-vo.org/tap/sync -o \"data/ppmxl_needed.XML\""% (Query),shell=True)

416 </script>

417 </make>

418
419 </data>

420
421 <!-- data element for ingesting the catalog from votable file. -->

422 <data id="import_catalog" auto="false" >

423 <sources pattern="data/ppmxl_needed.XML"/>

424 <voTableGrammar/>

425 <make table="objcat">

426 <rowmaker id="make_objcat" idmaps="*">

427 <map key="sourceId" source="ipix"/>

428 </rowmaker>

429 </make>

430 </data>

431
432 <!-- data element used for crossmatching the objects with catalog-->

433 <data id="cross_match" auto="false" dependents="merge_observation_data">

434 <make table="objid">

435 <script type="preIndex" lang="SQL" name="Crossmatch objcat with objobs">

436 INSERT INTO \schema.objid (

437 SELECT sourceId,obsname,starNo,pos_off FROM (

438 SELECT *,

439 <!--this is distance between our observation and catalog’s.

440 Counted by simple Pythagoras-->

441 (|/ ((catalog.raj2000-observation.raj2000)^2 +

442 (catalog.dej2000-observation.dej2000)^2)) AS pos_off

443 FROM

444 (SELECT cat.sourceId,cat.raj2000,cat.dej2000 FROM \schema.objcat AS cat) AS catalog,

445 (SELECT obs.starNo,obs.obsname,obs.raj2000,obs.dej2000

446 FROM \schema.objobs_incomplete AS obs) AS observation

447 WHERE q3c_join(observation.raj2000, observation.dej2000,

448 catalog.raj2000, catalog.dej2000,

449 0.000277778)

450) as q

451);

452 </script>

453 </make>

454 </data>

455
456 <!-- data element for merging the data into objobs view -->

457 <data id="merge_observation_data">

458 <make table="objobs"/>

459 </data>

460
461 <!-- data element for creating the SSAP view from objobs view -->

462 <data id="make_ssap">

463 <make table="objobs_ssap"/>

464 </data>

465
466 <!-- database core for the SCS service using objobs view -->

467 <dbCore id="scsCore" queriedTable="objobs">

468 <condDesc original="//scs#humanInput"/>

469 <condDesc original="//scs#protoInput"/>

470 <FEED source="//scs#coreDescs"/>

471 <condDesc buildFrom="band"/>

472
473 <condDesc combining="True">

60

474 <inputKey name="date_min" type="date" ucd="pos.eq.date"

475 description="Minimum date (If empty, returns everything until Maximum date)"

476 tablehead="Minimum Date">

477 </inputKey>

478
479 <inputKey name="date_max" type="date" ucd="pos.eq.date"

480 description="Minimum date (If empty, returns everything until Maximum date)"

481 tablehead="Maximum Date">

482 </inputKey>

483
484 <phraseMaker id="DatePhrase" name="dateSQL">

485 <code>

486 if (inPars["date_min"]):

487 minTS = dateTimeToMJD(datetime.datetime.combine(

488 inPars["date_min"],

489 datetime.datetime.strptime("0:0:0", "%H:%M:%S").time()))

490 else:

491 minTS = 0.0

492
493 if (inPars["date_max"]):

494 maxTS = dateTimeToMJD(datetime.datetime.combine(

495 inPars["date_max"],

496 datetime.datetime.strptime("23:59:59", "%H:%M:%S").time()))

497 else:

498 maxTS= dateTimeToMJD(datetime.datetime.now())

499
500 yield "dateObs BETWEEN %%(%s)s AND %%(%s)s"%(

501 base.getSQLKey("date_min", minTS, outPars),

502 base.getSQLKey("date_max", maxTS, outPars))

503 </code>

504 </phraseMaker>

505 </condDesc>

506 </dbCore>

507
508 <!-- database core for SSAP service using the objobs_ssap view -->

509 <dbCore id="ssaCore" queriedTable="objobs_ssap">

510 <condDesc buildFrom="ssa_location"/>

511 <condDesc buildFrom="band"/>

512
513 </dbCore>

514
515 <!-- service for SCS -->

516 <service id="scs" core="scsCore" allowed="scs.XML, form">

517 <meta name="title">Simple cone search in the binary table extension</meta>

518 <meta name="shortName">Bintable SCS</meta>

519 <meta name="testQuery.ra">149.416138018881</meta>

520 <meta name="testQuery.dec">0.415292172381177</meta>

521 <meta name="testQuery.sr">0.01</meta>

522 </service>

523
524 <!-- service for SSAP -->

525 <service id="ssa" core="ssaCore" allowed="ssap.XML,form">

526 <meta name="shortName">DK-154 light curves</meta>

527 <meta name="description">SSAP interpreted light curves</meta>

528 </service>

529 </resource>

61

Appendix C

Data examples

In this chapter are enlisted some data file examples.

Listing 4: VOTable structure.

SIMPLE = T / conform to FITS standard

BITPIX = 32 / unsigned short data

NAXIS = 2 / number of axes

NAXIS1 = 2148 / length of data axis

NAXIS2 = 2048 / length of data axis

EXTEND = T / this is FITS with extensions

HISTORY Created with RTS2 version 0.9.4 build on Oct 8 2012 11:05:08.

CTIME = 1357700226 / exposure start (seconds since 1.1.1970)

USEC = 388661 / exposure start micro seconds

JD = 2456301.62298611 / exposure JD

DATE-OBS= ’2013-01-09T02:57:06.388’ / start of exposure

OBJECT = ’99942 ’ / object name

EXPOSURE= 30. / exposure length in seconds

EXPTIME = 30. / exposure length in seconds

INSTRUME= ’DFOSC_FASU’ / name of the data acqusition instrument

TELESCOP= ’DK-1.54 ’ / name of the data acqusition telescope

ORIGIN = ’ASU CAS - NBI’ / organization responsible for data

FOC_NAME= ’FASC ’ / name of focuser

UTSTART = ’2013-01-09T02:57:06.388’

EQUINOX = ’2000. ’

CCD_TYPE= ’E2V44-82’ / camera type

Listing 5: FITS Raw data

63

C. Data examples

COMMENT === Astrometric Solution by Munipack ===

COMMENT Type: absolute

COMMENT Reference catalogue: UCAC4 Catalogue (Zacharias+, 2012)

COMMENT Projection: GNOMONIC

COMMENT Number of objects used = 412

COMMENT RMS = 348.1E-03 [arcsec]

COMMENT Scale = 0.3962148723 +- 2.1E-02 [arcsec/pix]

COMMENT cos(pa) = -0.9999504532 +- -8.2E-03

COMMENT sin(pa) = -0.0099544538 +- -8.2E-01

COMMENT Position Angle (pa) = 180.5703576118 +- 4.7E+01 [deg]

COMMENT Alpha center projection (CRVAL1) = 17.0770261431 +- 5.1E-03 [deg]

COMMENT Delta center projection (CRVAL2) = -72.5417937886 +- 1.9E-03 [deg]

COMMENT Horizontal center (CRPIX1) = 1074.000 [pix]

COMMENT Vertical center (CRPIX2) = 1024.000 [pix]

COMMENT Catalogue RA,DEC [deg] Data X,Y [pix] Residuals [arcsec]

COMMENT 16.78505620 -72.51274280 266.021 760.823 3.5E+00 3.5E+00

COMMENT 17.26649030 -72.53821920 1591.985 1000.217 -689.4E-03 -5.2E+00

COMMENT 17.07079000 -72.51833140 1054.126 811.279 257.3E-03 39.8E-03

COMMENT 16.87286120 -72.51271730 513.720 766.331 104.3E-03 11.7E-03

COMMENT 17.19225030 -72.62536120 1394.129 1780.816 32.2E-03 -132.4E-03

COMMENT 17.16164500 -72.52949340 1304.178 909.805 -199.6E-03 291.9E-03

COMMENT 16.76438450 -72.46051870 211.742 297.170 -428.6E-03 -408.3E-03

COMMENT 16.80444300 -72.47590870 322.344 434.923 11.1E-03 -134.8E-03

COMMENT 17.06155300 -72.62464840 1039.246 1777.780 97.9E-03 -215.8E-03

COMMENT 16.75966590 -72.59286340 216.084 1499.182 -11.4E-03 -30.4E-03

COMMENT 16.81920770 -72.44286120 359.186 134.733 -293.9E-03 -417.9E-03

COMMENT 17.30662740 -72.44465310 1693.814 135.889 264.5E-03 -245.2E-03

COMMENT 16.95130060 -72.56559370 733.254 1244.004 273.0E-03 -82.6E-03

COMMENT 17.04826650 -72.52176170 993.163 842.835 214.9E-03 -2.7E-03

COMMENT 16.74724090 -72.56489370 179.251 1245.687 -280.8E-03 -206.5E-03

COMMENT 16.98505390 -72.54621250 824.276 1067.030 -300.5E-03 -202.4E-03

COMMENT 16.84688650 -72.44256840 434.882 130.798 -208.7E-03 -458.7E-03

Listing 6: FITS Reduced data

64

XTENSION= ’BINTABLE’ / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 208 / width of table in bytes

NAXIS2 = 1227 / number of rows in table

PCOUNT = 0 / size of special data area

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 26 / number of fields in each row

TTYPE1 = ’RA ’ / label for field 1

TFORM1 = ’1D ’ / data format of field: 8-byte DOUBLE

TUNIT1 = ’deg ’ / physical unit of field

TTYPE2 = ’DEC ’ / label for field 2

TFORM2 = ’1D ’ / data format of field: 8-byte DOUBLE

TUNIT2 = ’deg ’ / physical unit of field

TTYPE3 = ’COUNTS ’ / label for field 3

TFORM3 = ’1D ’ / data format of field: 8-byte DOUBLE

TUNIT3 = ’cts ’ / physical unit of field

TTYPE4 = ’IMAG ’ / label for field 4

TFORM4 = ’1D ’ / data format of field: 8-byte DOUBLE

TUNIT4 = ’mag ’ / physical unit of field

TTYPE5 = ’MAG ’ / label for field 5

TFORM5 = ’1D ’ / data format of field: 8-byte DOUBLE

TUNIT5 = ’mag ’ / physical unit of field

TTYPE6 = ’ABMAG ’ / label for field 6

TFORM6 = ’1D ’ / data format of field: 8-byte DOUBLE

Listing 7: FITS Binary table

65

Appendix D

Installation of GAVO DaCHS

The GAVO DaCHS installation proccess is very well described in the official
documentation [2] and all the needed information is there. What I will
describe here is an concrete example of our file structure at the virtual
server running at http://vos2.asu.cas.cz.

We have installed it from sources, but it can be easily installed from the
package too, as described in the install docs [2].

D.1 Sources

After the installation, sources can be found in the /usr/share/pyshared/gavo
folder and can be debugged in there, if a problem occurs.

D.2 Database

The database is installed in the default folder at /usr/share and it’s con-
figuration files are at /etc/postgresql/8.4/pgdata. The database itself is
stored in the home folder of the user which administrates the server at
/home/voadmin/gavodb.

The user with the privileges to run the database and data ingestion is
voadmin and plays the role of the administrator of the whole server.

All the options we had to change was the localhost ip address, because
on a virtual server it obviously isn’t the standart 127.0.0.0. It had to be
changed in files /var/gavo/etc/dsn file and in /etc/postgresql/8.4/pgdata/pg hba.conf
file.

67

http://vos2.asu.cas.cz

D. Installation of GAVO DaCHS

D.3 Filesystem

The gavo system files are stored in /var/gavo folder. For us are important
the config files in etc folder, and the logs in log folder. The RD files are
stored in inputs folder. In the extract folder is my RD for extracting the
light curves, in dk154 rawdata and dk154 reduced are my colleague’s RDs
for publishing the images.

The actual data is mounted in the location /emc/archdata, and the
folders which we need are linked to the folders of our descriptors for easy
referencing.

68

Appendix E

Ingesting manual

The ingestion will be done typically by one ”administrator”, who will look
after the server. However, the usage of the ingestion mechanism is quite
simple and user friendly. I will describe the list of commands the ingestion
consists of.

Gavo server supports variety of commands, but for the ingestion itself
we need only one. The command is gavo imp and the arguments, that
follow are all from my solution. I will describe here all the commands I
support and need, concerning the ingestion of data to the server.

gavo imp - Basic server command. Displays help and options we can use,
but for our solution only few of them are reasonable.

gavo imp -c - This option we will use the most. When it encounters an
erroneous input file, it does not stop, but continues until it checks all
of them.

gavo imp -m - Updates only metadata of our table. Usable, when we need
to change some description of a column and don’t want to touch the
data.

gavo imp ”filepath” - The filepath argument is the name of the RD which
represents the biggest part of my solution. It is typically named q.rd,
so the command is gavo imp q. This command alone does automat-
ically ingestion of new files found in the data folders. It only adds
new data, does not touch the data already ingested. However, it only
writes the data, and does not the crossmatching. When we want to
rewrite the tables, or do the crossmatching, we have to add other
parameters. These are the names of the data elements within the

69

E. Ingesting manual

RD and are used to define ingesting mechanisms - typically one data
element per a table.

gavo imp q import observation info - This script recreates the first table
- the one that holds information about the observations, one row per
file. The ingestion is quite fast, typically minutes.

gavo imp q import observations - Imports the actual data of the obser-
vations by extracting it from the binary table extension. Here we
typically work with thousands of rows per one file the ingestion time
depends of how many objects were identified on these images. Inges-
tion can be slow, typically hours.

gavo imp q get catalog data - This script downloads the catalog data needed
for the crossmatching into a file. It has also the import catalog ele-
ment ”chained up”, so that one does not need to be called in order
to ingest the data from the file to the database. This script typically
takes tens of minutes.

gavo imp q import catalog - This command ingests the catalog from the
file to the database. This script typically takes minutes.

gavo imp q crossmatch - Script for the actual crossmatching. Fills the
table objid and identifies objects on objobs view against a catalog.
This script is very fast - typically seconds.

gavo imp q merge observation data - This script creates the views. It is
typically called within the ”gavo imp q” command. But we need to
call it after the crossmatching, in order to update the views. As this
script does not change any data, it is instant.

70

Appendix F

Userguide for services

F.1 Web-based

The web-based access is a simple form. There is one special URL per a
service running on the server, their list is below. The SIAPform is not part
of my work, but I mention it too for complete information.

• SCS - http://vos2.asu.cas.cz/extract/q/scs/form

• SSAP - http://vos2.asu.cas.cz/extract/q/ssa/form

• SIAP raw - http://vos2.asu.cas.cz/dk154 rawdata/q/sia/form

• SIAP reduced - http://vos2.asu.cas.cz/dk154 reduced/q/sia/form

Their usage of the web-forms is quite clear, so I will describe only one
of them. On the first image F.1 there is a simple example of how to fill in
the web form. After sending the query, we can display the result and use
the options available for the result table (e.g. send via SAMP, display as a
simple plot, ...).

71

http://vos2.asu.cas.cz/extract/q/scs/form
http://vos2.asu.cas.cz/extract/q/ssa/form
http://vos2.asu.cas.cz/dk154_rawdata/q/sia/form
http://vos2.asu.cas.cz/dk154_reduced/q/sia/form

F. Userguide for services

Figure F.1: Web-form example.

F.2 Aladin

Here I will describe a short way to display our SCS data via Aladin.

1. We start by clicking the open button in the upper right corner.

2. Next we can select the DK 154 folder of services, and select the DK154
SCS service.

3. On the image F.2 we can see the form which Aladin uses for adding
the input parameters to the query. We can fill in the data accordingly
to its example.

72

F.2. Aladin

4. On the next image F.3 we can see the output of our query visualised
on the sky by Aladin.

5. When we want to display the image as a background to our objects,
we can send a query to the SIAP endpoint instead of SCS endpoint
as described on step 2.

6. Then, we have to move the image downwards on the planes list to the
right on the Aladin window as on the image F.4

Figure F.2: Enter the query parameters.

73

F. Userguide for services

Figure F.3: Checkout the result, we can select objects on the image.

Figure F.4: Move the image downwards in the planes list.

74

F.3. SPLAT-VO

F.3 SPLAT-VO

In SPLAT-vo, we don’t have we have to add the server manually. Otherwise
is the extraction standard, the walkthrough is described below.

1. First, we select the SSAP icon on the top panel in the SPLAT-VO
window. This will open a window with VO servers providing any sorts
of SSAP protocol.

2. Then we have to add our own server by clicking the option Add New
Server button. Here we fill in the information as on the picture F.5.

3. On the other screen we can then enter the query by typing for ex-
ample ”SMC” to the Object box, then clicking Lookup. That fills
the coordinates for us. The Radius is clear, but because of the SSAP
definition, the Band is defined by its limits in meters. When entering
the symbolic names we can bypass it, but we have to enter it as an
interval too. I/I means exactly I bandpass. Since we don’t have much
observations yet and we want as many as we can get, we leave the
Time parameter empty.

4. When we send the query, we have to set up the x and y parameters
to hjd (heliocentic date) and mag (magnitude) as on picture F.7.
Then we can display the light curve by clicking Display spectra as
highlighted on the picture.

Figure F.5: Add our server to the list.

75

F. Userguide for services

Figure F.6: Fill in the query parameters.

Figure F.7: Display the light curve.

76

Appendix G

CD contents

readme.txt.......................brief description of the CD content
clientsFolder with runnable clients

Aladin.jar.......................Aladin with the glufile included
topcat-full.jar.......................Newes version of Topcat.
splat.jnlp................................SPLAT-VO web-start

src

impl..............................source codes of implementation
q.rd..................................Resource Descriptor file
glufile......................glufile embedded in th Aladin.jar

thesis source form in format LATEX
text .. text of the thesis

thesis.pdf..text u PDF

77

	Introduction
	Concepts involved
	The Virtual Observatory
	IVOA
	Light curves
	Data formats
	Protocols and related stuff
	Clients
	Servers

	Analysis and design
	Requirements
	Testing
	Options
	My solution
	Analysis

	Implementation
	Database
	Extracting from FITS images
	Downloading catalog
	Crossmatching
	Publishing the data

	Usage and testing
	TAP service
	SCS service
	SSAP service
	SAMP usage
	Usage with SIAP

	Future work
	Conclusion
	Bibliography
	List of used acronyms
	Resource descriptor
	Data examples
	Installation of GAVO DaCHS
	Sources
	Database
	Filesystem

	Ingesting manual
	Userguide for services
	Web-based
	Aladin
	SPLAT-VO

	CD contents

