Introduction
The Ondfejov observatory coudé spectrograph uses a image intensified TV camera
Proxytronic for viewing the targets at the slit. The direct image obtained from its TV
output at the 50 fps rate is, however, very insufficient for viewing the faint objects
that are barely visible in the noise.

The OPSO (OpenGL based Pointing System for Ondfejov) enhances the image by
digital processing of the images grabbed from TV camera. It allows the averaging of
frames, zoom, contrast correction and plot of cross cuts parallel and perpendicular to
the slit. In its final stage it should drive the optical elements to compensate for the
tip-tilt offset variations and thus providing the telescope with the autoguiding
capability.

The system can switch between slit camera and the field viewing camera
remembering the position of different targets in the field.

Abstract

We present OPSO, a modular pointing and auto-guiding system for the coudé spectrograph of the Ondfejov observatory
2m telescope. The current field and slit viewing CCD cameras with image intensifiers are giving only standard TV video
output. To allow the acquisition and guiding of very faint targets, we have designed an image enhancing system working
in real time on TV frames grabbed by BT878-based video capture card. Its basic capabilities include the sliding averaging
of hundreds of frames with bad pixel masking and removal of outliers, display of median of set of frames, quick zooming,
contrast and brightness adjustment, plotting of horizontal and vertical cross cuts of seeing disk within given intensity
range and many more.

From the programmer's point of view, the system consists of three tasks running in parallel on a Linux PC. One C task
controls the video capturing over Video for Linux (v4l 2) interface and feeds the frames into the large block of shared
memory, where the core image processing is done by another C program calling the OpenGL library. The GUI is,
however, dynamically built in Python from XML description of widgets prepared in Glade. All tasks are exchanging
information by IPC calls using the shared memory segments.

The OPSO design description

The system consists of three tasks running in parallel and
communicating through shared memory with IPC calls. The main
speed was achieved by using OpenGL exploiting the graphic
accelerator of video card.

Settings | Zoom Cut| Target i Automation ! Camera l
320
Cut X: I =
288
cutY: I L1
36
Zoom cut X | 1§
40
Zoomcut X size: [_]
34
Zoom cut'Y: |
38
I

Settings | zoom | cut | Target | Automation | camera | Settings Zoom] cut | Target | Automation | camera |

0
Brightness: |)
255
Contrast: [_T1]
45
Average: | _L]

260

Zoom X: | PEET
260
ZoomY: | T]

Zoom size: |

[Zoom
¥ Show cursor zoom
[C Area for cut all lines = Area of zoom

@ Sliding average (" Median average

The grabber task

The one process (in C) drives the frame grabber card (using
Linux v4l 2 API) feeding the large shared memory buffer and
displays every frame using OpenGL (the small window in the
lower left corner). The required target position (red cross, can be
adjusted differently for various objects) and the zoomed area
selected for further processing (blue rectangle) may be set here as
well.

Zoom position = Target position

Zoom cut Y size: |

[Zoom cut XY ¥ Show cursor zoom cut X/Y
[~ All lines [T Show cursor cut X/
[Show cut X/~

Automation painting Save to file Automation painting Save to file Automation pointing Save to file

Main processing task
The main loop of this process (again in C, calling OpenGL) takes

care of the whole digital image processing — it averages (either
"_I'_IF—E_;;’rﬁq— o mE median of sliding) selected number of images, calculates cross cuts
" in one selected column or row — green cross (or averages of rows
or columns), enhances image visibility by changing contrast or
brightness and shows the horizontal and vertical cross cuts in the
given intensity range (blue lines). There is a option for masking
bad pixels as well.

The GUI
The GUI is running as the Python task. The design of widgets was
done in Glade2 and saved into XML file . The Python module
gt k. gl ade generates the widget objects dynamically. The
change of object parameters (e.g. the number of averaged frames,
image contrast or position of the cross) is transferred to the
shared memory by the module pyi pc.

|
i
i
|
;

The autoguiding module
Although the system has improved the visibility of faint objects on
the slit considerably, the primary goal is the use of digitally
processed frames for estimating the center of the stellar image
that is hidden behind the slit.

The various algorithms are being considered, the easiest one is the
quadrant weighting. It calculates sum of pixel values in every
quadrant bordered by target cross. The difference of these values
then derives the compensation signal used to drive two
perpendicular stepper motors with glass plan parallel plates
sweeping the target image in tip-tilt manner. (see photo).

This system is not yet fully working in the present, however.

|:||:I.E'I'||3|_ Pointing System for Ondrejov A, J'}Af

Settings'Zoom'Cut Target AutomatiunlCameral Settings'Zoom'CutlTarget AutDmatmnlCameral Settings'Zcmm!CutlTargetiAutomatiDn Camera
10

Target X: | | E Faulty pix %: ||

260 Count step = 1 correction: |1 5 10
Target : | L [Show cube position Fauity pix Y:]

T IUDS Sqr Add [0 Show value in gquadrant . Een e L
Calibration CarrE Field]

Add |

Target X = 214}
Target Y = 343

Permissible deviation:

1

L

[012, 080] - 004 :] Del]

E0 Cyg
vss0so Bl il
Sg;g?;; [T Blacken faulty pix
_|v2028 cyg .
Automation pointing Save to file Automation peinting Save to file Altomation pointing Save to file The memory and Speed 1ssues
OPSO runs on a moderate PC (512MB RAM, P4 at 2.4GHz, BT878
based grabber, Matrox 550 accelerated video card) on Linux
Debian Sarge (kernel 2.6.8).
The system needs a lot of memory allocated for storing the
grabbed images. Their size is 640x576 pixels, the buffer is for 750
Conclusions frames (15 second averaging)
We have built a powerful telescope guiding system with real-time image processing running on a moderate Linux PC. The most critical This requires about 264 MB of shared memory allocated for
part of the image transformation, intensity and contrast changes, zoom etc . is accomplished in OpenGL and thus the power of the image buffer. The speed is considerably reduced when using
graphical accelerator chip on video card is used for most time-critical tasks. The system is very robust due to separation of the GUI medianing of frames, but for sliding averages it can show cuts and
handling and the real engine allowing the communication through shared memory and IPC calls. calculate center for every frame (at 50 fps rate).

Presented at ADASS XV, ESAC, San Lorenzo de El Escorial, Spain, October 2-5, 2005

